lockslockslocks
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good

This commit is contained in:
Robin Müller 2023-03-02 15:32:12 +01:00
parent 7b539e2fa5
commit dfb1e88f55
No known key found for this signature in database
GPG Key ID: 11D4952C8CCEF814
10 changed files with 48 additions and 35 deletions

View File

@ -105,7 +105,7 @@ ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* send
return returnvalue::FAILED; return returnvalue::FAILED;
} }
auto* req = reinterpret_cast<const acs::Adis1650XRequest*>(sendData); auto* req = reinterpret_cast<const acs::Adis1650XRequest*>(sendData);
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (req->mode != adis.mode) { if (req->mode != adis.mode) {
if (req->mode == acs::SimpleSensorMode::NORMAL) { if (req->mode == acs::SimpleSensorMode::NORMAL) {
adis.type = req->type; adis.type = req->type;
@ -135,7 +135,7 @@ ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* send
return returnvalue::FAILED; return returnvalue::FAILED;
} }
auto* req = reinterpret_cast<const acs::GyroL3gRequest*>(sendData); auto* req = reinterpret_cast<const acs::GyroL3gRequest*>(sendData);
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (req->mode != gyro.mode) { if (req->mode != gyro.mode) {
if (req->mode == acs::SimpleSensorMode::NORMAL) { if (req->mode == acs::SimpleSensorMode::NORMAL) {
std::memcpy(gyro.sensorCfg, req->ctrlRegs, 5); std::memcpy(gyro.sensorCfg, req->ctrlRegs, 5);
@ -154,7 +154,7 @@ ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* send
return returnvalue::FAILED; return returnvalue::FAILED;
} }
auto* req = reinterpret_cast<const acs::MgmLis3Request*>(sendData); auto* req = reinterpret_cast<const acs::MgmLis3Request*>(sendData);
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (req->mode != mgm.mode) { if (req->mode != mgm.mode) {
if (req->mode == acs::SimpleSensorMode::NORMAL) { if (req->mode == acs::SimpleSensorMode::NORMAL) {
mgm.performStartup = true; mgm.performStartup = true;
@ -173,7 +173,7 @@ ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* send
return returnvalue::FAILED; return returnvalue::FAILED;
} }
auto* req = reinterpret_cast<const acs::MgmRm3100Request*>(sendData); auto* req = reinterpret_cast<const acs::MgmRm3100Request*>(sendData);
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (req->mode != mgm.mode) { if (req->mode != mgm.mode) {
if (req->mode == acs::SimpleSensorMode::NORMAL) { if (req->mode == acs::SimpleSensorMode::NORMAL) {
mgm.performStartup = true; mgm.performStartup = true;
@ -218,7 +218,7 @@ ReturnValue_t AcsBoardPolling::sendMessage(CookieIF* cookie, const uint8_t* send
break; break;
} }
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (state == InternalState::IDLE) { if (state == InternalState::IDLE) {
state = InternalState::BUSY; state = InternalState::BUSY;
semaphore->release(); semaphore->release();
@ -238,7 +238,7 @@ ReturnValue_t AcsBoardPolling::readReceivedMessage(CookieIF* cookie, uint8_t** b
if (spiCookie == nullptr) { if (spiCookie == nullptr) {
return returnvalue::FAILED; return returnvalue::FAILED;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
auto handleAdisReply = [&](GyroAdis& gyro) { auto handleAdisReply = [&](GyroAdis& gyro) {
std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::Adis1650XReply)); std::memcpy(&gyro.readerReply, &gyro.ownReply, sizeof(acs::Adis1650XReply));
*buffer = reinterpret_cast<uint8_t*>(&gyro.readerReply); *buffer = reinterpret_cast<uint8_t*>(&gyro.readerReply);
@ -297,7 +297,7 @@ void AcsBoardPolling::gyroL3gHandler(GyroL3g& l3g) {
acs::SimpleSensorMode mode; acs::SimpleSensorMode mode;
bool gyroPerformStartup; bool gyroPerformStartup;
{ {
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mode = l3g.mode; mode = l3g.mode;
gyroPerformStartup = l3g.performStartup; gyroPerformStartup = l3g.performStartup;
} }
@ -320,7 +320,7 @@ void AcsBoardPolling::gyroL3gHandler(GyroL3g& l3g) {
if (result != returnvalue::OK) { if (result != returnvalue::OK) {
l3g.replyResult = returnvalue::OK; l3g.replyResult = returnvalue::OK;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
// Cross check configuration as verification that communication is working // Cross check configuration as verification that communication is working
for (uint8_t idx = 0; idx < 5; idx++) { for (uint8_t idx = 0; idx < 5; idx++) {
if (rawReply[idx + 1] != l3g.sensorCfg[idx]) { if (rawReply[idx + 1] != l3g.sensorCfg[idx]) {
@ -345,7 +345,7 @@ void AcsBoardPolling::gyroL3gHandler(GyroL3g& l3g) {
l3g.replyResult = returnvalue::FAILED; l3g.replyResult = returnvalue::FAILED;
return; return;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
// The regular read function always returns the full sensor config as well. Use that // The regular read function always returns the full sensor config as well. Use that
// to verify communications. // to verify communications.
for (uint8_t idx = 0; idx < 5; idx++) { for (uint8_t idx = 0; idx < 5; idx++) {
@ -444,7 +444,7 @@ void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) {
bool cdHasTimedOut = false; bool cdHasTimedOut = false;
bool mustPerformStartup = false; bool mustPerformStartup = false;
{ {
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mode = gyro.mode; mode = gyro.mode;
cdHasTimedOut = gyro.countdown.hasTimedOut(); cdHasTimedOut = gyro.countdown.hasTimedOut();
mustPerformStartup = gyro.performStartup; mustPerformStartup = gyro.performStartup;
@ -478,7 +478,7 @@ void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) {
gyro.replyResult = returnvalue::FAILED; gyro.replyResult = returnvalue::FAILED;
return; return;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
gyro.ownReply.cfgWasSet = true; gyro.ownReply.cfgWasSet = true;
gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3]; gyro.ownReply.cfg.diagStat = (rawReply[2] << 8) | rawReply[3];
gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5]; gyro.ownReply.cfg.filterSetting = (rawReply[4] << 8) | rawReply[5];
@ -525,7 +525,7 @@ void AcsBoardPolling::gyroAdisHandler(GyroAdis& gyro) {
return; return;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
gyro.ownReply.dataWasSet = true; gyro.ownReply.dataWasSet = true;
gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3]; gyro.ownReply.cfg.diagStat = rawReply[2] << 8 | rawReply[3];
gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5]; gyro.ownReply.data.angVelocities[0] = (rawReply[4] << 8) | rawReply[5];
@ -545,7 +545,7 @@ void AcsBoardPolling::mgmLis3Handler(MgmLis3& mgm) {
acs::SimpleSensorMode mode; acs::SimpleSensorMode mode;
bool mustPerformStartup = false; bool mustPerformStartup = false;
{ {
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mode = mgm.mode; mode = mgm.mode;
mustPerformStartup = mgm.performStartup; mustPerformStartup = mgm.performStartup;
} }
@ -605,7 +605,7 @@ void AcsBoardPolling::mgmLis3Handler(MgmLis3& mgm) {
return; return;
} }
{ {
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mgm.ownReply.dataWasSet = true; mgm.ownReply.dataWasSet = true;
mgm.ownReply.sensitivity = mgmLis3::getSensitivityFactor(mgmLis3::getSensitivity(mgm.cfg[1])); mgm.ownReply.sensitivity = mgmLis3::getSensitivityFactor(mgmLis3::getSensitivity(mgm.cfg[1]));
mgm.ownReply.mgmValuesRaw[0] = mgm.ownReply.mgmValuesRaw[0] =
@ -627,7 +627,7 @@ void AcsBoardPolling::mgmLis3Handler(MgmLis3& mgm) {
mgm.replyResult = result; mgm.replyResult = result;
return; return;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mgm.ownReply.temperatureWasSet = true; mgm.ownReply.temperatureWasSet = true;
mgm.ownReply.temperatureRaw = (rawReply[2] << 8) | rawReply[1]; mgm.ownReply.temperatureRaw = (rawReply[2] << 8) | rawReply[1];
} }
@ -638,7 +638,7 @@ void AcsBoardPolling::mgmRm3100Handler(MgmRm3100& mgm) {
acs::SimpleSensorMode mode; acs::SimpleSensorMode mode;
bool mustPerformStartup = false; bool mustPerformStartup = false;
{ {
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
mode = mgm.mode; mode = mgm.mode;
mustPerformStartup = mgm.performStartup; mustPerformStartup = mgm.performStartup;
} }
@ -712,7 +712,7 @@ void AcsBoardPolling::mgmRm3100Handler(MgmRm3100& mgm) {
mgm.replyResult = result; mgm.replyResult = result;
return; return;
} }
MutexGuard mg(ipcLock); MutexGuard mg(ipcLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
for (uint8_t idx = 0; idx < 3; idx++) { for (uint8_t idx = 0; idx < 3; idx++) {
// Hardcoded, but note that the gain depends on the cycle count // Hardcoded, but note that the gain depends on the cycle count
// value which is configurable! // value which is configurable!

View File

@ -22,6 +22,9 @@ class AcsBoardPolling : public SystemObject,
private: private:
enum class InternalState { IDLE, BUSY } state = InternalState::IDLE; enum class InternalState { IDLE, BUSY } state = InternalState::IDLE;
MutexIF* ipcLock; MutexIF* ipcLock;
static constexpr MutexIF::TimeoutType LOCK_TYPE = MutexIF::TimeoutType::WAITING;
static constexpr uint32_t LOCK_TIMEOUT = 20;
static constexpr char LOCK_CTX[] = "AcsBoardPolling";
SemaphoreIF* semaphore; SemaphoreIF* semaphore;
std::array<uint8_t, 32> cmdBuf; std::array<uint8_t, 32> cmdBuf;

View File

@ -9,12 +9,12 @@ MutexIF* DATARATE_LOCK = nullptr;
MutexIF* lazyLock(); MutexIF* lazyLock();
com::Datarate com::getCurrentDatarate() { com::Datarate com::getCurrentDatarate() {
MutexGuard mg(lazyLock()); MutexGuard mg(lazyLock(), MutexIF::TimeoutType::WAITING, 20, "com");
return DATARATE_CFG_RAW; return DATARATE_CFG_RAW;
} }
void com::setCurrentDatarate(com::Datarate newRate) { void com::setCurrentDatarate(com::Datarate newRate) {
MutexGuard mg(lazyLock()); MutexGuard mg(lazyLock(), MutexIF::TimeoutType::WAITING, 20, "com");
DATARATE_CFG_RAW = newRate; DATARATE_CFG_RAW = newRate;
} }

View File

@ -11,6 +11,7 @@ namespace torquer {
static constexpr dur_millis_t TORQUE_BUFFER_TIME_MS = 20; static constexpr dur_millis_t TORQUE_BUFFER_TIME_MS = 20;
static constexpr MutexIF::TimeoutType LOCK_TYPE = MutexIF::TimeoutType::WAITING; static constexpr MutexIF::TimeoutType LOCK_TYPE = MutexIF::TimeoutType::WAITING;
static constexpr uint32_t LOCK_TIMEOUT = 20; static constexpr uint32_t LOCK_TIMEOUT = 20;
static constexpr char LOCK_CTX[] = "torquer";
MutexIF* lazyLock(); MutexIF* lazyLock();
extern bool TORQUEING; extern bool TORQUEING;

View File

@ -429,7 +429,8 @@ ReturnValue_t AcsController::commandActuators(int16_t xDipole, int16_t yDipole,
uint16_t rampTime) { uint16_t rampTime) {
{ {
PoolReadGuard pg(&dipoleSet); PoolReadGuard pg(&dipoleSet);
MutexGuard mg(torquer::lazyLock(), torquer::LOCK_TYPE, torquer::LOCK_TIMEOUT); MutexGuard mg(torquer::lazyLock(), torquer::LOCK_TYPE, torquer::LOCK_TIMEOUT,
torquer::LOCK_CTX);
torquer::NEW_ACTUATION_FLAG = true; torquer::NEW_ACTUATION_FLAG = true;
dipoleSet.setDipoles(xDipole, yDipole, zDipole, dipoleTorqueDuration); dipoleSet.setDipoles(xDipole, yDipole, zDipole, dipoleTorqueDuration);
} }

View File

@ -30,8 +30,8 @@ HeaterHandler::HeaterHandler(object_id_t setObjectId_, GpioIF* gpioInterface_, H
if (mainLineSwitcher == nullptr) { if (mainLineSwitcher == nullptr) {
throw std::invalid_argument("HeaterHandler::HeaterHandler: Invalid PowerSwitchIF"); throw std::invalid_argument("HeaterHandler::HeaterHandler: Invalid PowerSwitchIF");
} }
heaterHealthAndStateMutex = MutexFactory::instance()->createMutex(); handlerLock = MutexFactory::instance()->createMutex();
if (heaterHealthAndStateMutex == nullptr) { if (handlerLock == nullptr) {
throw std::runtime_error("HeaterHandler::HeaterHandler: Creating Mutex failed"); throw std::runtime_error("HeaterHandler::HeaterHandler: Creating Mutex failed");
} }
auto mqArgs = MqArgs(setObjectId_, static_cast<void*>(this)); auto mqArgs = MqArgs(setObjectId_, static_cast<void*>(this));
@ -144,7 +144,7 @@ ReturnValue_t HeaterHandler::executeAction(ActionId_t actionId, MessageQueueId_t
if (action == SwitchAction::SET_SWITCH_ON) { if (action == SwitchAction::SET_SWITCH_ON) {
HasHealthIF::HealthState health; HasHealthIF::HealthState health;
{ {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
health = heater.healthDevice->getHealth(); health = heater.healthDevice->getHealth();
} }
if (health == HasHealthIF::FAULTY or health == HasHealthIF::PERMANENT_FAULTY or if (health == HasHealthIF::FAULTY or health == HasHealthIF::PERMANENT_FAULTY or
@ -270,7 +270,7 @@ void HeaterHandler::handleSwitchOnCommand(heater::Switchers heaterIdx) {
} else { } else {
triggerEvent(HEATER_WENT_ON, heaterIdx, 0); triggerEvent(HEATER_WENT_ON, heaterIdx, 0);
{ {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
heater.switchState = ON; heater.switchState = ON;
} }
} }
@ -320,7 +320,7 @@ void HeaterHandler::handleSwitchOffCommand(heater::Switchers heaterIdx) {
triggerEvent(GPIO_PULL_LOW_FAILED, result); triggerEvent(GPIO_PULL_LOW_FAILED, result);
} else { } else {
{ {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
heater.switchState = OFF; heater.switchState = OFF;
} }
triggerEvent(HEATER_WENT_OFF, heaterIdx, 0); triggerEvent(HEATER_WENT_OFF, heaterIdx, 0);
@ -346,7 +346,7 @@ void HeaterHandler::handleSwitchOffCommand(heater::Switchers heaterIdx) {
} }
HeaterHandler::SwitchState HeaterHandler::checkSwitchState(heater::Switchers switchNr) const { HeaterHandler::SwitchState HeaterHandler::checkSwitchState(heater::Switchers switchNr) const {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
return heaterVec.at(switchNr).switchState; return heaterVec.at(switchNr).switchState;
} }
@ -396,7 +396,7 @@ object_id_t HeaterHandler::getObjectId() const { return SystemObject::getObjectI
ReturnValue_t HeaterHandler::getAllSwitchStates(std::array<SwitchState, 8>& statesBuf) { ReturnValue_t HeaterHandler::getAllSwitchStates(std::array<SwitchState, 8>& statesBuf) {
{ {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (mg.getLockResult() != returnvalue::OK) { if (mg.getLockResult() != returnvalue::OK) {
return returnvalue::FAILED; return returnvalue::FAILED;
} }
@ -409,7 +409,7 @@ ReturnValue_t HeaterHandler::getAllSwitchStates(std::array<SwitchState, 8>& stat
bool HeaterHandler::allSwitchesOff() { bool HeaterHandler::allSwitchesOff() {
bool allSwitchesOrd = false; bool allSwitchesOrd = false;
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
/* Or all switches. As soon one switch is on, allSwitchesOrd will be true */ /* Or all switches. As soon one switch is on, allSwitchesOrd will be true */
for (power::Switch_t switchNr = 0; switchNr < heater::NUMBER_OF_SWITCHES; switchNr++) { for (power::Switch_t switchNr = 0; switchNr < heater::NUMBER_OF_SWITCHES; switchNr++) {
allSwitchesOrd = allSwitchesOrd || heaterVec.at(switchNr).switchState; allSwitchesOrd = allSwitchesOrd || heaterVec.at(switchNr).switchState;
@ -442,7 +442,7 @@ uint32_t HeaterHandler::getSwitchDelayMs(void) const { return 2000; }
HasHealthIF::HealthState HeaterHandler::getHealth(heater::Switchers heater) { HasHealthIF::HealthState HeaterHandler::getHealth(heater::Switchers heater) {
auto* healthDev = heaterVec.at(heater).healthDevice; auto* healthDev = heaterVec.at(heater).healthDevice;
if (healthDev != nullptr) { if (healthDev != nullptr) {
MutexGuard mg(heaterHealthAndStateMutex); MutexGuard mg(handlerLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
return healthDev->getHealth(); return healthDev->getHealth();
} }
return HasHealthIF::HealthState::FAULTY; return HasHealthIF::HealthState::FAULTY;

View File

@ -136,7 +136,10 @@ class HeaterHandler : public ExecutableObjectIF,
HeaterMap heaterVec = {}; HeaterMap heaterVec = {};
MutexIF* heaterHealthAndStateMutex = nullptr; MutexIF* handlerLock = nullptr;
static constexpr MutexIF::TimeoutType LOCK_TYPE = MutexIF::TimeoutType::WAITING;
static constexpr uint32_t LOCK_TIMEOUT = 20;
static constexpr char LOCK_CTX[] = "HeaterHandler";
HeaterHelper helper; HeaterHelper helper;
ModeHelper modeHelper; ModeHelper modeHelper;

View File

@ -214,7 +214,8 @@ ReturnValue_t ImtqHandler::buildCommandFromCommand(DeviceCommandId_t deviceComma
<< ", y = " << dipoleSet.yDipole.value << ", z = " << dipoleSet.zDipole.value << ", y = " << dipoleSet.yDipole.value << ", z = " << dipoleSet.zDipole.value
<< ", duration = " << dipoleSet.currentTorqueDurationMs.value << std::endl; << ", duration = " << dipoleSet.currentTorqueDurationMs.value << std::endl;
} }
MutexGuard mg(torquer::lazyLock(), torquer::LOCK_TYPE, torquer::LOCK_TIMEOUT); MutexGuard mg(torquer::lazyLock(), torquer::LOCK_TYPE, torquer::LOCK_TIMEOUT,
torquer::LOCK_CTX);
torquer::TORQUEING = true; torquer::TORQUEING = true;
torquer::TORQUE_COUNTDOWN.setTimeout(dipoleSet.currentTorqueDurationMs.value); torquer::TORQUE_COUNTDOWN.setTimeout(dipoleSet.currentTorqueDurationMs.value);
rawPacket = commandBuffer; rawPacket = commandBuffer;

View File

@ -5,7 +5,7 @@ Stack5VHandler::Stack5VHandler(PowerSwitchIF& switcher) : switcher(switcher) {
} }
ReturnValue_t Stack5VHandler::deviceToOn(StackCommander commander, bool updateStates) { ReturnValue_t Stack5VHandler::deviceToOn(StackCommander commander, bool updateStates) {
MutexGuard mg(stackLock); MutexGuard mg(stackLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (updateStates) { if (updateStates) {
updateInternalStates(); updateInternalStates();
} }
@ -27,7 +27,7 @@ ReturnValue_t Stack5VHandler::deviceToOn(StackCommander commander, bool updateSt
} }
ReturnValue_t Stack5VHandler::deviceToOff(StackCommander commander, bool updateStates) { ReturnValue_t Stack5VHandler::deviceToOff(StackCommander commander, bool updateStates) {
MutexGuard mg(stackLock); MutexGuard mg(stackLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
if (updateStates) { if (updateStates) {
updateInternalStates(); updateInternalStates();
} }
@ -55,12 +55,12 @@ ReturnValue_t Stack5VHandler::deviceToOff(StackCommander commander, bool updateS
} }
bool Stack5VHandler::isSwitchOn() { bool Stack5VHandler::isSwitchOn() {
MutexGuard mg(stackLock); MutexGuard mg(stackLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
return updateInternalStates(); return updateInternalStates();
} }
void Stack5VHandler::update() { void Stack5VHandler::update() {
MutexGuard mg(stackLock); MutexGuard mg(stackLock, LOCK_TYPE, LOCK_TIMEOUT, LOCK_CTX);
updateInternalStates(); updateInternalStates();
} }

View File

@ -21,7 +21,11 @@ class Stack5VHandler {
void update(); void update();
private: private:
static constexpr MutexIF::TimeoutType LOCK_TYPE = MutexIF::TimeoutType::WAITING;
static constexpr uint32_t LOCK_TIMEOUT = 20;
MutexIF* stackLock; MutexIF* stackLock;
static constexpr char LOCK_CTX[] = "Stack5VHandler";
PowerSwitchIF& switcher; PowerSwitchIF& switcher;
bool switchIsOn = false; bool switchIsOn = false;
bool targetState = false; bool targetState = false;