added self test, untested

This commit is contained in:
Jakob Meier 2021-06-04 16:45:54 +02:00
parent 7dfaedd1d5
commit d7024e1ee7
5 changed files with 1188 additions and 77 deletions

View File

@ -12,6 +12,7 @@ enum: uint8_t {
HEATER_HANDLER = 109,
SA_DEPL_HANDLER = 110,
PLOC_HANDLER = 111,
IMTQ_HANDLER = 112,
COMMON_SUBSYSTEM_ID_END
};
}

View File

@ -42,6 +42,7 @@ debugging. */
#define DEBUG_RAD_SENSOR 1
#define DEBUG_SUS 1
#define DEBUG_RTD 1
#define IMTQ_DEBUG 1
// Leave at one as the BSP is linux. Used by the ADIS16507 device handler
#define OBSW_ADIS16507_LINUX_COM_IF 1

View File

@ -7,7 +7,7 @@
IMTQHandler::IMTQHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie) :
DeviceHandlerBase(objectId, comIF, comCookie), engHkDataset(this), calMtmMeasurementSet(
this), rawMtmMeasurementSet(this) {
this), rawMtmMeasurementSet(this), selfTestDataset(this) {
if (comCookie == NULL) {
sif::error << "IMTQHandler: Invalid com cookie" << std::endl;
}
@ -18,10 +18,13 @@ IMTQHandler::~IMTQHandler() {
void IMTQHandler::doStartUp(){
if(mode == _MODE_START_UP){
//TODO: Set to MODE_ON again
if(selfTestSuccess == true){
#if OBSW_SWITCH_TO_NORMAL_MODE_AFTER_STARTUP == 1
setMode(MODE_NORMAL);
communicationStep = CommunicationStep::SELF_TEST;
#else
setMode(_MODE_TO_ON);
#endif
selfTestSuccess = false;
}
}
@ -32,12 +35,6 @@ void IMTQHandler::doShutDown(){
ReturnValue_t IMTQHandler::buildNormalDeviceCommand(
DeviceCommandId_t * id) {
switch (communicationStep) {
case CommunicationStep::SELF_TEST:
// *id = IMTQ::SELF_TEST;
//TODO: Implementing self test command. On-hold because of issue with humidity in clean
// room
communicationStep = CommunicationStep::GET_ENG_HK_DATA;
break;
case CommunicationStep::GET_ENG_HK_DATA:
*id = IMTQ::GET_ENG_HK_DATA;
communicationStep = CommunicationStep::START_MTM_MEASUREMENT;
@ -64,6 +61,19 @@ ReturnValue_t IMTQHandler::buildNormalDeviceCommand(
ReturnValue_t IMTQHandler::buildTransitionDeviceCommand(
DeviceCommandId_t * id){
if (mode == _MODE_START_UP) {
switch (startupStep) {
case StartupStep::COMMAND_SELF_TEST:
*id = IMTQ::SELF_TEST_CMD;
break;
case StartupStep::GET_SELF_TEST_RESULT:
*id = IMTQ::GET_SELF_TEST_RESULT;
break;
default:
sif::debug << "IMTQHandler::buildTransitionDeviceCommand: Unknown startup step"
<< std::endl;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
@ -71,6 +81,19 @@ ReturnValue_t IMTQHandler::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t * commandData,
size_t commandDataLen) {
switch(deviceCommand) {
case(IMTQ::SELF_TEST_CMD): {
commandBuffer[0] = IMTQ::CC::SELF_TEST_CMD;
commandBuffer[1] = IMTQ::SELF_TEST_AXIS::ALL;
rawPacket = commandBuffer;
rawPacketLen = 2;
return RETURN_OK;
}
case(IMTQ::GET_SELF_TEST_RESULT): {
commandBuffer[0] = IMTQ::CC::GET_SELF_TEST_RESULT;
rawPacket = commandBuffer;
rawPacketLen = 1;
return RETURN_OK;
}
case(IMTQ::START_ACTUATION_DIPOLE): {
/* IMTQ expects low byte first */
commandBuffer[0] = IMTQ::CC::START_ACTUATION_DIPOLE;
@ -123,6 +146,8 @@ ReturnValue_t IMTQHandler::buildCommandFromCommand(
}
void IMTQHandler::fillCommandAndReplyMap() {
this->insertInCommandAndReplyMap(IMTQ::SELF_TEST_CMD, 1, nullptr,
IMTQ::SIZE_STATUS_REPLY);
this->insertInCommandAndReplyMap(IMTQ::START_ACTUATION_DIPOLE, 1, nullptr,
IMTQ::SIZE_STATUS_REPLY);
this->insertInCommandAndReplyMap(IMTQ::GET_ENG_HK_DATA, 1, &engHkDataset,
@ -188,6 +213,7 @@ ReturnValue_t IMTQHandler::interpretDeviceReply(DeviceCommandId_t id,
}
switch (id) {
case (IMTQ::SELF_TEST_CMD):
case (IMTQ::START_ACTUATION_DIPOLE):
case (IMTQ::START_MTM_MEASUREMENT):
/* Replies only the status byte which is already handled with parseStatusByte */
@ -204,6 +230,9 @@ ReturnValue_t IMTQHandler::interpretDeviceReply(DeviceCommandId_t id,
case (IMTQ::GET_RAW_MTM_MEASUREMENT):
fillRawMtmDataset(packet);
break;
case (IMTQ::GET_SELF_TEST_RESULT):
handleSelfTestReply(packet);
break;
default: {
sif::debug << "IMTQHandler::interpretDeviceReply: Unknown device reply id" << std::endl;
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
@ -218,7 +247,7 @@ void IMTQHandler::setNormalDatapoolEntriesInvalid(){
}
uint32_t IMTQHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo){
return 500;
return 1000;
}
ReturnValue_t IMTQHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
@ -249,6 +278,119 @@ ReturnValue_t IMTQHandler::initializeLocalDataPool(localpool::DataPool& localDat
localDataPoolMap.emplace(IMTQ::MTM_RAW_Z, new PoolEntry<float>( { 0 }));
localDataPoolMap.emplace(IMTQ::ACTUATION_RAW_STATUS, new PoolEntry<uint8_t>( { 0 }));
/** Entries of dataset for self test results */
localDataPoolMap.emplace(IMTQ::INIT_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::INIT_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_X_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_X_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Y_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Y_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::POS_Z_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::NEG_Z_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_ERR, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_RAW_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_RAW_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_RAW_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_CAL_MAG_X, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_CAL_MAG_Y, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_CAL_MAG_Z, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_X_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_Y_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_Z_CURRENT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_X_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_Y_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(IMTQ::FINA_COIL_Z_TEMPERATURE, new PoolEntry<uint16_t>( { 0 }));
return HasReturnvaluesIF::RETURN_OK;
}
@ -284,6 +426,7 @@ ReturnValue_t IMTQHandler::parseStatusByte(const uint8_t* packet) {
}
void IMTQHandler::fillEngHkDataset(const uint8_t* packet) {
PoolReadGuard rg(&engHkDataset);
uint8_t offset = 2;
engHkDataset.digitalVoltageMv = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
@ -307,7 +450,7 @@ void IMTQHandler::fillEngHkDataset(const uint8_t* packet) {
offset += 2;
engHkDataset.mcuTemperature = (*(packet + offset + 1) << 8 | *(packet + offset));
#if OBSW_VERBOSE_LEVEL >= 1 && IMQT_DEBUG == 1
#if OBSW_VERBOSE_LEVEL >= 1 && IMTQ_DEBUG == 1
sif::info << "IMTQ digital voltage: " << engHkDataset.digitalVoltageMv << " mV" << std::endl;
sif::info << "IMTQ analog voltage: " << engHkDataset.analogVoltageMv << " mV" << std::endl;
sif::info << "IMTQ digital current: " << engHkDataset.digitalCurrentmA << " mA" << std::endl;
@ -368,6 +511,7 @@ void IMTQHandler::handleGetCommandedDipoleReply(const uint8_t* packet) {
}
void IMTQHandler::fillCalibratedMtmDataset(const uint8_t* packet) {
PoolReadGuard rg(&calMtmMeasurementSet);
int8_t offset = 2;
calMtmMeasurementSet.mtmXnT = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
@ -380,7 +524,7 @@ void IMTQHandler::fillCalibratedMtmDataset(const uint8_t* packet) {
offset += 4;
calMtmMeasurementSet.coilActuationStatus = (*(packet + offset + 3) << 24)
| (*(packet + offset + 2) << 16) | (*(packet + offset + 1) << 8) | (*(packet + offset));
#if OBSW_VERBOSE_LEVEL >= 1 && IMQT_DEBUG == 1
#if OBSW_VERBOSE_LEVEL >= 1 && IMTQ_DEBUG == 1
sif::info << "IMTQ calibrated MTM measurement X: " << calMtmMeasurementSet.mtmXnT << " nT"
<< std::endl;
sif::info << "IMTQ calibrated MTM measurement Y: " << calMtmMeasurementSet.mtmYnT << " nT"
@ -393,6 +537,7 @@ void IMTQHandler::fillCalibratedMtmDataset(const uint8_t* packet) {
}
void IMTQHandler::fillRawMtmDataset(const uint8_t* packet) {
PoolReadGuard rg(&rawMtmMeasurementSet);
int8_t offset = 2;
rawMtmMeasurementSet.mtmXnT = (*(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset)) * 7.5;
@ -405,7 +550,7 @@ void IMTQHandler::fillRawMtmDataset(const uint8_t* packet) {
offset += 4;
rawMtmMeasurementSet.coilActuationStatus = (*(packet + offset + 3) << 24)
| (*(packet + offset + 2) << 16) | (*(packet + offset + 1) << 8) | (*(packet + offset));
#if OBSW_VERBOSE_LEVEL >= 1 && IMQT_DEBUG == 1
#if OBSW_VERBOSE_LEVEL >= 1 && IMTQ_DEBUG == 1
sif::info << "IMTQ raw MTM measurement X: " << rawMtmMeasurementSet.mtmXnT << " nT"
<< std::endl;
sif::info << "IMTQ raw MTM measurement Y: " << rawMtmMeasurementSet.mtmYnT << " nT"
@ -416,3 +561,587 @@ void IMTQHandler::fillRawMtmDataset(const uint8_t* packet) {
<< (unsigned int) rawMtmMeasurementSet.coilActuationStatus.value << std::endl;
#endif
}
void IMTQHandler::handleSelfTestReply(const uint8_t* packet) {
PoolReadGuard rg(&selfTestDataset);
/** Init measurements */
int8_t offset = 2;
checkErrorByte(*(packet + offset), *(packet + offset + 1));
selfTestDataset.initErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.initRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.initCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.initCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.initCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.initCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.initCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.initCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** +X measurements */
checkErrorByte(*(packet + offset), *(packet + offset + 1));
selfTestDataset.posXErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.posXRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posXCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posXCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posXCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posXCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posXCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posXCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
/** -X measurements */
checkErrorByte(*(packet + offset), *(packet + offset + 1));
selfTestDataset.negXErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.negXRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negXCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negXCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negXCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negXCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negXCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negXCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** +Y measurements */
checkErrorByte(*(packet + offset), *(packet + offset + 1));
selfTestDataset.posYErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.posYRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posYCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posYCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posYCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posYCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posYCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posYCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** -Y measurements */
checkErrorByte(*(packet + offset), *(packet + offset + 1));
selfTestDataset.negYErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.negYRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negYCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negYCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negYCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negYCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negYCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negYCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** +Z measurements */
selfTestDataset.posZErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.posZRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.posZCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posZCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posZCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posZCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posZCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.posZCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** -Z measurements */
selfTestDataset.negZErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.negZRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.negZCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negZCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negZCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negZCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negZCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.negZCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
/** FINA measurements */
selfTestDataset.finaErr = *(packet + offset);
offset += 2; // STEP byte will not be stored
selfTestDataset.finaRawMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaRawMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaRawMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaCalMagX = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaCalMagY = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaCalMagZ = *(packet + offset + 3) << 24 | *(packet + offset + 2) << 16
| *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
selfTestDataset.finaCoilXCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.finaCoilYCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.finaCoilZCurrent = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.finaCoilXTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.finaCoilYTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 2;
selfTestDataset.finaCoilZTemperature = *(packet + offset + 1) << 8 | *(packet + offset);
offset += 4;
#if OBSW_VERBOSE_LEVEL >= 1 && IMTQ_DEBUG == 1
sif::info << "IMTQ self test (INIT) err: "
<< static_cast<unsigned int>(selfTestDataset.initErr.value) << std::endl;
sif::info << "IMTQ self test (INIT) raw magnetic field X: " << selfTestDataset.initRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) raw magnetic field Y: " << selfTestDataset.initRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) raw magnetic field Z: " << selfTestDataset.initRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) calibrated magnetic field X: " << selfTestDataset.initCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) calibrated magnetic field Y: " << selfTestDataset.initCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) calibrated magnetic field Z: " << selfTestDataset.initCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (INIT) coil X current: " << selfTestDataset.initCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (INIT) coil Y current: " << selfTestDataset.initCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (INIT) coil Z current: " << selfTestDataset.initCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (INIT) coil X temperature: "
<< selfTestDataset.initCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (INIT) coil Y temperature: "
<< selfTestDataset.initCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (INIT) coil Z temperature: "
<< selfTestDataset.initCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+X) err: " <<
static_cast<unsigned int>(selfTestDataset.posXErr.value) << std::endl;
sif::info << "IMTQ self test (+X) raw magnetic field X: " << selfTestDataset.posXRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) raw magnetic field Y: " << selfTestDataset.posXRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) raw magnetic field Z: " << selfTestDataset.posXRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) calibrated magnetic field X: " << selfTestDataset.posXCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) calibrated magnetic field Y: " << selfTestDataset.posXCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) calibrated magnetic field Z: " << selfTestDataset.posXCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+X) coil X current: " << selfTestDataset.posXCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+X) coil Y current: " << selfTestDataset.posXCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+X) coil Z current: " << selfTestDataset.initCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+X) coil X temperature: "
<< selfTestDataset.posXCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+X) coil Y temperature: "
<< selfTestDataset.posXCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+X) coil Z temperature: "
<< selfTestDataset.posXCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-X) err: "
<< static_cast<unsigned int>(selfTestDataset.negXErr.value) << std::endl;
sif::info << "IMTQ self test (-X) raw magnetic field X: " << selfTestDataset.negXRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) raw magnetic field Y: " << selfTestDataset.negXRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) raw magnetic field Z: " << selfTestDataset.negXRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) calibrated magnetic field X: " << selfTestDataset.negXCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) calibrated magnetic field Y: " << selfTestDataset.negXCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) calibrated magnetic field Z: " << selfTestDataset.negXCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-X) coil X current: " << selfTestDataset.negXCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-X) coil Y current: " << selfTestDataset.negXCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-X) coil Z current: " << selfTestDataset.negXCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-X) coil X temperature: "
<< selfTestDataset.negXCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-X) coil Y temperature: "
<< selfTestDataset.negXCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-X) coil Z temperature: "
<< selfTestDataset.negXCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Y) err: "
<< static_cast<unsigned int>(selfTestDataset.posYErr.value) << std::endl;
sif::info << "IMTQ self test (+Y) raw magnetic field X: " << selfTestDataset.posYRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) raw magnetic field Y: " << selfTestDataset.posYRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) raw magnetic field Z: " << selfTestDataset.posYRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) calibrated magnetic field X: " << selfTestDataset.posYCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) calibrated magnetic field Y: " << selfTestDataset.posYCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) calibrated magnetic field Z: " << selfTestDataset.posYCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Y) coil X current: " << selfTestDataset.posYCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Y) coil Y current: " << selfTestDataset.posYCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Y) coil Z current: " << selfTestDataset.posYCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Y) coil X temperature: "
<< selfTestDataset.posYCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Y) coil Y temperature: "
<< selfTestDataset.posYCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Y) coil Z temperature: "
<< selfTestDataset.posYCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Y) err: "
<< static_cast<unsigned int>(selfTestDataset.negYErr.value) << std::endl;
sif::info << "IMTQ self test (-Y) raw magnetic field X: " << selfTestDataset.negYRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) raw magnetic field Y: " << selfTestDataset.negYRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) raw magnetic field Z: " << selfTestDataset.negYRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) calibrated magnetic field X: " << selfTestDataset.negYCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) calibrated magnetic field Y: " << selfTestDataset.negYCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) calibrated magnetic field Z: " << selfTestDataset.negYCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Y) coil X current: " << selfTestDataset.negYCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Y) coil Y current: " << selfTestDataset.negYCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Y) coil Z current: " << selfTestDataset.negYCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Y) coil X temperature: "
<< selfTestDataset.negYCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Y) coil Y temperature: "
<< selfTestDataset.negYCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Y) coil Z temperature: "
<< selfTestDataset.negYCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Z) err: "
<< static_cast<unsigned int>(selfTestDataset.posZErr.value) << std::endl;
sif::info << "IMTQ self test (+Z) raw magnetic field X: " << selfTestDataset.posZRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) raw magnetic field Y: " << selfTestDataset.posZRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) raw magnetic field Z: " << selfTestDataset.posZRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) calibrated magnetic field X: " << selfTestDataset.posZCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) calibrated magnetic field Y: " << selfTestDataset.posZCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) calibrated magnetic field Z: " << selfTestDataset.posZCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (+Z) coil X current: " << selfTestDataset.posZCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Z) coil Y current: " << selfTestDataset.posZCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Z) coil Z current: " << selfTestDataset.posZCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (+Z) coil X temperature: "
<< selfTestDataset.posZCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Z) coil Y temperature: "
<< selfTestDataset.posZCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (+Z) coil Z temperature: "
<< selfTestDataset.posZCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Z) err: "
<< static_cast<unsigned int>(selfTestDataset.negZErr.value) << std::endl;
sif::info << "IMTQ self test (-Z) raw magnetic field X: " << selfTestDataset.negZRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) raw magnetic field Y: " << selfTestDataset.negZRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) raw magnetic field Z: " << selfTestDataset.negZRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) calibrated magnetic field X: " << selfTestDataset.negZCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) calibrated magnetic field Y: " << selfTestDataset.negZCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) calibrated magnetic field Z: " << selfTestDataset.negZCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (-Z) coil X current: " << selfTestDataset.negZCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Z) coil Y current: " << selfTestDataset.negZCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Z) coil Z current: " << selfTestDataset.negZCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (-Z) coil X temperature: "
<< selfTestDataset.negZCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Z) coil Y temperature: "
<< selfTestDataset.negZCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (-Z) coil Z temperature: "
<< selfTestDataset.negZCoilZTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (FINA) err: "
<< static_cast<unsigned int>(selfTestDataset.finaErr.value) << std::endl;
sif::info << "IMTQ self test (FINA) raw magnetic field X: " << selfTestDataset.finaRawMagX
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) raw magnetic field Y: " << selfTestDataset.finaRawMagY
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) raw magnetic field Z: " << selfTestDataset.finaRawMagZ
<< " 7.5 * 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) calibrated magnetic field X: " << selfTestDataset.finaCalMagX
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) calibrated magnetic field Y: " << selfTestDataset.finaCalMagY
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) calibrated magnetic field Z: " << selfTestDataset.finaCalMagZ
<< " 10^-9 T" << std::endl;
sif::info << "IMTQ self test (FINA) coil X current: " << selfTestDataset.finaCoilXCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (FINA) coil Y current: " << selfTestDataset.finaCoilYCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (FINA) coil Z current: " << selfTestDataset.finaCoilZCurrent
<< " 10^-4 A" << std::endl;
sif::info << "IMTQ self test (FINA) coil X temperature: "
<< selfTestDataset.finaCoilXTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (FINA) coil Y temperature: "
<< selfTestDataset.finaCoilYTemperature << " °C" << std::endl;
sif::info << "IMTQ self test (FINA) coil Z temperature: "
<< selfTestDataset.finaCoilZTemperature << " °C" << std::endl;
#endif
}
void IMTQHandler::checkErrorByte(const uint8_t errorByte, const uint8_t step) {
std::string stepString("");
if (step < 8) {
stepString = makeStepString(step);
}
else {
/** This should normally never happen */
sif::debug << "IMTQHandler::checkErrorByte: Invalid step" << std::endl;
return;
}
if (errorByte & IMTQ::I2C_FAILURE_MASK) {
triggerEvent(SELF_TEST_I2C_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test I2C failure for step " << stepString
<< std::endl;
}
if (errorByte & IMTQ::SPI_FAILURE_MASK) {
triggerEvent(SELF_TEST_SPI_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test SPI failure for step " << stepString
<< std::endl;
}
if (errorByte & IMTQ::ADC_FAILURE_MASK) {
triggerEvent(SELF_TEST_ADC_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test ADC failure for step " << stepString
<< std::endl;
}
if (errorByte & IMTQ::PWM_FAILURE_MASK) {
triggerEvent(SELF_TEST_PWM_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test PWM failure for step " << stepString
<< std::endl;
}
if (errorByte & IMTQ::TC_FAILURE_MASK) {
triggerEvent(SELF_TEST_TC_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test TC failure (system failure) for step "
<< stepString << std::endl;
}
if (errorByte & IMTQ::MTM_RANGE_FAILURE_MASK) {
triggerEvent(SELF_TEST_TC_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test MTM range failure for step "
<< stepString << std::endl;
}
if (errorByte & IMTQ::COIL_CURRENT_FAILURE_MASK) {
triggerEvent(SELF_TEST_COIL_CURRENT_FAILURE, step);
sif::error << "IMTQHandler::checkErrorByte: Self test coil current outside of expected "
"range for step " << stepString << std::endl;
}
}
std::string IMTQHandler::makeStepString(const uint8_t step) {
std::string stepString("");
switch (step) {
case IMTQ::SELF_TEST_STEPS::INIT:
stepString = std::string("INIT");
break;
case IMTQ::SELF_TEST_STEPS::X_POSITIVE:
stepString = std::string("+X");
break;
case IMTQ::SELF_TEST_STEPS::X_NEGATIVE:
stepString = std::string("-X");
break;
case IMTQ::SELF_TEST_STEPS::Y_POSITIVE:
stepString = std::string("+Y");
break;
case IMTQ::SELF_TEST_STEPS::Y_NEGATIVE:
stepString = std::string("-Y");
break;
case IMTQ::SELF_TEST_STEPS::Z_POSITIVE:
stepString = std::string("+Z");
break;
case IMTQ::SELF_TEST_STEPS::Z_NEGATIVE:
stepString = std::string("-Z");
break;
case IMTQ::SELF_TEST_STEPS::FINA:
stepString = std::string("FINA");
break;
default:
sif::error << "IMTQHandler::checkErrorByte: Received packet with invalid step information"
<< std::endl;
break;
}
return stepString;
}

View File

@ -50,15 +50,38 @@ private:
static const ReturnValue_t REJECTED_WITHOUT_REASON = MAKE_RETURN_CODE(0xA5);
static const ReturnValue_t CMD_ERR_UNKNOWN = MAKE_RETURN_CODE(0xA6);
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::IMTQ_HANDLER;
//! [EXPORT] : [COMMENT] Get self test result returns I2C failure
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_I2C_FAILURE = MAKE_EVENT(1, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns SPI failure. This concerns the MTM connectivity.
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_SPI_FAILURE = MAKE_EVENT(2, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns failure in measurement of current and temperature.
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_ADC_FAILURE = MAKE_EVENT(3, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns PWM failure which concerns the coil actuation.
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_PWM_FAILURE = MAKE_EVENT(4, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns TC failure (system failure)
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_TC_FAILURE = MAKE_EVENT(5, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns failure that MTM values were outside of the expected range.
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_MTM_RANGE_FAILURE = MAKE_EVENT(6, severity::LOW);
//! [EXPORT] : [COMMENT] Get self test result returns failure indicating that the coil current was outside of the expected range
//! P1: Indicates on which axis the failure occurred. 0 -> INIT, 1 -> +X, 2 -> -X, 3 -> +Y, 4 -> -Y, 5 -> +Z, 6 -> -Z, 7 -> FINA
static const Event SELF_TEST_COIL_CURRENT_FAILURE = MAKE_EVENT(7, severity::LOW);
IMTQ::EngHkDataset engHkDataset;
IMTQ::CalibratedMtmMeasurementSet calMtmMeasurementSet;
IMTQ::RawMtmMeasurementSet rawMtmMeasurementSet;
IMTQ::SelfTestDataset selfTestDataset;
uint8_t commandBuffer[IMTQ::MAX_COMMAND_SIZE];
enum class CommunicationStep {
SELF_TEST,
GET_ENG_HK_DATA,
START_MTM_MEASUREMENT,
GET_CAL_MTM_MEASUREMENT,
@ -67,6 +90,15 @@ private:
CommunicationStep communicationStep = CommunicationStep::GET_ENG_HK_DATA;
enum class StartupStep {
COMMAND_SELF_TEST,
GET_SELF_TEST_RESULT
};
StartupStep startupStep = StartupStep::COMMAND_SELF_TEST;
bool selfTestSuccess = false;
/**
* @brief Each reply contains a status byte giving information about a request. This function
* parses this byte and returns the associated failure message.
@ -114,6 +146,23 @@ private:
* command.
*/
void fillRawMtmDataset(const uint8_t* packet);
/**
* @brief This function fills the self test dataset and parses error bytes by means of the
* self test reply data.
* @param packet Pointer to the reply data holding the self test results.
*/
void handleSelfTestReply(const uint8_t* packet);
/**
* @brief This function checks the error byte of a self test measurement.
*
* @param errorByte The received error byte to check
* @param step The step of the error byte.
*/
void checkErrorByte(const uint8_t errorByte, const uint8_t step);
std::string makeStepString(const uint8_t step);
};
#endif /* MISSION_DEVICES_IMTQHANDLER_H_ */

View File

@ -13,7 +13,8 @@ namespace IMTQ {
static const DeviceCommandId_t GET_CAL_MTM_MEASUREMENT = 0x5;
/** Requests the raw values measured by the built-in MTM XEN1210 */
static const DeviceCommandId_t GET_RAW_MTM_MEASUREMENT = 0x6;
static const DeviceCommandId_t SELF_TEST = 0x7;
static const DeviceCommandId_t SELF_TEST_CMD = 0x7;
static const DeviceCommandId_t GET_SELF_TEST_RESULT = 0x8;
static const uint8_t GET_TEMP_REPLY_SIZE = 2;
static const uint8_t CFGR_CMD_SIZE = 3;
@ -21,6 +22,7 @@ namespace IMTQ {
static const uint32_t ENG_HK_DATA_SET_ID = GET_ENG_HK_DATA;
static const uint32_t CAL_MTM_SET = GET_CAL_MTM_MEASUREMENT;
static const uint32_t SELF_TEST_DATA_SET = GET_SELF_TEST_RESULT;
static const uint8_t SIZE_ENG_HK_COMMAND = 1;
static const uint8_t SIZE_STATUS_REPLY = 2;
@ -35,6 +37,16 @@ namespace IMTQ {
/** Define entries in IMTQ specific dataset */
static const uint8_t ENG_HK_SET_POOL_ENTRIES = 11;
static const uint8_t CAL_MTM_POOL_ENTRIES = 4;
static const uint8_t SELF_TEST_DATASET_ENTRIES = 104;
/** Error codes for interpreting the self test error byte */
static const uint8_t I2C_FAILURE_MASK = 0x1;
static const uint8_t SPI_FAILURE_MASK = 0x2; // MTM connectivity
static const uint8_t ADC_FAILURE_MASK = 0x4; // Current/Temp measurement
static const uint8_t PWM_FAILURE_MASK = 0x8; // Coil actuation
static const uint8_t TC_FAILURE_MASK = 0x10; // System failure
static const uint8_t MTM_RANGE_FAILURE_MASK = 0x20; // MTM values outside of expected range
static const uint8_t COIL_CURRENT_FAILURE_MASK = 0x40; // Coil currents outside of expected range
/**
* Command code definitions. Each command or reply of an IMTQ request will begin with one of
@ -43,13 +55,36 @@ namespace IMTQ {
namespace CC {
static const uint8_t START_MTM_MEASUREMENT = 0x4;
static const uint8_t START_ACTUATION_DIPOLE = 0x6;
static const uint8_t SELF_TEST_CMD = 0x8;
static const uint8_t SOFTWARE_RESET = 0xAA;
static const uint8_t GET_ENG_HK_DATA = 0x4A;
static const uint8_t GET_COMMANDED_DIPOLE = 0x46;
static const uint8_t GET_RAW_MTM_MEASUREMENT = 0x42;
static const uint8_t GET_CAL_MTM_MEASUREMENT = 0x43;
static const uint8_t GET_SELF_TEST_RESULT = 0x47;
};
namespace SELF_TEST_AXIS {
static const uint8_t ALL = 0x0;
static const uint8_t X_POSITIVE = 0x1;
static const uint8_t X_NEGATIVE = 0x2;
static const uint8_t Y_POSITIVE = 0x3;
static const uint8_t Y_NEGATIVE = 0x4;
static const uint8_t Z_POSITIVE = 0x5;
static const uint8_t Z_NEGATIVE = 0x6;
}
namespace SELF_TEST_STEPS {
static const uint8_t INIT = 0x0;
static const uint8_t X_POSITIVE = 0x1;
static const uint8_t X_NEGATIVE = 0x2;
static const uint8_t Y_POSITIVE = 0x3;
static const uint8_t Y_NEGATIVE = 0x4;
static const uint8_t Z_POSITIVE = 0x5;
static const uint8_t Z_NEGATIVE = 0x6;
static const uint8_t FINA = 0x7;
}
enum IMTQPoolIds: lp_id_t {
DIGITAL_VOLTAGE_MV,
ANALOG_VOLTAGE_MV,
@ -69,11 +104,122 @@ namespace IMTQ {
MTM_RAW_X,
MTM_RAW_Y,
MTM_RAW_Z,
ACTUATION_RAW_STATUS
ACTUATION_RAW_STATUS,
INIT_ERR,
INIT_RAW_MAG_X,
INIT_RAW_MAG_Y,
INIT_RAW_MAG_Z,
INIT_CAL_MAG_X,
INIT_CAL_MAG_Y,
INIT_CAL_MAG_Z,
INIT_COIL_X_CURRENT,
INIT_COIL_Y_CURRENT,
INIT_COIL_Z_CURRENT,
INIT_COIL_X_TEMPERATURE,
INIT_COIL_Y_TEMPERATURE,
INIT_COIL_Z_TEMPERATURE,
POS_X_ERR,
POS_X_RAW_MAG_X,
POS_X_RAW_MAG_Y,
POS_X_RAW_MAG_Z,
POS_X_CAL_MAG_X,
POS_X_CAL_MAG_Y,
POS_X_CAL_MAG_Z,
POS_X_COIL_X_CURRENT,
POS_X_COIL_Y_CURRENT,
POS_X_COIL_Z_CURRENT,
POS_X_COIL_X_TEMPERATURE,
POS_X_COIL_Y_TEMPERATURE,
POS_X_COIL_Z_TEMPERATURE,
NEG_X_ERR,
NEG_X_RAW_MAG_X,
NEG_X_RAW_MAG_Y,
NEG_X_RAW_MAG_Z,
NEG_X_CAL_MAG_X,
NEG_X_CAL_MAG_Y,
NEG_X_CAL_MAG_Z,
NEG_X_COIL_X_CURRENT,
NEG_X_COIL_Y_CURRENT,
NEG_X_COIL_Z_CURRENT,
NEG_X_COIL_X_TEMPERATURE,
NEG_X_COIL_Y_TEMPERATURE,
NEG_X_COIL_Z_TEMPERATURE,
POS_Y_ERR,
POS_Y_RAW_MAG_X,
POS_Y_RAW_MAG_Y,
POS_Y_RAW_MAG_Z,
POS_Y_CAL_MAG_X,
POS_Y_CAL_MAG_Y,
POS_Y_CAL_MAG_Z,
POS_Y_COIL_X_CURRENT,
POS_Y_COIL_Y_CURRENT,
POS_Y_COIL_Z_CURRENT,
POS_Y_COIL_X_TEMPERATURE,
POS_Y_COIL_Y_TEMPERATURE,
POS_Y_COIL_Z_TEMPERATURE,
NEG_Y_ERR,
NEG_Y_RAW_MAG_X,
NEG_Y_RAW_MAG_Y,
NEG_Y_RAW_MAG_Z,
NEG_Y_CAL_MAG_X,
NEG_Y_CAL_MAG_Y,
NEG_Y_CAL_MAG_Z,
NEG_Y_COIL_X_CURRENT,
NEG_Y_COIL_Y_CURRENT,
NEG_Y_COIL_Z_CURRENT,
NEG_Y_COIL_X_TEMPERATURE,
NEG_Y_COIL_Y_TEMPERATURE,
NEG_Y_COIL_Z_TEMPERATURE,
POS_Z_ERR,
POS_Z_RAW_MAG_X,
POS_Z_RAW_MAG_Y,
POS_Z_RAW_MAG_Z,
POS_Z_CAL_MAG_X,
POS_Z_CAL_MAG_Y,
POS_Z_CAL_MAG_Z,
POS_Z_COIL_X_CURRENT,
POS_Z_COIL_Y_CURRENT,
POS_Z_COIL_Z_CURRENT,
POS_Z_COIL_X_TEMPERATURE,
POS_Z_COIL_Y_TEMPERATURE,
POS_Z_COIL_Z_TEMPERATURE,
NEG_Z_ERR,
NEG_Z_RAW_MAG_X,
NEG_Z_RAW_MAG_Y,
NEG_Z_RAW_MAG_Z,
NEG_Z_CAL_MAG_X,
NEG_Z_CAL_MAG_Y,
NEG_Z_CAL_MAG_Z,
NEG_Z_COIL_X_CURRENT,
NEG_Z_COIL_Y_CURRENT,
NEG_Z_COIL_Z_CURRENT,
NEG_Z_COIL_X_TEMPERATURE,
NEG_Z_COIL_Y_TEMPERATURE,
NEG_Z_COIL_Z_TEMPERATURE,
FINA_ERR,
FINA_RAW_MAG_X,
FINA_RAW_MAG_Y,
FINA_RAW_MAG_Z,
FINA_CAL_MAG_X,
FINA_CAL_MAG_Y,
FINA_CAL_MAG_Z,
FINA_COIL_X_CURRENT,
FINA_COIL_Y_CURRENT,
FINA_COIL_Z_CURRENT,
FINA_COIL_X_TEMPERATURE,
FINA_COIL_Y_TEMPERATURE,
FINA_COIL_Z_TEMPERATURE,
};
class EngHkDataset:
public StaticLocalDataSet<ENG_HK_SET_POOL_ENTRIES> {
class EngHkDataset: public StaticLocalDataSet<ENG_HK_SET_POOL_ENTRIES> {
public:
EngHkDataset(HasLocalDataPoolIF* owner) :
@ -84,36 +230,28 @@ public:
StaticLocalDataSet(sid_t(objectId, ENG_HK_DATA_SET_ID)) {
}
lp_var_t<uint16_t> digitalVoltageMv = lp_var_t<uint16_t>(sid.objectId,
DIGITAL_VOLTAGE_MV, this);
lp_var_t<uint16_t> analogVoltageMv = lp_var_t<uint16_t>(sid.objectId,
ANALOG_VOLTAGE_MV, this);
lp_var_t<float> digitalCurrentmA = lp_var_t<float>(sid.objectId,
DIGITAL_CURRENT, this);
lp_var_t<float> analogCurrentmA = lp_var_t<float>(sid.objectId,
ANALOG_CURRENT, this);
lp_var_t<float> coilXCurrentmA = lp_var_t<float>(sid.objectId,
COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrentmA = lp_var_t<float>(sid.objectId,
COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrentmA = lp_var_t<float>(sid.objectId,
COIL_Z_CURRENT, this);
/** All temperatures in [<5B>C] */
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
COIL_Z_TEMPERATURE, this);
lp_var_t<uint16_t> mcuTemperature = lp_var_t<uint16_t>(sid.objectId,
MCU_TEMPERATURE, this);
lp_var_t<uint16_t> digitalVoltageMv = lp_var_t<uint16_t>(sid.objectId, DIGITAL_VOLTAGE_MV,
this);
lp_var_t<uint16_t> analogVoltageMv = lp_var_t<uint16_t>(sid.objectId, ANALOG_VOLTAGE_MV, this);
lp_var_t<float> digitalCurrentmA = lp_var_t<float>(sid.objectId, DIGITAL_CURRENT, this);
lp_var_t<float> analogCurrentmA = lp_var_t<float>(sid.objectId, ANALOG_CURRENT, this);
lp_var_t<float> coilXCurrentmA = lp_var_t<float>(sid.objectId, COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrentmA = lp_var_t<float>(sid.objectId, COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrentmA = lp_var_t<float>(sid.objectId, COIL_Z_CURRENT, this);
/** All temperatures in [°C] */
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId, COIL_X_TEMPERATURE,
this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId, COIL_Y_TEMPERATURE,
this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId, COIL_Z_TEMPERATURE,
this);
lp_var_t<uint16_t> mcuTemperature = lp_var_t<uint16_t>(sid.objectId, MCU_TEMPERATURE, this);
};
/**
* @brief This dataset holds the raw MTM measurements.
*/
class CalibratedMtmMeasurementSet:
public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
class CalibratedMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
CalibratedMtmMeasurementSet(HasLocalDataPoolIF* owner) :
@ -125,22 +263,18 @@ public:
}
/** The unit of all measurements is nT */
lp_var_t<int32_t> mtmXnT = lp_var_t<int32_t>(sid.objectId,
MTM_CAL_X, this);
lp_var_t<int32_t> mtmYnT = lp_var_t<int32_t>(sid.objectId,
MTM_CAL_Y, this);
lp_var_t<int32_t> mtmZnT = lp_var_t<int32_t>(sid.objectId,
MTM_CAL_Z, this);
lp_var_t<int32_t> mtmXnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_X, this);
lp_var_t<int32_t> mtmYnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_Y, this);
lp_var_t<int32_t> mtmZnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_Z, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus = lp_var_t<uint8_t>(sid.objectId,
ACTUATION_CAL_STATUS, this);
lp_var_t<uint8_t> coilActuationStatus = lp_var_t<uint8_t>(sid.objectId, ACTUATION_CAL_STATUS,
this);
};
/**
* @brief This dataset holds the last calibrated MTM measurement.
*/
class RawMtmMeasurementSet:
public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
class RawMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
RawMtmMeasurementSet(HasLocalDataPoolIF* owner) :
@ -152,15 +286,212 @@ public:
}
/** The unit of all measurements is nT */
lp_var_t<float> mtmXnT = lp_var_t<float>(sid.objectId,
MTM_RAW_X, this);
lp_var_t<float> mtmYnT = lp_var_t<float>(sid.objectId,
MTM_RAW_Y, this);
lp_var_t<float> mtmZnT = lp_var_t<float>(sid.objectId,
MTM_RAW_Z, this);
lp_var_t<float> mtmXnT = lp_var_t<float>(sid.objectId, MTM_RAW_X, this);
lp_var_t<float> mtmYnT = lp_var_t<float>(sid.objectId, MTM_RAW_Y, this);
lp_var_t<float> mtmZnT = lp_var_t<float>(sid.objectId, MTM_RAW_Z, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus = lp_var_t<uint8_t>(sid.objectId,
ACTUATION_RAW_STATUS, this);
lp_var_t<uint8_t> coilActuationStatus = lp_var_t<uint8_t>(sid.objectId, ACTUATION_RAW_STATUS,
this);
};
/**
* @brief This dataset can be used to store the self test results.
*
* @details Units of measurements:
* Currents: [10^-4 A]
* Raw MTM data: [7.5 * 10^-9 T]
* Calibrated MTM data: [10^-9 T]
* Temperature: [°C]
* The self test generates for each axis the positive and negative dipole and measures
* the magnetic field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +X
* 3. -X
* 4. +Y
* 5. -Y
* 6. +Z
* 7. -Z
* 8. All coils off (FINA step)
*/
class SelfTestDataset: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
SelfTestDataset(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, SELF_TEST_DATA_SET) {
}
SelfTestDataset(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, SELF_TEST_DATA_SET)) {
}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_ERR, this);
lp_var_t<uint32_t> initRawMagX = lp_var_t<uint32_t>(sid.objectId, INIT_RAW_MAG_X, this);
lp_var_t<uint32_t> initRawMagY = lp_var_t<uint32_t>(sid.objectId, INIT_RAW_MAG_Y, this);
lp_var_t<uint32_t> initRawMagZ = lp_var_t<uint32_t>(sid.objectId, INIT_RAW_MAG_Z, this);
lp_var_t<uint32_t> initCalMagX = lp_var_t<uint32_t>(sid.objectId, INIT_CAL_MAG_X, this);
lp_var_t<uint32_t> initCalMagY = lp_var_t<uint32_t>(sid.objectId, INIT_CAL_MAG_Y, this);
lp_var_t<uint32_t> initCalMagZ = lp_var_t<uint32_t>(sid.objectId, INIT_CAL_MAG_Z, this);
lp_var_t<uint16_t> initCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, INIT_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> initCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, INIT_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> initCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, INIT_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_COIL_Z_TEMPERATURE, this);
/** +X block */
lp_var_t<uint8_t> posXErr = lp_var_t<uint8_t>(sid.objectId, POS_X_ERR, this);
lp_var_t<uint32_t> posXRawMagX = lp_var_t<uint32_t>(sid.objectId, POS_X_RAW_MAG_X, this);
lp_var_t<uint32_t> posXRawMagY = lp_var_t<uint32_t>(sid.objectId, POS_X_RAW_MAG_Y, this);
lp_var_t<uint32_t> posXRawMagZ = lp_var_t<uint32_t>(sid.objectId, POS_X_RAW_MAG_Z, this);
lp_var_t<uint32_t> posXCalMagX = lp_var_t<uint32_t>(sid.objectId, POS_X_CAL_MAG_X, this);
lp_var_t<uint32_t> posXCalMagY = lp_var_t<uint32_t>(sid.objectId, POS_X_CAL_MAG_Y, this);
lp_var_t<uint32_t> posXCalMagZ = lp_var_t<uint32_t>(sid.objectId, POS_X_CAL_MAG_Z, this);
lp_var_t<uint16_t> posXCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, POS_X_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> posXCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, POS_X_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> posXCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, POS_X_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> posXCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> posXCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> posXCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_X_COIL_Z_TEMPERATURE, this);
/** -X block */
lp_var_t<uint8_t> negXErr = lp_var_t<uint8_t>(sid.objectId, NEG_X_ERR, this);
lp_var_t<uint32_t> negXRawMagX = lp_var_t<uint32_t>(sid.objectId, NEG_X_RAW_MAG_X, this);
lp_var_t<uint32_t> negXRawMagY = lp_var_t<uint32_t>(sid.objectId, NEG_X_RAW_MAG_Y, this);
lp_var_t<uint32_t> negXRawMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_X_RAW_MAG_Z, this);
lp_var_t<uint32_t> negXCalMagX = lp_var_t<uint32_t>(sid.objectId, NEG_X_CAL_MAG_X, this);
lp_var_t<uint32_t> negXCalMagY = lp_var_t<uint32_t>(sid.objectId, NEG_X_CAL_MAG_Y, this);
lp_var_t<uint32_t> negXCalMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_X_CAL_MAG_Z, this);
lp_var_t<uint16_t> negXCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_X_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> negXCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_X_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> negXCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_X_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> negXCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> negXCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> negXCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_Z_TEMPERATURE, this);
/** +Y block */
lp_var_t<uint8_t> posYErr = lp_var_t<uint8_t>(sid.objectId, POS_Y_ERR, this);
lp_var_t<uint32_t> posYRawMagX = lp_var_t<uint32_t>(sid.objectId, POS_Y_RAW_MAG_X, this);
lp_var_t<uint32_t> posYRawMagY = lp_var_t<uint32_t>(sid.objectId, POS_Y_RAW_MAG_Y, this);
lp_var_t<uint32_t> posYRawMagZ = lp_var_t<uint32_t>(sid.objectId, POS_Y_RAW_MAG_Z, this);
lp_var_t<uint32_t> posYCalMagX = lp_var_t<uint32_t>(sid.objectId, POS_Y_CAL_MAG_X, this);
lp_var_t<uint32_t> posYCalMagY = lp_var_t<uint32_t>(sid.objectId, POS_Y_CAL_MAG_Y, this);
lp_var_t<uint32_t> posYCalMagZ = lp_var_t<uint32_t>(sid.objectId, POS_Y_CAL_MAG_Z, this);
lp_var_t<uint16_t> posYCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Y_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> posYCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Y_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> posYCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> posYCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> posYCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> posYCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_Z_TEMPERATURE, this);
/** -Y block */
lp_var_t<uint8_t> negYErr = lp_var_t<uint8_t>(sid.objectId, NEG_Y_ERR, this);
lp_var_t<uint32_t> negYRawMagX = lp_var_t<uint32_t>(sid.objectId, NEG_Y_RAW_MAG_X, this);
lp_var_t<uint32_t> negYRawMagY = lp_var_t<uint32_t>(sid.objectId, NEG_Y_RAW_MAG_Y, this);
lp_var_t<uint32_t> negYRawMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_Y_RAW_MAG_Z, this);
lp_var_t<uint32_t> negYCalMagX = lp_var_t<uint32_t>(sid.objectId, NEG_Y_CAL_MAG_X, this);
lp_var_t<uint32_t> negYCalMagY = lp_var_t<uint32_t>(sid.objectId, NEG_Y_CAL_MAG_Y, this);
lp_var_t<uint32_t> negYCalMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_Y_CAL_MAG_Z, this);
lp_var_t<uint16_t> negYCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Y_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> negYCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Y_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> negYCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> negYCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> negYCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> negYCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> posZErr = lp_var_t<uint8_t>(sid.objectId, POS_Z_ERR, this);
lp_var_t<uint32_t> posZRawMagX = lp_var_t<uint32_t>(sid.objectId, POS_Z_RAW_MAG_X, this);
lp_var_t<uint32_t> posZRawMagY = lp_var_t<uint32_t>(sid.objectId, POS_Z_RAW_MAG_Y, this);
lp_var_t<uint32_t> posZRawMagZ = lp_var_t<uint32_t>(sid.objectId, POS_Z_RAW_MAG_Z, this);
lp_var_t<uint32_t> posZCalMagX = lp_var_t<uint32_t>(sid.objectId, POS_Z_CAL_MAG_X, this);
lp_var_t<uint32_t> posZCalMagY = lp_var_t<uint32_t>(sid.objectId, POS_Z_CAL_MAG_Y, this);
lp_var_t<uint32_t> posZCalMagZ = lp_var_t<uint32_t>(sid.objectId, POS_Z_CAL_MAG_Z, this);
lp_var_t<uint16_t> posZCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Z_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> posZCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Z_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> posZCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, POS_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> posZCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> posZCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> posZCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_Z_TEMPERATURE, this);
/** -Z block */
lp_var_t<uint8_t> negZErr = lp_var_t<uint8_t>(sid.objectId, NEG_Z_ERR, this);
lp_var_t<uint32_t> negZRawMagX = lp_var_t<uint32_t>(sid.objectId, NEG_Z_RAW_MAG_X, this);
lp_var_t<uint32_t> negZRawMagY = lp_var_t<uint32_t>(sid.objectId, NEG_Z_RAW_MAG_Y, this);
lp_var_t<uint32_t> negZRawMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_Z_RAW_MAG_Z, this);
lp_var_t<uint32_t> negZCalMagX = lp_var_t<uint32_t>(sid.objectId, NEG_Z_CAL_MAG_X, this);
lp_var_t<uint32_t> negZCalMagY = lp_var_t<uint32_t>(sid.objectId, NEG_Z_CAL_MAG_Y, this);
lp_var_t<uint32_t> negZCalMagZ = lp_var_t<uint32_t>(sid.objectId, NEG_Z_CAL_MAG_Z, this);
lp_var_t<uint16_t> negZCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Z_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> negZCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Z_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> negZCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, NEG_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> negZCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> negZCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> negZCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_ERR, this);
lp_var_t<uint32_t> finaRawMagX = lp_var_t<uint32_t>(sid.objectId, FINA_RAW_MAG_X, this);
lp_var_t<uint32_t> finaRawMagY = lp_var_t<uint32_t>(sid.objectId, FINA_RAW_MAG_Y, this);
lp_var_t<uint32_t> finaRawMagZ = lp_var_t<uint32_t>(sid.objectId, FINA_RAW_MAG_Z, this);
lp_var_t<uint32_t> finaCalMagX = lp_var_t<uint32_t>(sid.objectId, FINA_CAL_MAG_X, this);
lp_var_t<uint32_t> finaCalMagY = lp_var_t<uint32_t>(sid.objectId, FINA_CAL_MAG_Y, this);
lp_var_t<uint32_t> finaCalMagZ = lp_var_t<uint32_t>(sid.objectId, FINA_CAL_MAG_Z, this);
lp_var_t<uint16_t> finaCoilXCurrent = lp_var_t<uint16_t>(sid.objectId, FINA_COIL_X_CURRENT,
this);
lp_var_t<uint16_t> finaCoilYCurrent = lp_var_t<uint16_t>(sid.objectId, FINA_COIL_Y_CURRENT,
this);
lp_var_t<uint16_t> finaCoilZCurrent = lp_var_t<uint16_t>(sid.objectId, FINA_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_COIL_Z_TEMPERATURE, this);
};
/**