initial commit of SusConverter
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good

This commit is contained in:
Marius Eggert 2022-09-23 09:56:32 +02:00
parent 4b96997f6c
commit e70ee1bf9d
2 changed files with 441 additions and 0 deletions

View File

@ -0,0 +1,382 @@
/*
* SusConverter.cpp
*
* Created on: 17.01.2022
* Author: Timon Schwarz
*/
#include <math.h> //for atan2
#include <iostream>
#include <SusConverter.h>
void SunSensor::setSunSensorData(uint8_t Sensornumber) {
// Creates dummy sensordata, replace with SUS devicehandler / channel readout
ChannelValue[0] = 3913;
ChannelValue[1] = 3912;
ChannelValue[2] = 3799;
ChannelValue[3] = 3797;
ChannelValue[4] = 4056;
}
void SunSensor::checkSunSensorData(uint8_t Sensornumber) {
uint16_t ChannelValueSum;
// Check individual channel values
for (int k = 0; k < 4; k++) { // iteration above all photodiode quarters
if (ChannelValue[k] <= ChannelValueCheckLow ||
ChannelValue[k] > ChannelValueCheckHigh) { // Channel values out of range for 12 bit SUS
// channel measurement range?
ValidityNumber = false; // false --> Data not valid
printf(
"The value of channel %i from sun sensor %i is not inside the borders of valid data with "
"a value of %i \n",
k, Sensornumber, ChannelValue[k]);
} else if (ChannelValue[k] >
ChannelValue[4]) { // Channel values higher than zero current threshold GNDREF?
ValidityNumber = false;
printf(
"The value of channel %i from sun sensor %i is higher than the zero current threshold "
"GNDREF\n",
k, Sensornumber);
};
};
// check sum of all channel values to check if sun sensor is illuminated by the sun (sum is
// smaller than a treshold --> sun sensor is not illuminated by the sun, but by the moon
// reflection or earth albedo)
ChannelValueSum =
4 * ChannelValue[4] - (ChannelValue[0] + ChannelValue[1] + ChannelValue[2] + ChannelValue[3]);
if ((ChannelValueSum < ChannelValueSumHigh) && (ChannelValueSum > ChannelValueSumLow)) {
ValidityNumber = false;
printf("Sun sensor %i is not illuminated by the sun\n", Sensornumber);
};
}
void SunSensor::AngleCalculation() {
float xout, yout, s = 0.03; // s=[mm]
uint8_t d = 5, h = 1; // d=[mm] h=[mm]
int ch0, ch1, ch2, ch3;
// Substract measurement values from GNDREF zero current threshold
ch0 = ChannelValue[4] - ChannelValue[0];
ch1 = ChannelValue[4] - ChannelValue[1];
ch2 = ChannelValue[4] - ChannelValue[2];
ch3 = ChannelValue[4] - ChannelValue[3];
// Calculation of x and y
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles
AlphaBetaRaw[0] = atan2(xout, h) * (180 / M_PI); //[°]
AlphaBetaRaw[1] = atan2(yout, h) * (180 / M_PI); //[°]
}
void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
switch (Sensornumber) { // search for the correct calibration coefficients for each SUS
case 0:
for (uint8_t row = 0; row < 9;
row++) { // save the correct coefficients in the right SUS class
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus0coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus0coeffBeta[row][column];
}
}
break;
case 1:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus1coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus1coeffBeta[row][column];
}
}
break;
case 2:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus2coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus2coeffBeta[row][column];
}
}
break;
case 3:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus3coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus3coeffBeta[row][column];
}
}
break;
case 4:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus4coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus4coeffBeta[row][column];
}
}
break;
case 5:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus5coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus5coeffBeta[row][column];
}
}
break;
case 6:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus6coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus6coeffBeta[row][column];
}
}
break;
case 7:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus7coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus7coeffBeta[row][column];
}
}
break;
case 8:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus8coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus8coeffBeta[row][column];
}
}
break;
case 9:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus9coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus9coeffBeta[row][column];
}
}
break;
case 10:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus10coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus10coeffBeta[row][column];
}
}
break;
case 11:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[row][column] = acsParameters.susHandlingParameters.sus11coeffAlpha[row][column];
CoeffBeta[row][column] = acsParameters.susHandlingParameters.sus11coeffBeta[row][column];
}
}
break;
}
}
void SunSensor::Calibration() {
float alpha_m, beta_m, alpha_calibrated, beta_calibrated, k, l;
uint8_t index;
alpha_m = AlphaBetaRaw[0]; //[°]
beta_m = AlphaBetaRaw[1]; //[°]
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k = k + 1;
l = 0;
while (l < 3) {
l = l + 1;
// if-condition to check in which cell the data point has to be
if ((alpha_m > ((CompleteCellWidth * ((k - 1) / 3)) - HalfCellWidth) &&
alpha_m < ((CompleteCellWidth * (k / 3)) - HalfCellWidth)) &&
(beta_m > ((CompleteCellWidth * ((l - 1) / 3)) - HalfCellWidth) &&
beta_m < ((CompleteCellWidth * (l / 3)) - HalfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
// -> first cell has number 0
alpha_calibrated =
CoeffAlpha[index][0] + CoeffAlpha[index][1] * alpha_m + CoeffAlpha[index][2] * beta_m +
CoeffAlpha[index][3] * alpha_m * alpha_m + CoeffAlpha[index][4] * alpha_m * beta_m +
CoeffAlpha[index][5] * beta_m * beta_m +
CoeffAlpha[index][6] * alpha_m * alpha_m * alpha_m +
CoeffAlpha[index][7] * alpha_m * alpha_m * beta_m +
CoeffAlpha[index][8] * alpha_m * beta_m * beta_m +
CoeffAlpha[index][9] * beta_m * beta_m * beta_m;
}
}
}
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k = k + 1;
l = 0;
while (l < 3) {
l = l + 1;
// if condition to check in which cell the data point has to be
if ((alpha_m > ((CompleteCellWidth * ((k - 1) / 3)) - HalfCellWidth) &&
alpha_m < ((CompleteCellWidth * (k / 3)) - HalfCellWidth)) &&
(beta_m > ((CompleteCellWidth * ((l - 1) / 3)) - HalfCellWidth) &&
beta_m < ((CompleteCellWidth * (l / 3)) - HalfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
// -> first cell has number 0
beta_calibrated = CoeffBeta[index][0] + CoeffBeta[index][1] * alpha_m +
CoeffBeta[index][2] * beta_m + CoeffBeta[index][3] * alpha_m * alpha_m +
CoeffBeta[index][4] * alpha_m * beta_m +
CoeffBeta[index][5] * beta_m * beta_m +
CoeffBeta[index][6] * alpha_m * alpha_m * alpha_m +
CoeffBeta[index][7] * alpha_m * alpha_m * beta_m +
CoeffBeta[index][8] * alpha_m * beta_m * beta_m +
CoeffBeta[index][9] * beta_m * beta_m * beta_m;
}
}
}
AlphaBetaCalibrated[0] = alpha_calibrated; //[°]
AlphaBetaCalibrated[1] = beta_calibrated; //[°]
}
void SunSensor::CalculateSunVector() {
float alpha, beta;
alpha = AlphaBetaCalibrated[0]; //[°]
beta = AlphaBetaCalibrated[1]; //[°]
// Calculate the normalized Sun Vector
SunVectorBodyFrame[0] =
(tan(alpha * (M_PI / 180)) /
(sqrt((powf(tan(alpha * (M_PI / 180)), 2)) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[1] =
(tan(beta * (M_PI / 180)) /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[2] =
(-1 /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf((tan(beta * (M_PI / 180))), 2) + (1))));
}
float* SunSensor::getSunVectorBodyFrame() {
// return function for the sun vector in the body frame
float* SunVectorBodyFrameReturn = 0;
SunVectorBodyFrameReturn = new float[3];
SunVectorBodyFrameReturn[0] = SunVectorBodyFrame[0];
SunVectorBodyFrameReturn[1] = SunVectorBodyFrame[1];
SunVectorBodyFrameReturn[2] = SunVectorBodyFrame[2];
return SunVectorBodyFrameReturn;
}
float* SunSensor::TransferSunVector(SunSensor SUS[12]) {
float* SunVectorEIVE = 0;
SunVectorEIVE = new float[3];
uint8_t counter = 0;
int8_t BasisMatrixUse[3][3];
float SunVectorMatrixEIVE[3][12] = {0}, sum;
float SunVectorMatrixBodyFrame[3][12];
for (uint8_t Sensornumber = 0; Sensornumber < 12;
Sensornumber++) { // save the sun vector of each SUS in their body frame into an array for
// further processing
float* SunVectorBodyFrame = this[Sensornumber].getSunVectorBodyFrame();
SunVectorMatrixBodyFrame[0][Sensornumber] = SunVectorBodyFrame[0];
SunVectorMatrixBodyFrame[1][Sensornumber] = SunVectorBodyFrame[1];
SunVectorMatrixBodyFrame[2][Sensornumber] = SunVectorBodyFrame[2];
}
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) {
if (SUS[Sensornumber].getValidityNumber() == false) {
counter = counter + 1;
} // if the SUS data is not valid ->
for (uint8_t c1 = 0; c1 < 3; c1++) {
for (uint8_t c2 = 0; c2 < 3; c2++) {
switch (Sensornumber) { // find right basis matrix for each SUS
case 0:
BasisMatrixUse[c1][c2] = AcsParameters[c1][c2];
break;
case 1:
BasisMatrixUse[c1][c2] = BasisMatrix1[c1][c2];
break;
case 2:
BasisMatrixUse[c1][c2] = BasisMatrix2[c1][c2];
break;
case 3:
BasisMatrixUse[c1][c2] = BasisMatrix3[c1][c2];
break;
case 4:
BasisMatrixUse[c1][c2] = BasisMatrix4[c1][c2];
break;
case 5:
BasisMatrixUse[c1][c2] = BasisMatrix5[c1][c2];
break;
case 6:
BasisMatrixUse[c1][c2] = BasisMatrix6[c1][c2];
break;
case 7:
BasisMatrixUse[c1][c2] = BasisMatrix7[c1][c2];
break;
case 8:
BasisMatrixUse[c1][c2] = BasisMatrix8[c1][c2];
break;
case 9:
BasisMatrixUse[c1][c2] = BasisMatrix9[c1][c2];
break;
case 10:
BasisMatrixUse[c1][c2] = BasisMatrix10[c1][c2];
break;
case 11:
BasisMatrixUse[c1][c2] = BasisMatrix11[c1][c2];
break;
}
}
}
// matrix multiplication for transition in EIVE coordinatesystem
for (uint8_t p = 0; p < 3; p++) {
for (uint8_t q = 0; q < 3; q++) {
// normal matrix multiplication
SunVectorMatrixEIVE[p][Sensornumber] +=
(BasisMatrixUse[p][q] * SunVectorMatrixBodyFrame[q][Sensornumber]);
}
}
}
// ToDo: remove invalid SUSs from being used for calculating the combined sun vector
if (counter < 12) { // Calculate one sun vector out of all sun vectors from the different SUS
for (uint8_t i = 0; i < 3; i++) {
sum = 0;
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) {
sum += SunVectorMatrixEIVE[i][Sensornumber];
printf("%f\n", SunVectorMatrixEIVE[i][Sensornumber]);
}
SunVectorEIVE[i] =
sum / (12 - counter); // FLAG Ergebnis ist falsch, kann an einem Fehler im Programm
// liegen, vermutlich aber an den falschen ChannelValues da die
// transformierten Sonnenvektoren jedes SUS plausibel sind
}
} else {
// No sus is valid
throw std::invalid_argument("No sun sensor is valid"); // throw error
}
return SunVectorEIVE;
}

View File

@ -0,0 +1,59 @@
/*
* SusConverter.h
*
* Created on: Sep 22, 2022
* Author: marius
*/
#ifndef MISSION_CONTROLLER_ACS_SUSCONVERTER_H_
#define MISSION_CONTROLLER_ACS_SUSCONVERTER_H_
#include <stdint.h>
#include <AcsParameters.h>
class SunSensor {
public:
SunSensor() {}
void setSunSensorData(uint8_t Sensornumber);
void checkSunSensorData(uint8_t Sensornumber);
void AngleCalculation();
void setCalibrationCoefficients(uint8_t Sensornumber);
void Calibration();
void CalculateSunVector();
bool getValidityNumber() { return ValidityNumber; }
float* getSunVectorBodyFrame();
float* TransferSunVector(SunSensor SUS[12]);
private:
uint16_t ChannelValue[5]; //[Bit]
float AlphaBetaRaw[2]; //[°]
float AlphaBetaCalibrated[2]; //[°]
float SunVectorBodyFrame[3]; //[-]
bool ValidityNumber = true;
uint16_t ChannelValueCheckHigh =
4096; //=2^12[Bit]high borderline for the channel values of one sun sensor for validity Check
uint8_t ChannelValueCheckLow =
0; //[Bit]low borderline for the channel values of one sun sensor for validity Check
uint16_t ChannelValueSumHigh =
100; // 4096[Bit]high borderline for check if the sun sensor is illuminated by the sun or by
// the reflection of sunlight from the moon/earth
uint8_t ChannelValueSumLow =
0; //[Bit]low borderline for check if the sun sensor is illuminated
// by the sun or by the reflection of sunlight from the moon/earth
uint8_t CompleteCellWidth = 140,
HalfCellWidth = 70; //[°] Width of the calibration cells --> necessary for checking in
// which cell a data point should be
float CoeffAlpha[9][10];
float CoeffBeta[9][10];
AcsParameters acsParameters;
};
#endif /* MISSION_CONTROLLER_ACS_SUSCONVERTER_H_ */