added saftCtrl to acsController

This commit is contained in:
Marius Eggert 2022-10-20 11:07:45 +02:00
parent 5c2266e214
commit deb7c4e500
4 changed files with 221 additions and 179 deletions

View File

@ -8,6 +8,7 @@ AcsController::AcsController(object_id_t objectId)
navigation(&acsParameters), navigation(&acsParameters),
actuatorCmd(&acsParameters), actuatorCmd(&acsParameters),
guidance(&acsParameters), guidance(&acsParameters),
safeCtrl(&acsParameters),
detumble(&acsParameters), detumble(&acsParameters),
ptgCtrl(&acsParameters), ptgCtrl(&acsParameters),
detumbleCounter{0}, detumbleCounter{0},
@ -35,7 +36,7 @@ void AcsController::performControlOperation() {
if (mode != MODE_OFF) { if (mode != MODE_OFF) {
switch (submode) { switch (submode) {
case SUBMODE_SAFE: case SUBMODE_SAFE:
// performSafe(); performSafe();
break; break;
case SUBMODE_DETUMBLE: case SUBMODE_DETUMBLE:
@ -72,7 +73,66 @@ void AcsController::performControlOperation() {
// DEBUG END // DEBUG END
} }
void AcsController::performSafe() {} void AcsController::performSafe() {
// Concept: SAFE MODE WITH MEKF
// -do the sensor processing, maybe is does make more sense do call this class function in
// another place since we have to do it for every mode regardless of safe or not
ACS::SensorValues sensorValues;
ACS::OutputValues outputValues;
timeval now; // We need to give the actual time here
sensorProcessing.process(now, &sensorValues, &outputValues, &acsParameters);
ReturnValue_t validMekf;
navigation.useMekf(&sensorValues, &outputValues, &validMekf); // DOES THIS WORK WITH VALID?
// Give desired satellite rate and sun direction to align
double satRateSafe[3] = {0, 0, 0}, sunTargetDir[3] = {0, 0, 0};
guidance.getTargetParamsSafe(sunTargetDir, satRateSafe);
// IF MEKF is working
double magMomMtq[3] = {0, 0, 0};
bool magMomMtqValid = false;
if (validMekf == returnvalue::OK) {
safeCtrl.safeMekf(now, (outputValues.quatMekfBJ), &(outputValues.quatMekfBJValid),
(outputValues.magFieldModel), &(outputValues.magFieldModelValid),
(outputValues.sunDirModel), &(outputValues.sunDirModelValid),
(outputValues.satRateMekf), &(outputValues.satRateMekfValid), sunTargetDir,
satRateSafe, magMomMtq, &magMomMtqValid);
} else {
safeCtrl.safeNoMekf(now, outputValues.sunDirEst, &outputValues.sunDirEstValid,
outputValues.sunVectorDerivative, &(outputValues.sunVectorDerivativeValid),
outputValues.magFieldEst, &(outputValues.magFieldEstValid),
outputValues.magneticFieldVectorDerivative,
&(outputValues.magneticFieldVectorDerivativeValid), sunTargetDir,
satRateSafe, magMomMtq, &magMomMtqValid);
}
double dipolCmdUnits[3] = {0, 0, 0};
actuatorCmd.cmdDipolMtq(magMomMtq, dipolCmdUnits);
// Detumble check and switch
if (outputValues.satRateMekfValid && VectorOperations<double>::norm(outputValues.satRateMekf, 3) >
acsParameters.detumbleParameter.omegaDetumbleStart) {
detumbleCounter++;
}
else if (outputValues.satRateEstValid &&
VectorOperations<double>::norm(outputValues.satRateEst, 3) >
acsParameters.detumbleParameter.omegaDetumbleStart) {
detumbleCounter++;
}
else {
detumbleCounter = 0;
}
if (detumbleCounter > acsParameters.detumbleParameter.detumblecounter) {
submode = SUBMODE_DETUMBLE;
detumbleCounter = 0;
}
// commanding.magnetorquesDipol();
}
void AcsController::performDetumble() { void AcsController::performDetumble() {
ACS::SensorValues sensorValues; ACS::SensorValues sensorValues;
@ -293,6 +353,8 @@ void AcsController::copySusData() {
PoolReadGuard pg(&susSets[9]); PoolReadGuard pg(&susSets[9]);
if (pg.getReadResult() == returnvalue::OK) { if (pg.getReadResult() == returnvalue::OK) {
std::memcpy(susData.sus9.value, susSets[9].channels.value, 6 * sizeof(uint16_t)); std::memcpy(susData.sus9.value, susSets[9].channels.value, 6 * sizeof(uint16_t));
sif::debug << susData.sus9.isValid() << std::endl;
sif::debug << susSets[9].channels.isValid() << std::endl;
} }
} }
{ {

View File

@ -11,6 +11,7 @@
#include "acs/SensorProcessing.h" #include "acs/SensorProcessing.h"
#include "acs/control/Detumble.h" #include "acs/control/Detumble.h"
#include "acs/control/PtgCtrl.h" #include "acs/control/PtgCtrl.h"
#include "acs/control/SafeCtrl.h"
#include "controllerdefinitions/AcsCtrlDefinitions.h" #include "controllerdefinitions/AcsCtrlDefinitions.h"
#include "fsfw_hal/devicehandlers/MgmLIS3MDLHandler.h" #include "fsfw_hal/devicehandlers/MgmLIS3MDLHandler.h"
#include "fsfw_hal/devicehandlers/MgmRM3100Handler.h" #include "fsfw_hal/devicehandlers/MgmRM3100Handler.h"
@ -29,7 +30,6 @@ class AcsController : public ExtendedControllerBase {
static const Submode_t SUBMODE_PTG_NADIR = 5; static const Submode_t SUBMODE_PTG_NADIR = 5;
protected: protected:
void performSafe(); void performSafe();
void performDetumble(); void performDetumble();
void performPointingCtrl(); void performPointingCtrl();
@ -41,6 +41,7 @@ class AcsController : public ExtendedControllerBase {
ActuatorCmd actuatorCmd; ActuatorCmd actuatorCmd;
Guidance guidance; Guidance guidance;
SafeCtrl safeCtrl;
Detumble detumble; Detumble detumble;
PtgCtrl ptgCtrl; PtgCtrl ptgCtrl;

View File

@ -6,182 +6,172 @@
*/ */
#include "SafeCtrl.h" #include "SafeCtrl.h"
#include "../util/MathOperations.h"
#include <math.h>
#include <fsfw/globalfunctions/constants.h> #include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h> #include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h> #include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h> #include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>
#include "../util/MathOperations.h"
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_){ SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) {
loadAcsParameters(acsParameters_); loadAcsParameters(acsParameters_);
MatrixOperations<double>::multiplyScalar(*(inertiaEIVE->inertiaMatrix), 10, *gainMatrixInertia, 3, 3); MatrixOperations<double>::multiplyScalar(*(inertiaEIVE->inertiaMatrix), 10, *gainMatrixInertia, 3,
3);
} }
SafeCtrl::~SafeCtrl(){ SafeCtrl::~SafeCtrl() {}
} void SafeCtrl::loadAcsParameters(AcsParameters *acsParameters_) {
safeModeControllerParameters = &(acsParameters_->safeModeControllerParameters);
void SafeCtrl::loadAcsParameters(AcsParameters *acsParameters_){ inertiaEIVE = &(acsParameters_->inertiaEIVE);
safeModeControllerParameters = &(acsParameters_->safeModeControllerParameters);
inertiaEIVE = &(acsParameters_->inertiaEIVE);
} }
ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid, ReturnValue_t SafeCtrl::safeMekf(timeval now, double *quatBJ, bool *quatBJValid,
double *magFieldModel, bool *magFieldModelValid, double *magFieldModel, bool *magFieldModelValid,
double *sunDirModel, bool *sunDirModelValid, double *sunDirModel, bool *sunDirModelValid, double *satRateMekf,
double *satRateMekf, bool *rateMekfValid, bool *rateMekfValid, double *sunDirRef, double *satRatRef,
double *sunDirRef, double *satRatRef, double *outputMagMomB, bool *outputValid) {
double *outputMagMomB, bool *outputValid){ if (!(*quatBJValid) || !(*magFieldModelValid) || !(*sunDirModelValid) || !(*rateMekfValid)) {
*outputValid = false;
return SAFECTRL_MEKF_INPUT_INVALID;
}
if ( !(*quatBJValid) || !(*magFieldModelValid) || !(*sunDirModelValid) || double kRate = 0, kAlign = 0;
!(*rateMekfValid)) { kRate = safeModeControllerParameters->k_rate_mekf;
*outputValid = false; kAlign = safeModeControllerParameters->k_align_mekf;
return SAFECTRL_MEKF_INPUT_INVALID;
}
double kRate = 0, kAlign = 0; // Calc sunDirB ,magFieldB with mekf output and model
kRate = safeModeControllerParameters->k_rate_mekf; double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
kAlign = safeModeControllerParameters->k_align_mekf; MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ);
double sunDirB[3] = {0, 0, 0}, magFieldB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1);
// Calc sunDirB ,magFieldB with mekf output and model double crossSun[3] = {0, 0, 0};
double dcmBJ[3][3] = {{0,0,0},{0,0,0},{0,0,0}};
MathOperations<double>::dcmFromQuat(quatBJ, *dcmBJ);
double sunDirB[3] = {0,0,0}, magFieldB[3] = {0,0,0};
MatrixOperations<double>::multiply(*dcmBJ, sunDirModel, sunDirB, 3, 3, 1);
MatrixOperations<double>::multiply(*dcmBJ, magFieldModel, magFieldB, 3, 3, 1);
double crossSun[3] = {0, 0, 0}; VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun);
double normCrossSun = VectorOperations<double>::norm(crossSun, 3);
VectorOperations<double>::cross(sunDirRef, sunDirB, crossSun); // calc angle alpha between sunDirRef and sunDIr
double normCrossSun = VectorOperations<double>::norm(crossSun, 3); double alpha = 0, dotSun = 0;
dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB);
alpha = acos(dotSun);
// calc angle alpha between sunDirRef and sunDIr // Law Torque calculations
double alpha = 0, dotSun = 0; double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, torqueRate[3] = {0, 0, 0},
dotSun = VectorOperations<double>::dot(sunDirRef, sunDirB); torqueAll[3] = {0, 0, 0};
alpha = acos(dotSun);
// Law Torque calculations double scalarFac = 0;
double torqueCmd[3] = {0, 0, 0}, torqueAlign[3] = {0, 0, 0}, scalarFac = kAlign * alpha / normCrossSun;
torqueRate[3] = {0, 0, 0}, torqueAll[3] = {0, 0, 0}; VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3);
double scalarFac = 0; double rateSafeMode[3] = {0, 0, 0};
scalarFac = kAlign * alpha / normCrossSun; VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3);
VectorOperations<double>::mulScalar(crossSun, scalarFac, torqueAlign, 3); VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3);
double rateSafeMode[3] = {0,0,0}; VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3);
VectorOperations<double>::subtract(satRateMekf, satRatRef, rateSafeMode, 3); // Adding factor of inertia for axes
VectorOperations<double>::mulScalar(rateSafeMode, -kRate, torqueRate, 3); MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1);
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAll, 3); // MagMom B (orthogonal torque)
// Adding factor of inertia for axes double torqueMgt[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*gainMatrixInertia, torqueAll, torqueCmd, 3, 3, 1); VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
// MagMom B (orthogonal torque) VectorOperations<double>::mulScalar(torqueMgt, 1 / pow(normMag, 2), outputMagMomB, 3);
double torqueMgt[3] = {0,0,0}; *outputValid = true;
VectorOperations<double>::cross(magFieldB, torqueCmd, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldB, 3);
VectorOperations<double>::mulScalar(torqueMgt, 1/pow(normMag,2), outputMagMomB, 3);
*outputValid = true;
return returnvalue::OK;
return returnvalue::OK;
} }
// Will be the version in worst case scenario in event of no working MEKF (nor RMUs) // Will be the version in worst case scenario in event of no working MEKF (nor RMUs)
void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, void SafeCtrl::safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, double *sunRateB,
double *sunRateB, bool *sunRateBValid, bool *sunRateBValid, double *magFieldB, bool *magFieldBValid,
double *magFieldB, bool *magFieldBValid, double *magRateB, bool *magRateBValid, double *sunDirRef,
double *magRateB, bool *magRateBValid, double *satRateRef, double *outputMagMomB, bool *outputValid) {
double *sunDirRef, double *satRateRef, // Check for invalid Inputs
double *outputMagMomB, bool *outputValid){ if (!susDirBValid || !magFieldBValid || !magRateBValid) {
*outputValid = false;
return;
}
// Check for invalid Inputs // normalize sunDir and magDir
if ( !susDirBValid || !magFieldBValid || !magRateBValid) { double magDirB[3] = {0, 0, 0};
*outputValid = false; VectorOperations<double>::normalize(magFieldB, magDirB, 3);
return; VectorOperations<double>::normalize(susDirB, susDirB, 3);
}
// normalize sunDir and magDir // Cosinus angle between sunDir and magDir
double magDirB[3] = {0, 0, 0}; double cosAngleSunMag = VectorOperations<double>::dot(magDirB, susDirB);
VectorOperations<double>::normalize(magFieldB, magDirB, 3);
VectorOperations<double>::normalize(susDirB, susDirB, 3);
// Cosinus angle between sunDir and magDir // Rate parallel to sun direction and magnetic field direction
double cosAngleSunMag = VectorOperations<double>::dot(magDirB, susDirB); double rateParaSun = 0, rateParaMag = 0;
double dotSunRateMag = 0, dotmagRateSun = 0, rateFactor = 0;
dotSunRateMag = VectorOperations<double>::dot(sunRateB, magDirB);
dotmagRateSun = VectorOperations<double>::dot(magRateB, susDirB);
rateFactor = 1 - pow(cosAngleSunMag, 2);
rateParaSun = (dotmagRateSun + cosAngleSunMag * dotSunRateMag) / rateFactor;
rateParaMag = (dotSunRateMag + cosAngleSunMag * dotmagRateSun) / rateFactor;
// Rate parallel to sun direction and magnetic field direction // Full rate or estimate
double rateParaSun = 0, rateParaMag = 0; double estSatRate[3] = {0, 0, 0};
double dotSunRateMag = 0, dotmagRateSun = 0, double estSatRateMag[3] = {0, 0, 0}, estSatRateSun[3] = {0, 0, 0};
rateFactor = 0; VectorOperations<double>::mulScalar(susDirB, rateParaSun, estSatRateSun, 3);
dotSunRateMag = VectorOperations<double>::dot(sunRateB, magDirB); VectorOperations<double>::add(sunRateB, estSatRateSun, estSatRateSun, 3);
dotmagRateSun = VectorOperations<double>::dot(magRateB, susDirB); VectorOperations<double>::mulScalar(magDirB, rateParaMag, estSatRateMag, 3);
rateFactor = 1 - pow(cosAngleSunMag,2); VectorOperations<double>::add(magRateB, estSatRateMag, estSatRateMag, 3);
rateParaSun = ( dotmagRateSun + cosAngleSunMag * dotSunRateMag ) / rateFactor; VectorOperations<double>::add(estSatRateSun, estSatRateMag, estSatRate, 3);
rateParaMag = ( dotSunRateMag + cosAngleSunMag * dotmagRateSun ) / rateFactor; VectorOperations<double>::mulScalar(estSatRate, 0.5, estSatRate, 3);
// Full rate or estimate /* Only valid if angle between sun direction and magnetic field direction
double estSatRate[3] = {0, 0, 0}; is sufficiently large */
double estSatRateMag[3] = {0, 0, 0}, estSatRateSun[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(susDirB, rateParaSun, estSatRateSun, 3);
VectorOperations<double>::add(sunRateB, estSatRateSun, estSatRateSun, 3);
VectorOperations<double>::mulScalar(magDirB, rateParaMag, estSatRateMag, 3);
VectorOperations<double>::add(magRateB, estSatRateMag, estSatRateMag, 3);
VectorOperations<double>::add(estSatRateSun, estSatRateMag, estSatRate, 3);
VectorOperations<double>::mulScalar(estSatRate, 0.5, estSatRate, 3);
/* Only valid if angle between sun direction and magnetic field direction double sinAngle = 0;
is sufficiently large */ sinAngle = sin(acos(cos(cosAngleSunMag)));
double sinAngle = 0; if (!(sinAngle > sin(safeModeControllerParameters->sunMagAngleMin * M_PI / 180))) {
sinAngle = sin(acos(cos(cosAngleSunMag))); return;
}
if ( !(sinAngle > sin( safeModeControllerParameters->sunMagAngleMin * M_PI / 180))) { // Rate for Torque Calculation
return; double diffRate[3] = {0, 0, 0}; /* ADD TO MONITORING */
} VectorOperations<double>::subtract(estSatRate, satRateRef, diffRate, 3);
// Rate for Torque Calculation // Torque Align calculation
double diffRate[3] = {0, 0, 0}; /* ADD TO MONITORING */ double kRateNoMekf = 0, kAlignNoMekf = 0;
VectorOperations<double>::subtract(estSatRate, satRateRef, diffRate, 3); kRateNoMekf = safeModeControllerParameters->k_rate_no_mekf;
kAlignNoMekf = safeModeControllerParameters->k_align_no_mekf;
// Torque Align calculation double cosAngleAlignErr = VectorOperations<double>::dot(sunDirRef, susDirB);
double kRateNoMekf = 0, kAlignNoMekf = 0; double crossSusSunRef[3] = {0, 0, 0};
kRateNoMekf = safeModeControllerParameters->k_rate_no_mekf; VectorOperations<double>::cross(sunDirRef, susDirB, crossSusSunRef);
kAlignNoMekf = safeModeControllerParameters->k_align_no_mekf; double sinAngleAlignErr = VectorOperations<double>::norm(crossSusSunRef, 3);
double cosAngleAlignErr = VectorOperations<double>::dot(sunDirRef, susDirB); double torqueAlign[3] = {0, 0, 0};
double crossSusSunRef[3] = {0, 0, 0}; double angleAlignErr = acos(cosAngleAlignErr);
VectorOperations<double>::cross(sunDirRef, susDirB, crossSusSunRef); double torqueAlignFactor = kAlignNoMekf * angleAlignErr / sinAngleAlignErr;
double sinAngleAlignErr = VectorOperations<double>::norm(crossSusSunRef, 3); VectorOperations<double>::mulScalar(crossSusSunRef, torqueAlignFactor, torqueAlign, 3);
double torqueAlign[3] = {0, 0, 0}; // Torque Rate Calculations
double angleAlignErr = acos(cosAngleAlignErr); double torqueRate[3] = {0, 0, 0};
double torqueAlignFactor = kAlignNoMekf * angleAlignErr / sinAngleAlignErr; VectorOperations<double>::mulScalar(diffRate, -kRateNoMekf, torqueRate, 3);
VectorOperations<double>::mulScalar(crossSusSunRef, torqueAlignFactor, torqueAlign, 3);
//Torque Rate Calculations // Final torque
double torqueRate[3] = {0, 0, 0}; double torqueB[3] = {0, 0, 0}, torqueAlignRate[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(diffRate, -kRateNoMekf, torqueRate, 3); VectorOperations<double>::add(torqueRate, torqueAlign, torqueAlignRate, 3);
MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), torqueAlignRate, torqueB, 3, 3,
1);
//Final torque // Magnetic moment
double torqueB[3] = {0, 0, 0}, torqueAlignRate[3] = {0, 0, 0}; double magMomB[3] = {0, 0, 0};
VectorOperations<double>::add(torqueRate, torqueAlign, torqueAlignRate, 3); double crossMagFieldTorque[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), torqueAlignRate, torqueB, 3, 3, 1); VectorOperations<double>::cross(magFieldB, torqueB, crossMagFieldTorque);
double magMomFactor = pow(VectorOperations<double>::norm(magFieldB, 3), 2);
VectorOperations<double>::mulScalar(crossMagFieldTorque, 1 / magMomFactor, magMomB, 3);
//Magnetic moment outputMagMomB[0] = magMomB[0];
double magMomB[3] = {0, 0, 0}; outputMagMomB[1] = magMomB[1];
double crossMagFieldTorque[3] = {0, 0, 0}; outputMagMomB[2] = magMomB[2];
VectorOperations<double>::cross(magFieldB, torqueB, crossMagFieldTorque);
double magMomFactor = pow( VectorOperations<double>::norm(magFieldB, 3), 2 );
VectorOperations<double>::mulScalar(crossMagFieldTorque, 1/magMomFactor, magMomB, 3);
outputMagMomB[0] = magMomB[0];
outputMagMomB[1] = magMomB[1];
outputMagMomB[2] = magMomB[2];
*outputValid = true;
*outputValid = true;
} }

View File

@ -8,57 +8,46 @@
#ifndef SAFECTRL_H_ #ifndef SAFECTRL_H_
#define SAFECTRL_H_ #define SAFECTRL_H_
#include "../SensorValues.h"
#include "../OutputValues.h"
#include "../AcsParameters.h"
#include "../config/classIds.h"
#include <string.h>
#include <stdio.h> #include <stdio.h>
#include <string.h>
#include <time.h> #include <time.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../AcsParameters.h"
#include "../OutputValues.h"
#include "../SensorValues.h"
#include "../config/classIds.h"
class SafeCtrl{ class SafeCtrl {
public:
SafeCtrl(AcsParameters *acsParameters_);
virtual ~SafeCtrl();
public: static const uint8_t INTERFACE_ID = CLASS_ID::SAFE;
static const ReturnValue_t SAFECTRL_MEKF_INPUT_INVALID = MAKE_RETURN_CODE(0x01);
SafeCtrl(AcsParameters *acsParameters_); void loadAcsParameters(AcsParameters *acsParameters_);
virtual ~SafeCtrl();
static const uint8_t INTERFACE_ID = CLASS_ID::SAFE; ReturnValue_t safeMekf(timeval now, double *quatBJ, bool *quatBJValid, double *magFieldModel,
static const ReturnValue_t SAFECTRL_MEKF_INPUT_INVALID = MAKE_RETURN_CODE(0x01); bool *magFieldModelValid, double *sunDirModel, bool *sunDirModelValid,
double *satRateMekf, bool *rateMekfValid, double *sunDirRef,
double *satRatRef, // From Guidance (!)
double *outputMagMomB, bool *outputValid);
void loadAcsParameters(AcsParameters *acsParameters_); void safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, double *sunRateB,
bool *sunRateBValid, double *magFieldB, bool *magFieldBValid, double *magRateB,
bool *magRateBValid, double *sunDirRef, double *satRateRef, double *outputMagMomB,
bool *outputValid);
ReturnValue_t safeMekf(timeval now, double *quatBJ, bool *quatBJValid, void idleSunPointing(); // with reaction wheels
double *magFieldModel, bool *magFieldModelValid,
double *sunDirModel, bool *sunDirModelValid,
double *satRateMekf, bool *rateMekfValid,
double *sunDirRef, double *satRatRef, // From Guidance (!)
double *outputMagMomB, bool *outputValid);
void safeNoMekf(timeval now, double *susDirB, bool *susDirBValid, protected:
double *sunRateB, bool *sunRateBValid, private:
double *magFieldB, bool *magFieldBValid, AcsParameters::SafeModeControllerParameters *safeModeControllerParameters;
double *magRateB, bool *magRateBValid, AcsParameters::InertiaEIVE *inertiaEIVE;
double *sunDirRef, double *satRateRef, double gainMatrixInertia[3][3];
double *outputMagMomB, bool *outputValid);
void idleSunPointing(); // with reaction wheels
protected:
private:
AcsParameters::SafeModeControllerParameters* safeModeControllerParameters;
AcsParameters::InertiaEIVE* inertiaEIVE;
double gainMatrixInertia[3][3];
double magFieldBState[3];
timeval magFieldBStateTime;
double magFieldBState[3];
timeval magFieldBStateTime;
}; };
#endif /* ACS_CONTROL_SAFECTRL_H_ */ #endif /* ACS_CONTROL_SAFECTRL_H_ */