Merge remote-tracking branch 'origin/develop' into thermal_controller
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit

This commit is contained in:
2023-03-24 21:15:29 +01:00
187 changed files with 2110 additions and 1427 deletions

View File

@ -1,315 +0,0 @@
#include "AcsBoardAssembly.h"
#include <devices/gpioIds.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/serviceinterface.h>
#include "OBSWConfig.h"
AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* switcher,
AcsBoardHelper helper, GpioIF* gpioIF)
: DualLaneAssemblyBase(objectId, switcher, SWITCH_A, SWITCH_B, POWER_STATE_MACHINE_TIMEOUT,
SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED),
helper(helper),
gpioIF(gpioIF) {
if (switcher == nullptr) {
sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher "
"IF passed"
<< std::endl;
}
if (gpioIF == nullptr) {
sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl;
}
ModeListEntry entry;
initModeTableEntry(helper.mgm0Lis3IdSideA, entry, modeTable);
initModeTableEntry(helper.mgm1Rm3100IdSideA, entry, modeTable);
initModeTableEntry(helper.mgm2Lis3IdSideB, entry, modeTable);
initModeTableEntry(helper.mgm3Rm3100IdSideB, entry, modeTable);
initModeTableEntry(helper.gyro0AdisIdSideA, entry, modeTable);
initModeTableEntry(helper.gyro1L3gIdSideA, entry, modeTable);
initModeTableEntry(helper.gyro2AdisIdSideB, entry, modeTable);
initModeTableEntry(helper.gyro3L3gIdSideB, entry, modeTable);
initModeTableEntry(helper.gpsId, entry, modeTable);
}
ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t result = returnvalue::OK;
refreshHelperModes();
// Initialize the mode table to ensure all devices are in a defined state
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GPS].setMode(MODE_OFF);
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
if (recoveryState == RecoveryState::RECOVERY_IDLE) {
result = checkAndHandleHealthStates(mode, submode);
if (result == NEED_TO_CHANGE_HEALTH) {
return returnvalue::OK;
}
}
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
result = handleNormalOrOnModeCmd(mode, submode);
}
}
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
executeTable(tableIter);
return result;
}
ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
using namespace duallane;
refreshHelperModes();
if (wantedSubmode == A_SIDE) {
if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or
helper.gpsMode != MODE_ON) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
return returnvalue::OK;
} else if (wantedSubmode == B_SIDE) {
if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or
(helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
helper.gpsMode != MODE_ON) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
return returnvalue::OK;
} else if (wantedSubmode == DUAL_MODE) {
if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and
helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and
helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
helper.gpsMode != MODE_ON) {
// Trigger event, but don't start any other transitions. This is the last fallback mode.
if (dualModeErrorSwitch) {
triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0);
dualModeErrorSwitch = false;
}
return returnvalue::OK;
}
return returnvalue::OK;
}
return returnvalue::OK;
}
ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t result = returnvalue::OK;
bool needsSecondStep = false;
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) {
if (mode == devMode) {
modeTable[tableIdx].setMode(mode);
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objectId, devMode)) {
if (devMode == MODE_ON) {
modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} else {
modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
if (internalState != STATE_SECOND_STEP) {
needsSecondStep = true;
}
}
}
} else if (mode == MODE_ON) {
if (isUseable(objectId, devMode)) {
modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
}
}
};
bool gpsUsable = isUseable(helper.gpsId, helper.gpsMode);
switch (submode) {
case (A_SIDE): {
modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
if (gpsUsable) {
gpioHandler(gpioIds::GNSS_0_NRESET, true,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 0 high (used GNSS)");
gpioHandler(gpioIds::GNSS_1_NRESET, false,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 1 low (unused GNSS)");
gpioHandler(gpioIds::GNSS_SELECT, false,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low");
}
break;
}
case (B_SIDE): {
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
if (gpsUsable) {
gpioHandler(gpioIds::GNSS_0_NRESET, false,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 0 low (unused GNSS)");
gpioHandler(gpioIds::GNSS_1_NRESET, true,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 1 high (used GNSS)");
gpioHandler(gpioIds::GNSS_SELECT, true,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high");
}
break;
}
case (DUAL_MODE): {
cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS);
cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
ReturnValue_t status = returnvalue::OK;
if (gpsUsable) {
gpioHandler(gpioIds::GNSS_0_NRESET, true,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 0 high (used GNSS)");
gpioHandler(gpioIds::GNSS_1_NRESET, true,
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
"of GNSS 1 high (used GNSS)");
if (defaultSubmode == Submodes::A_SIDE) {
status = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else {
status = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
}
if (status != returnvalue::OK) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to"
"default side for dual mode"
<< std::endl;
#endif
}
}
break;
}
default: {
sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl;
}
}
if (gpsUsable) {
modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
}
return result;
}
void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) {
using namespace duallane;
if (submode != Submodes::DUAL_MODE) {
return;
}
ReturnValue_t result = returnvalue::OK;
if (side == Submodes::A_SIDE) {
result = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else {
result = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
}
if (result != returnvalue::OK) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl;
#endif
}
}
void AcsBoardAssembly::gpioHandler(gpioId_t gpio, bool high, std::string error) {
ReturnValue_t result = returnvalue::OK;
if (high) {
result = gpioIF->pullHigh(gpio);
} else {
result = gpioIF->pullLow(gpio);
}
if (result != returnvalue::OK) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::error << error << std::endl;
#endif
}
}
void AcsBoardAssembly::refreshHelperModes() {
try {
helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode;
helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode;
helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode;
helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode;
helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode;
helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode;
helper.gpsMode = childrenMap.at(helper.gpsId).mode;
} catch (const std::out_of_range& e) {
sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl;
}
}
ReturnValue_t AcsBoardAssembly::initialize() {
for (const auto& child : childrenMap) {
updateChildModeByObjId(child.first, MODE_OFF, 0);
}
return AssemblyBase::initialize();
}
ReturnValue_t AcsBoardAssembly::checkAndHandleHealthStates(Mode_t deviceMode,
Submode_t deviceSubmode) {
using namespace returnvalue;
ReturnValue_t status = returnvalue::OK;
auto overwriteHealthForOneDev = [&](object_id_t dev) {
HealthState health = healthHelper.healthTable->getHealth(dev);
if (health == FAULTY or health == PERMANENT_FAULTY) {
overwriteDeviceHealth(dev, health);
status = NEED_TO_CHANGE_HEALTH;
} else if (health == EXTERNAL_CONTROL) {
modeHelper.setForced(true);
}
};
if (deviceSubmode == duallane::DUAL_MODE) {
overwriteHealthForOneDev(helper.mgm0Lis3IdSideA);
overwriteHealthForOneDev(helper.mgm1Rm3100IdSideA);
overwriteHealthForOneDev(helper.mgm2Lis3IdSideB);
overwriteHealthForOneDev(helper.mgm3Rm3100IdSideB);
overwriteHealthForOneDev(helper.gyro0AdisIdSideA);
overwriteHealthForOneDev(helper.gyro1L3gIdSideA);
overwriteHealthForOneDev(helper.gyro2AdisIdSideB);
overwriteHealthForOneDev(helper.gyro3L3gIdSideB);
overwriteHealthForOneDev(helper.gpsId);
}
return status;
}

View File

@ -1,128 +0,0 @@
#ifndef MISSION_SYSTEM_ACSBOARDASSEMBLY_H_
#define MISSION_SYSTEM_ACSBOARDASSEMBLY_H_
#include <devices/powerSwitcherList.h>
#include <fsfw/objectmanager/frameworkObjects.h>
#include <fsfw_hal/common/gpio/gpioDefinitions.h>
#include "DualLaneAssemblyBase.h"
#include "DualLanePowerStateMachine.h"
#include "eive/eventSubsystemIds.h"
struct AcsBoardHelper {
AcsBoardHelper(object_id_t mgm0Id, object_id_t mgm1Id, object_id_t mgm2Id, object_id_t mgm3Id,
object_id_t gyro0Id, object_id_t gyro1Id, object_id_t gyro2Id, object_id_t gyro3Id,
object_id_t gpsId)
: mgm0Lis3IdSideA(mgm0Id),
mgm1Rm3100IdSideA(mgm1Id),
mgm2Lis3IdSideB(mgm2Id),
mgm3Rm3100IdSideB(mgm3Id),
gyro0AdisIdSideA(gyro0Id),
gyro1L3gIdSideA(gyro1Id),
gyro2AdisIdSideB(gyro2Id),
gyro3L3gIdSideB(gyro3Id),
gpsId(gpsId) {}
object_id_t mgm0Lis3IdSideA = objects::NO_OBJECT;
object_id_t mgm1Rm3100IdSideA = objects::NO_OBJECT;
object_id_t mgm2Lis3IdSideB = objects::NO_OBJECT;
object_id_t mgm3Rm3100IdSideB = objects::NO_OBJECT;
object_id_t gyro0AdisIdSideA = objects::NO_OBJECT;
object_id_t gyro1L3gIdSideA = objects::NO_OBJECT;
object_id_t gyro2AdisIdSideB = objects::NO_OBJECT;
object_id_t gyro3L3gIdSideB = objects::NO_OBJECT;
object_id_t gpsId = objects::NO_OBJECT;
Mode_t gyro0SideAMode = HasModesIF::MODE_OFF;
Mode_t gyro1SideAMode = HasModesIF::MODE_OFF;
Mode_t gyro2SideBMode = HasModesIF::MODE_OFF;
Mode_t gyro3SideBMode = HasModesIF::MODE_OFF;
Mode_t mgm0SideAMode = HasModesIF::MODE_OFF;
Mode_t mgm1SideAMode = HasModesIF::MODE_OFF;
Mode_t mgm2SideBMode = HasModesIF::MODE_OFF;
Mode_t mgm3SideBMode = HasModesIF::MODE_OFF;
Mode_t gpsMode = HasModesIF::MODE_OFF;
};
enum ModeTableIdx : uint8_t {
MGM_0_A = 0,
MGM_1_A = 1,
MGM_2_B = 2,
MGM_3_B = 3,
GYRO_0_A = 4,
GYRO_1_A = 5,
GYRO_2_B = 6,
GYRO_3_B = 7,
GPS = 8
};
class PowerSwitchIF;
class GpioIF;
/**
* @brief Assembly class which manages redundant ACS board sides
* @details
* This class takes care of ensuring that enough devices on the ACS board are available at all
* times. It does so by doing autonomous transitions to the redundant side or activating both sides
* if not enough devices are available.
*
* This class also takes care of switching on the A side and/or B side power lanes. Normally,
* doing this task would be performed by the device handlers, but this is not possible for the
* ACS board where multiple sensors share the same power supply.
*/
class AcsBoardAssembly : public DualLaneAssemblyBase {
public:
// Use these variables instead of magic numbers when generator was updated
// TRANSITION_OTHER_SIDE_FAILED_ID
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID
// POWER_STATE_MACHINE_TIMEOUT_ID
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS;
static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE =
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
//! should instead command the assembly off first and then command the assembly on into the
//! desired mode/submode combination
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9;
AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, AcsBoardHelper helper,
GpioIF* gpioIF);
/**
* In dual mode, the A side or the B side GPS device can be used, but not both.
* This function can be used to switch the used GPS device.
* @param side
*/
void selectGpsInDualMode(duallane::Submodes side);
private:
static constexpr power::Switches SWITCH_A = power::Switches::PDU1_CH7_ACS_A_SIDE_3V3;
static constexpr power::Switches SWITCH_B = power::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3;
AcsBoardHelper helper;
GpioIF* gpioIF = nullptr;
FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable;
void gpioHandler(gpioId_t gpio, bool high, std::string error);
ReturnValue_t initialize() override;
// AssemblyBase overrides
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
ReturnValue_t checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode);
void refreshHelperModes();
};
#endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */

View File

@ -1,17 +0,0 @@
#include "AcsSubsystem.h"
#include <fsfw/events/EventManagerIF.h>
#include <fsfw/ipc/QueueFactory.h>
#include "fsfw/modes/ModeMessage.h"
#include "mission/acsDefs.h"
AcsSubsystem::AcsSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences,
uint32_t maxNumberOfTables)
: Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables) {}
void AcsSubsystem::announceMode(bool recursive) {
const char* modeStr = acs::getModeStr(static_cast<acs::AcsMode>(mode));
sif::info << "ACS subsystem is now in " << modeStr << " mode" << std::endl;
return Subsystem::announceMode(recursive);
}

View File

@ -1,14 +0,0 @@
#ifndef MISSION_SYSTEM_ACSSUBSYSTEM_H_
#define MISSION_SYSTEM_ACSSUBSYSTEM_H_
#include <fsfw/subsystem/Subsystem.h>
class AcsSubsystem : public Subsystem {
public:
AcsSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables);
private:
void announceMode(bool recursive) override;
};
#endif /* MISSION_SYSTEM_ACSSUBSYSTEM_H_ */

View File

@ -2,18 +2,9 @@ target_sources(
${LIB_EIVE_MISSION}
PRIVATE EiveSystem.cpp
CamSwitcher.cpp
AcsSubsystem.cpp
ComSubsystem.cpp
TcsSubsystem.cpp
PayloadSubsystem.cpp
AcsBoardAssembly.cpp
ImtqAssembly.cpp
SyrlinksAssembly.cpp
Stack5VHandler.cpp
SusAssembly.cpp
RwAssembly.cpp
DualLanePowerStateMachine.cpp
StrAssembly.cpp
PowerStateMachineBase.cpp
DualLaneAssemblyBase.cpp
TcsBoardAssembly.cpp)

View File

@ -1,230 +0,0 @@
#include "ComSubsystem.h"
#include <fsfw/events/Event.h>
#include <fsfw/events/EventManagerIF.h>
#include <fsfw/ipc/MutexGuard.h>
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <linux/ipcore/PdecHandler.h>
#include <mission/comDefs.h>
#include <mission/config/comCfg.h>
#include <mission/controller/controllerdefinitions/tcsCtrlDefs.h>
#include <utility>
ComSubsystem::ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences,
uint32_t maxNumberOfTables, uint32_t transmitterTimeout)
: Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables), paramHelper(this) {
com::setCurrentDatarate(com::Datarate::LOW_RATE_MODULATION_BPSK);
auto mqArgs = MqArgs(setObjectId, static_cast<void *>(this));
eventQueue =
QueueFactory::instance()->createMessageQueue(10, EventMessage::EVENT_MESSAGE_SIZE, &mqArgs);
transmitterCountdown.setTimeout(transmitterTimeout);
}
void ComSubsystem::performChildOperation() {
Subsystem::performChildOperation();
readEventQueue();
if (performRecoveryToRxOnly and not isInTransition) {
startRxOnlyRecovery(true);
// To avoid immediately enabling TX after falling back.
rememberBitLock = false;
}
// Execute default rate sequence after transition has been completed
if (rememberBitLock and not isInTransition) {
startRxAndTxLowRateSeq();
rememberBitLock = false;
}
if (countdownActive) {
checkTransmitterCountdown();
}
}
MessageQueueId_t ComSubsystem::getCommandQueue() const { return Subsystem::getCommandQueue(); }
ReturnValue_t ComSubsystem::getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
ParameterWrapper *parameterWrapper,
const ParameterWrapper *newValues, uint16_t startAtIndex) {
if ((domainId == 0) and (uniqueIdentifier == static_cast<uint8_t>(com::ParameterId::DATARATE))) {
uint8_t newVal = 0;
ReturnValue_t result = newValues->getElement(&newVal);
if (result != returnvalue::OK) {
return result;
}
if (newVal >= static_cast<uint8_t>(com::Datarate::NUM_DATARATES)) {
return HasParametersIF::INVALID_VALUE;
}
parameterWrapper->set(datarateCfg);
com::setCurrentDatarate(static_cast<com::Datarate>(newVal));
return returnvalue::OK;
} else if ((domainId == 0) and
(uniqueIdentifier == static_cast<uint8_t>(com::ParameterId::TRANSMITTER_TIMEOUT))) {
uint32_t newVal = 0;
ReturnValue_t result = newValues->getElement(&newVal);
if (result != returnvalue::OK) {
return result;
}
parameterWrapper->set(transmitterTimeout);
transmitterTimeout = newVal;
transmitterCountdown.setTimeout(transmitterTimeout);
return returnvalue::OK;
}
return returnvalue::OK;
}
ReturnValue_t ComSubsystem::handleCommandMessage(CommandMessage *message) {
ReturnValue_t result = paramHelper.handleParameterMessage(message);
if (result == returnvalue::OK) {
return result;
}
return Subsystem::handleCommandMessage(message);
}
ReturnValue_t ComSubsystem::initialize() {
ReturnValue_t result = paramHelper.initialize();
if (result != returnvalue::OK) {
return result;
}
EventManagerIF *manager = ObjectManager::instance()->get<EventManagerIF>(objects::EVENT_MANAGER);
if (manager == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "ComSubsystem::initialize: Invalid event manager" << std::endl;
#endif
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = manager->registerListener(eventQueue->getId());
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "ComSubsystem::initialize: Failed to register Com Subsystem as event "
"listener"
<< std::endl;
#endif
}
result = manager->subscribeToEvent(eventQueue->getId(),
event::getEventId(tcsCtrl::SYRLINKS_OVERHEATING));
if (result != returnvalue::OK) {
return ObjectManager::CHILD_INIT_FAILED;
}
result = manager->subscribeToEventRange(eventQueue->getId(),
event::getEventId(PdecHandler::CARRIER_LOCK),
event::getEventId(PdecHandler::BIT_LOCK_PDEC));
if (result != returnvalue::OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "ComSubsystem::initialize: Failed to subscribe to events from PDEC "
"handler"
<< std::endl;
#endif
return result;
}
return Subsystem::initialize();
}
void ComSubsystem::startTransition(Mode_t mode, Submode_t submode) {
// Depending on the submode the transmitter timeout is enabled or
// disabled here
if (mode == com::Submode::RX_ONLY) {
transmitterCountdown.timeOut();
countdownActive = false;
} else if (isTxMode(mode)) {
// Only start transmitter countdown if transmitter is not already on
if (not isTxMode(this->mode)) {
transmitterCountdown.resetTimer();
countdownActive = true;
}
}
Subsystem::startTransition(mode, submode);
}
void ComSubsystem::readEventQueue() {
EventMessage event;
for (ReturnValue_t result = eventQueue->receiveMessage(&event); result == returnvalue::OK;
result = eventQueue->receiveMessage(&event)) {
switch (event.getMessageId()) {
case EventMessage::EVENT_MESSAGE:
handleEventMessage(&event);
break;
default:
sif::debug << "CcsdsHandler::checkEvents: Did not subscribe to this event message"
<< std::endl;
break;
}
}
}
void ComSubsystem::handleEventMessage(EventMessage *eventMessage) {
Event event = eventMessage->getEvent();
switch (event) {
case tcsCtrl::SYRLINKS_OVERHEATING: {
// This event overrides the bit lock.
rememberBitLock = false;
if (mode == com::RX_ONLY) {
return;
}
if (isInTransition) {
performRecoveryToRxOnly = true;
return;
}
startRxOnlyRecovery(true);
break;
}
case PdecHandler::BIT_LOCK_PDEC: {
handleBitLockEvent();
break;
}
case PdecHandler::CARRIER_LOCK: {
handleCarrierLockEvent();
break;
}
default:
sif::debug << "ComSubsystem::handleEvent: Did not subscribe to this event" << std::endl;
break;
}
}
void ComSubsystem::handleBitLockEvent() {
if (isTxMode(mode)) {
// Tx already on
return;
}
if (isInTransition) {
rememberBitLock = true;
return;
}
triggerEvent(BIT_LOCK_TX_ON);
startRxAndTxLowRateSeq();
}
void ComSubsystem::handleCarrierLockEvent() {
if (!enableTxWhenCarrierLock) {
return;
}
startRxAndTxLowRateSeq();
}
void ComSubsystem::startRxAndTxLowRateSeq() {
// Turns transmitter on
startTransition(com::Submode::RX_AND_TX_LOW_DATARATE, SUBMODE_NONE);
}
void ComSubsystem::checkTransmitterCountdown() {
if (transmitterCountdown.hasTimedOut()) {
triggerEvent(TX_TIMER_EXPIRED, transmitterTimeout);
startTransition(com::Submode::RX_ONLY, SUBMODE_NONE);
countdownActive = false;
}
}
void ComSubsystem::startRxOnlyRecovery(bool forced) {
modeHelper.setForced(forced);
startTransition(com::RX_ONLY, 0);
performRecoveryToRxOnly = false;
}
bool ComSubsystem::isTxMode(Mode_t mode) {
if ((mode == com::Submode::RX_AND_TX_DEFAULT_DATARATE) ||
(mode == com::Submode::RX_AND_TX_LOW_DATARATE) ||
(mode == com::Submode::RX_AND_TX_HIGH_DATARATE)) {
return true;
}
return false;
}

View File

@ -1,92 +0,0 @@
#ifndef MISSION_SYSTEM_COMSUBSYSTEM_H_
#define MISSION_SYSTEM_COMSUBSYSTEM_H_
#include <common/config/eive/eventSubsystemIds.h>
#include <fsfw/events/EventMessage.h>
#include <fsfw/parameters/HasParametersIF.h>
#include <fsfw/parameters/ParameterHelper.h>
#include <fsfw/subsystem/Subsystem.h>
#include "mission/comDefs.h"
class ComSubsystem : public Subsystem, public ReceivesParameterMessagesIF {
public:
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::COM_SUBSYSTEM;
//! [EXPORT] : [COMMENT] The transmit timer to protect the Syrlinks expired
//! P1: The current timer value
static const Event TX_TIMER_EXPIRED = MAKE_EVENT(1, severity::INFO);
//! [EXPORT] : [COMMENT] Transmitter will be turned on due to detection of bitlock
static const Event BIT_LOCK_TX_ON = MAKE_EVENT(2, severity::INFO);
/**
* @brief Constructor
*
* @param setObjectId
* @param maxNumberOfSequences
* @param maxNumberOfTables
* @param transmitterTimeout Maximum time the transmitter of the syrlinks
* will
* be enabled
*/
ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables,
uint32_t transmitterTimeout);
virtual ~ComSubsystem() = default;
MessageQueueId_t getCommandQueue() const override;
ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
ParameterWrapper *parameterWrapper, const ParameterWrapper *newValues,
uint16_t startAtIndex) override;
virtual void performChildOperation() override;
private:
static const Mode_t INITIAL_MODE = 0;
ReturnValue_t handleCommandMessage(CommandMessage *message) override;
ReturnValue_t initialize() override;
void startTransition(Mode_t mode, Submode_t submode) override;
void readEventQueue();
void handleEventMessage(EventMessage *eventMessage);
void handleBitLockEvent();
void handleCarrierLockEvent();
void checkTransmitterCountdown();
/**
* @brief Enables transmitter in low rate mode
*/
void startRxAndTxLowRateSeq();
void startRxOnlyRecovery(bool forced);
/**
* @brief Returns true if mode is a mode where the transmitter is on
*/
bool isTxMode(Mode_t mode);
uint8_t datarateCfg = static_cast<uint8_t>(com::Datarate::LOW_RATE_MODULATION_BPSK);
// Maximum time after which the transmitter will be turned of. This is a
// protection mechanism due prevent the syrlinks from overheating
uint32_t transmitterTimeout = 0;
ParameterHelper paramHelper;
MessageQueueIF *eventQueue = nullptr;
bool enableTxWhenCarrierLock = false;
bool performRecoveryToRxOnly = false;
// Countdown will be started as soon as the transmitter was enabled
Countdown transmitterCountdown;
// Transmitter countdown only active when sysrlinks transmitter is on (modes:
// rx and tx low rate, rx and tx high rate, rx and tx default rate)
bool countdownActive = false;
// True when bit lock occurred while COM subsystem is in a transition. This
// variable is used to remember the bit lock and execute the default rate
// sequence after the active transition has been completed
bool rememberBitLock = false;
};
#endif /* MISSION_SYSTEM_COMSUBSYSTEM_H_ */

View File

@ -1,260 +0,0 @@
#include "DualLaneAssemblyBase.h"
#include <fsfw/ipc/QueueFactory.h>
#include "OBSWConfig.h"
DualLaneAssemblyBase::DualLaneAssemblyBase(object_id_t objectId, PowerSwitchIF* pwrSwitcher,
power::Switches switch1, power::Switches switch2,
Event pwrTimeoutEvent, Event sideSwitchNotAllowedEvent,
Event transitionOtherSideFailedEvent)
: AssemblyBase(objectId, 20),
pwrStateMachine(switch1, switch2, pwrSwitcher),
pwrTimeoutEvent(pwrTimeoutEvent),
sideSwitchNotAllowedEvent(sideSwitchNotAllowedEvent),
transitionOtherSideFailedEvent(transitionOtherSideFailedEvent) {
eventQueue = QueueFactory::instance()->createMessageQueue(10);
}
void DualLaneAssemblyBase::performChildOperation() {
using namespace duallane;
if (pwrStateMachine.active()) {
ReturnValue_t result = pwrStateMachineWrapper();
if (result != returnvalue::OK) {
handleModeTransitionFailed(result);
}
}
// Only perform the regular child operation if the power state machine is not active.
// It does not make any sense to command device modes while the power switcher is busy
// switching off or on devices.
if (not pwrStateMachine.active()) {
AssemblyBase::performChildOperation();
// TODO: Handle Event Queue
}
}
void DualLaneAssemblyBase::startTransition(Mode_t mode, Submode_t submode) {
using namespace duallane;
pwrStateMachine.reset();
if (mode != MODE_OFF) {
// Special exception: A transition from dual side to single mode must be handled like
// going OFF.
if ((this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) and
this->submode == DUAL_MODE and submode != DUAL_MODE) {
dualToSingleSideTransition = true;
AssemblyBase::startTransition(mode, submode);
return;
}
// If anything other than MODE_OFF is commanded, perform power state machine first
// Cache the target modes, required by power state machine
pwrStateMachine.start(mode, submode);
// Cache these for later after the power state machine has finished
targetMode = mode;
targetSubmode = submode;
} else {
AssemblyBase::startTransition(mode, submode);
}
}
bool DualLaneAssemblyBase::isUseable(object_id_t object, Mode_t mode) {
if (healthHelper.healthTable->isFaulty(object)) {
return false;
}
// Check if device is already in target mode
if (childrenMap[object].mode == mode) {
return true;
}
if (healthHelper.healthTable->isCommandable(object)) {
return true;
}
return false;
}
ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() {
using namespace power;
OpCodes opCode = pwrStateMachine.fsm();
if (customRecoveryStates == RecoveryCustomStates::IDLE) {
if (opCode == OpCodes::NONE) {
return returnvalue::OK;
} else if (opCode == OpCodes::TO_OFF_DONE) {
// Will be called for transitions to MODE_OFF, where everything is done after power switching
finishModeOp();
} else if (opCode == OpCodes::TO_NOT_OFF_DONE) {
if (dualToSingleSideTransition) {
finishModeOp();
} else {
// Will be called for transitions from MODE_OFF to anything else, where the mode still has
// to be commanded after power switching
AssemblyBase::startTransition(targetMode, targetSubmode);
}
} else if (opCode == OpCodes::TIMEOUT_OCCURED) {
if (powerRetryCounter == 0) {
powerRetryCounter++;
pwrStateMachine.reset();
} else {
#if OBSW_VERBOSE_LEVEL >= 1
sif::warning << "Timeout occured in power state machine" << std::endl;
#endif
triggerEvent(pwrTimeoutEvent, 0, 0);
return returnvalue::FAILED;
}
}
}
return returnvalue::OK;
}
ReturnValue_t DualLaneAssemblyBase::isModeCombinationValid(Mode_t mode, Submode_t submode) {
using namespace duallane;
if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) {
return returnvalue::FAILED;
}
if (sideSwitchTransition(mode, submode)) {
// I could implement this but this would increase the already high complexity. This is not
// necessary. The operator should can send a command to switch the assembly off first and
// then send a command to turn on the other side, either to ON or to NORMAL
triggerEvent(SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID, 0, 0);
return TRANS_NOT_ALLOWED;
}
return returnvalue::OK;
}
void DualLaneAssemblyBase::handleModeReached() {
using namespace duallane;
if (targetMode == MODE_OFF) {
pwrStateMachine.start(targetMode, targetSubmode);
// Now we can switch off the power. After that, the AssemblyBase::handleModeReached function
// will be called
// Ignore failures for now.
pwrStateMachineWrapper();
} else {
// For dual to single side transition, devices should be logically off, but the switch
// handling still needs to be done.
if (dualToSingleSideTransition) {
pwrStateMachine.start(targetMode, targetSubmode);
pwrStateMachineWrapper();
return;
}
finishModeOp();
}
}
MessageQueueId_t DualLaneAssemblyBase::getEventReceptionQueue() { return eventQueue->getId(); }
void DualLaneAssemblyBase::handleChildrenLostMode(ReturnValue_t result) {
using namespace duallane;
// Some ACS board components are required for Safe-Mode. It would be good if the software
// transitions from A side to B side and from B side to dual mode autonomously
// to ensure that that enough sensors are available without an operators intervention.
// Therefore, the lost mode handler was overwritten to start these transitions
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
// Not sure when this would happen. This flag is reset if the mode was reached. If it
// was not reached, the transition failure handler should be called.
sif::error << "DualLaneAssemblyBase::handleChildrenLostMode: Wrong handler called" << std::endl;
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void DualLaneAssemblyBase::handleModeTransitionFailed(ReturnValue_t result) {
using namespace duallane;
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
// Check whether the transition was started because the mode could not be kept (not commanded).
// If this is not the case, start transition to other side. If it is the case, start
// transition to dual mode.
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
bool DualLaneAssemblyBase::checkAndHandleRecovery() {
using namespace power;
OpCodes opCode = OpCodes::NONE;
if (recoveryState == RECOVERY_IDLE) {
return AssemblyBase::checkAndHandleRecovery();
}
if (customRecoveryStates == IDLE) {
pwrStateMachine.start(MODE_OFF, 0);
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_OFF;
}
if (customRecoveryStates == POWER_SWITCHING_OFF) {
opCode = pwrStateMachine.fsm();
if (opCode == OpCodes::TO_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_ON;
pwrStateMachine.start(targetMode, targetSubmode);
}
}
if (customRecoveryStates == POWER_SWITCHING_ON) {
opCode = pwrStateMachine.fsm();
if (opCode == OpCodes::TO_NOT_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
customRecoveryStates = RecoveryCustomStates::DONE;
}
}
if (customRecoveryStates == DONE) {
bool pendingRecovery = AssemblyBase::checkAndHandleRecovery();
if (not pendingRecovery) {
pwrStateMachine.reset();
customRecoveryStates = RecoveryCustomStates::IDLE;
}
// For a recovery on one side, only do the recovery once
for (auto& child : childrenMap) {
if (healthHelper.healthTable->getHealth(child.first) == HasHealthIF::NEEDS_RECOVERY) {
sendHealthCommand(child.second.commandQueue, HEALTHY);
child.second.healthChanged = false;
}
}
return pendingRecovery;
}
return true;
}
bool DualLaneAssemblyBase::sideSwitchTransition(Mode_t mode, Submode_t submode) {
using namespace duallane;
if (this->mode == MODE_OFF) {
return false;
}
if (this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) {
if (this->submode == Submodes::A_SIDE and submode == Submodes::B_SIDE) {
return true;
} else if (this->submode == Submodes::B_SIDE and submode == Submodes::A_SIDE) {
return true;
}
return false;
}
return false;
}
void DualLaneAssemblyBase::finishModeOp() {
using namespace duallane;
AssemblyBase::handleModeReached();
pwrStateMachine.reset();
powerRetryCounter = 0;
tryingOtherSide = false;
dualToSingleSideTransition = false;
dualModeErrorSwitch = true;
}
void DualLaneAssemblyBase::setPreferredSide(duallane::Submodes submode) {
using namespace duallane;
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
return;
}
this->defaultSubmode = submode;
}

View File

@ -1,103 +0,0 @@
#ifndef MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_
#define MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_
#include <fsfw/devicehandlers/AssemblyBase.h>
#include <mission/system/objects/DualLanePowerStateMachine.h>
/**
* @brief Encapsulates assemblies which are also responsible for dual lane power switching
* @details
* This is the base class for both the ACS board and the SUS board. Both boards have redundant
* power lanes and are required for the majority of satellite modes. Therefore, there is a lot
* of common code, for example the power switching.
*/
class DualLaneAssemblyBase : public AssemblyBase, public ConfirmsFailuresIF {
public:
static constexpr UniqueEventId_t TRANSITION_OTHER_SIDE_FAILED_ID = 0;
static constexpr UniqueEventId_t NOT_ENOUGH_DEVICES_DUAL_MODE_ID = 1;
static constexpr UniqueEventId_t POWER_STATE_MACHINE_TIMEOUT_ID = 2;
static constexpr UniqueEventId_t SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID = 3;
DualLaneAssemblyBase(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switches switch1,
power::Switches switch2, Event pwrSwitchTimeoutEvent,
Event sideSwitchNotAllowedEvent, Event transitionOtherSideFailedEvent);
protected:
// This helper object complete encapsulates power switching
DualLanePowerStateMachine pwrStateMachine;
Event pwrTimeoutEvent;
Event sideSwitchNotAllowedEvent;
Event transitionOtherSideFailedEvent;
uint8_t powerRetryCounter = 0;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
bool dualToSingleSideTransition = false;
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
enum RecoveryCustomStates {
IDLE,
POWER_SWITCHING_OFF,
POWER_SWITCHING_ON,
DONE
} customRecoveryStates = RecoveryCustomStates::IDLE;
MessageQueueIF* eventQueue = nullptr;
/**
* Check whether it makes sense to send mode commands to the device
* @param object
* @param mode
* @return
*/
bool isUseable(object_id_t object, Mode_t mode);
/**
* Thin wrapper function which is required because the helper class
* can not access protected member functions.
* @param mode
* @param submode
*/
virtual ReturnValue_t pwrStateMachineWrapper();
virtual ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
/**
* Custom recovery implementation to ensure that the power lines are commanded off for a
* recovery.
* @return
*/
virtual bool checkAndHandleRecovery() override;
void setPreferredSide(duallane::Submodes submode);
virtual void performChildOperation() override;
virtual void startTransition(Mode_t mode, Submode_t submode) override;
virtual void handleChildrenLostMode(ReturnValue_t result) override;
virtual void handleModeTransitionFailed(ReturnValue_t result) override;
virtual void handleModeReached() override;
ReturnValue_t checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode);
MessageQueueId_t getEventReceptionQueue() override;
bool sideSwitchTransition(Mode_t mode, Submode_t submode);
/**
* Implemented by user. Will be called if a full mode operation has finished.
* This includes both the regular mode state machine operations and the power state machine
* operations
*/
virtual void finishModeOp();
template <size_t MAX_SIZE>
void initModeTableEntry(object_id_t id, ModeListEntry& entry,
FixedArrayList<ModeListEntry, MAX_SIZE>& modeTable);
private:
};
template <size_t MAX_SIZE>
inline void DualLaneAssemblyBase::initModeTableEntry(
object_id_t id, ModeListEntry& entry, FixedArrayList<ModeListEntry, MAX_SIZE>& modeTable) {
entry.setObject(id);
entry.setMode(MODE_OFF);
entry.setSubmode(SUBMODE_NONE);
modeTable.insert(entry);
}
#endif /* MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_ */

View File

@ -1,111 +0,0 @@
#include "DualLanePowerStateMachine.h"
#include <fsfw/devicehandlers/AssemblyBase.h>
#include <fsfw/power/PowerSwitchIF.h>
DualLanePowerStateMachine::DualLanePowerStateMachine(power::Switch_t switchA,
power::Switch_t switchB,
PowerSwitchIF* pwrSwitcher,
dur_millis_t checkTimeout)
: PowerStateMachineBase(pwrSwitcher, checkTimeout), SWITCH_A(switchA), SWITCH_B(switchB) {}
power::OpCodes DualLanePowerStateMachine::fsm() {
using namespace duallane;
ReturnValue_t switchStateA = returnvalue::OK;
ReturnValue_t switchStateB = returnvalue::OK;
if (state == power::States::IDLE or state == power::States::MODE_COMMANDING) {
return opResult;
}
if (state == power::States::SWITCHING_POWER or state == power::States::CHECKING_POWER) {
switchStateA = pwrSwitcher->getSwitchState(SWITCH_A);
switchStateB = pwrSwitcher->getSwitchState(SWITCH_B);
} else {
return opResult;
}
if (targetMode == HasModesIF::MODE_OFF) {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = power::States::IDLE;
opResult = power::OpCodes::TO_OFF_DONE;
return opResult;
}
} else {
switch (targetSubmode) {
case (A_SIDE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and
switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = power::States::MODE_COMMANDING;
opResult = power::OpCodes::TO_NOT_OFF_DONE;
return opResult;
}
break;
}
case (B_SIDE): {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and
switchStateB == PowerSwitchIF::SWITCH_ON) {
state = power::States::MODE_COMMANDING;
opResult = power::OpCodes::TO_NOT_OFF_DONE;
return opResult;
}
break;
}
case (DUAL_MODE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) {
state = power::States::MODE_COMMANDING;
opResult = power::OpCodes::TO_NOT_OFF_DONE;
return opResult;
}
}
}
}
if (state == power::States::SWITCHING_POWER) {
if (targetMode == HasModesIF::MODE_OFF) {
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
}
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
checkTimeout.resetTimer();
} else {
switch (targetSubmode) {
case (A_SIDE): {
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
checkTimeout.resetTimer();
break;
}
case (B_SIDE): {
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
}
checkTimeout.resetTimer();
break;
}
case (DUAL_MODE): {
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
}
checkTimeout.resetTimer();
break;
}
}
}
state = power::States::CHECKING_POWER;
}
if (state == power::States::CHECKING_POWER) {
if (checkTimeout.hasTimedOut()) {
return power::OpCodes::TIMEOUT_OCCURED;
}
}
return opResult;
}

View File

@ -1,25 +0,0 @@
#ifndef MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
#define MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
#include <devices/powerSwitcherList.h>
#include <fsfw/modes/HasModesIF.h>
#include <mission/system/objects/PowerStateMachineBase.h>
#include "definitions.h"
class AssemblyBase;
class PowerSwitchIF;
class DualLanePowerStateMachine : public PowerStateMachineBase {
public:
DualLanePowerStateMachine(power::Switch_t switchA, power::Switch_t switchB,
PowerSwitchIF* pwrSwitcher, dur_millis_t checkTimeout = 5000);
power::OpCodes fsm() override;
const power::Switch_t SWITCH_A;
const power::Switch_t SWITCH_B;
private:
};
#endif /* MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_ */

View File

@ -3,7 +3,8 @@
#include <eive/objects.h>
#include <fsfw/events/EventManager.h>
#include <fsfw/ipc/QueueFactory.h>
#include <mission/acsDefs.h>
#include <mission/acs/defs.h>
#include <mission/comDefs.h>
#include <mission/controller/controllerdefinitions/tcsCtrlDefs.h>

View File

@ -1,54 +0,0 @@
#include "ImtqAssembly.h"
#include <eive/objects.h>
using namespace returnvalue;
ImtqAssembly::ImtqAssembly(object_id_t objectId) : AssemblyBase(objectId) {
ModeListEntry entry;
entry.setObject(objects::IMTQ_HANDLER);
entry.setMode(MODE_OFF);
entry.setSubmode(SUBMODE_NONE);
commandTable.insert(entry);
}
ReturnValue_t ImtqAssembly::commandChildren(Mode_t mode, Submode_t submode) {
commandTable[0].setMode(mode);
commandTable[0].setSubmode(submode);
if (recoveryState == RECOVERY_IDLE) {
ReturnValue_t result = checkAndHandleHealthState(mode, submode);
if (result == NEED_TO_CHANGE_HEALTH) {
return OK;
}
}
HybridIterator<ModeListEntry> iter(commandTable.begin(), commandTable.end());
executeTable(iter);
return returnvalue::OK;
}
ReturnValue_t ImtqAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
if (childrenMap[objects::IMTQ_HANDLER].mode != wantedMode) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
return returnvalue::OK;
}
ReturnValue_t ImtqAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
if (mode == MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_OFF) {
return returnvalue::OK;
}
return returnvalue::FAILED;
}
ReturnValue_t ImtqAssembly::checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode) {
HealthState health = healthHelper.healthTable->getHealth(objects::IMTQ_HANDLER);
if (health == FAULTY or health == PERMANENT_FAULTY) {
overwriteDeviceHealth(objects::IMTQ_HANDLER, health);
return NEED_TO_CHANGE_HEALTH;
} else if (health == EXTERNAL_CONTROL) {
modeHelper.setForced(true);
}
return OK;
}
void ImtqAssembly::handleChildrenLostMode(ReturnValue_t result) { startTransition(mode, submode); }

View File

@ -1,18 +0,0 @@
#pragma once
#include <fsfw/devicehandlers/AssemblyBase.h>
class ImtqAssembly : public AssemblyBase {
public:
ImtqAssembly(object_id_t objectId);
private:
FixedArrayList<ModeListEntry, 1> commandTable;
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
void handleChildrenLostMode(ReturnValue_t result) override;
ReturnValue_t checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode);
};

View File

@ -5,7 +5,7 @@
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/timemanager/Countdown.h>
#include "definitions.h"
#include "mission/powerDefs.h"
class PowerStateMachineBase {
public:

View File

@ -1,186 +0,0 @@
#include "RwAssembly.h"
RwAssembly::RwAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switch_t switcher,
RwHelper helper)
: AssemblyBase(objectId), helper(helper), switcher(pwrSwitcher, switcher) {
ModeListEntry entry;
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
entry.setObject(helper.rwIds[idx]);
entry.setMode(MODE_OFF);
entry.setSubmode(SUBMODE_NONE);
modeTable.insert(entry);
}
}
void RwAssembly::performChildOperation() {
auto state = switcher.getState();
if (state != PowerSwitcher::WAIT_OFF and state != PowerSwitcher::WAIT_ON) {
AssemblyBase::performChildOperation();
return;
}
switcher.doStateMachine();
if (state == PowerSwitcher::WAIT_OFF and switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) {
// Indicator that a transition to off is finished
AssemblyBase::handleModeReached();
} else if (state == PowerSwitcher::WAIT_ON and
switcher.getState() == PowerSwitcher::SWITCH_IS_ON) {
// Indicator that mode commanding can be performed now
AssemblyBase::startTransition(targetMode, targetSubmode);
}
}
ReturnValue_t RwAssembly::commandChildren(Mode_t mode, Submode_t submode) {
ReturnValue_t result = returnvalue::OK;
modeTransitionFailedSwitch = true;
// Initialize the mode table to ensure all devices are in a defined state
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
modeTable[idx].setMode(MODE_OFF);
modeTable[idx].setSubmode(SUBMODE_NONE);
}
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
result = handleNormalOrOnModeCmd(mode, submode);
}
}
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
executeTable(tableIter);
return result;
}
ReturnValue_t RwAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
int devsInCorrectMode = 0;
try {
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
if (childrenMap.at(helper.rwIds[idx]).mode == wantedMode) {
devsInCorrectMode++;
}
}
} catch (const std::out_of_range& e) {
sif::error << "RwAssembly: Invalid children map: " << e.what() << std::endl;
}
if (devsInCorrectMode < 3) {
if (warningSwitch) {
sif::warning << "RwAssembly::checkChildrenStateOn: Only " << devsInCorrectMode
<< " devices in correct mode" << std::endl;
warningSwitch = false;
}
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
return returnvalue::OK;
}
ReturnValue_t RwAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
if (mode == MODE_ON or mode == MODE_OFF or mode == DeviceHandlerIF::MODE_NORMAL) {
return returnvalue::OK;
}
return HasModesIF::INVALID_MODE;
}
void RwAssembly::startTransition(Mode_t mode, Submode_t submode) {
if (mode != MODE_OFF) {
switcher.turnOn(true);
switcher.doStateMachine();
if (switcher.getState() == PowerSwitcher::SWITCH_IS_ON) {
AssemblyBase::startTransition(mode, submode);
} else {
// Need to wait with mode commanding until power switcher is done
targetMode = mode;
targetSubmode = submode;
}
} else {
// Perform regular mode commanding first
AssemblyBase::startTransition(mode, submode);
}
}
void RwAssembly::handleModeReached() {
if (targetMode == MODE_OFF) {
switcher.turnOff(true);
switcher.doStateMachine();
// Need to wait with call to AssemblyBase::handleModeReached until power switcher is done
if (switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) {
AssemblyBase::handleModeReached();
}
} else {
AssemblyBase::handleModeReached();
}
}
void RwAssembly::handleChildrenLostMode(ReturnValue_t result) {
AssemblyBase::handleChildrenLostMode(result);
}
ReturnValue_t RwAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
ReturnValue_t result = returnvalue::OK;
bool needsSecondStep = false;
Mode_t devMode = 0;
object_id_t objId = 0;
try {
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
devMode = childrenMap.at(helper.rwIds[idx]).mode;
objId = helper.rwIds[idx];
if (mode == devMode) {
modeTable[idx].setMode(mode);
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objId, devMode)) {
if (devMode == MODE_ON) {
modeTable[idx].setMode(mode);
modeTable[idx].setSubmode(SUBMODE_NONE);
} else {
modeTable[idx].setMode(MODE_ON);
modeTable[idx].setSubmode(SUBMODE_NONE);
if (internalState != STATE_SECOND_STEP) {
needsSecondStep = true;
}
}
}
} else if (mode == MODE_ON) {
if (isUseable(objId, devMode)) {
modeTable[idx].setMode(MODE_ON);
modeTable[idx].setSubmode(SUBMODE_NONE);
}
}
}
} catch (const std::out_of_range& e) {
sif::error << "TcsBoardAssembly: Invalid children map: " << e.what() << std::endl;
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
}
return result;
}
bool RwAssembly::isUseable(object_id_t object, Mode_t mode) {
if (healthHelper.healthTable->isFaulty(object)) {
return false;
}
// Check if device is already in target mode
if (childrenMap[object].mode == mode) {
return true;
}
if (healthHelper.healthTable->isCommandable(object)) {
return true;
}
return false;
}
ReturnValue_t RwAssembly::initialize() {
for (auto objId : helper.rwIds) {
updateChildModeByObjId(objId, MODE_OFF, SUBMODE_NONE);
}
return AssemblyBase::initialize();
}
void RwAssembly::handleModeTransitionFailed(ReturnValue_t result) {
if (targetMode == MODE_OFF) {
AssemblyBase::handleModeTransitionFailed(result);
} else {
if (modeTransitionFailedSwitch) {
// To avoid transitioning back to off
triggerEvent(MODE_TRANSITION_FAILED, result);
modeTransitionFailedSwitch = false;
}
}
}

View File

@ -1,51 +0,0 @@
#ifndef MISSION_SYSTEM_RWASS_H_
#define MISSION_SYSTEM_RWASS_H_
#include <fsfw/devicehandlers/AssemblyBase.h>
#include <fsfw/power/PowerSwitcher.h>
struct RwHelper {
RwHelper(std::array<object_id_t, 4> rwIds) : rwIds(rwIds) {}
std::array<object_id_t, 4> rwIds = {};
};
class RwAssembly : public AssemblyBase {
public:
RwAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switch_t switcher,
RwHelper helper);
private:
static constexpr uint8_t NUMBER_RWS = 4;
RwHelper helper;
PowerSwitcher switcher;
bool warningSwitch = true;
bool modeTransitionFailedSwitch = true;
FixedArrayList<ModeListEntry, NUMBER_RWS> modeTable;
ReturnValue_t initialize() override;
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
/**
* Check whether it makes sense to send mode commands to the device
* @param object
* @param mode
* @return
*/
bool isUseable(object_id_t object, Mode_t mode);
// AssemblyBase implementation
void performChildOperation() override;
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
void startTransition(Mode_t mode, Submode_t submode) override;
void handleModeReached() override;
// These two overrides prevent a transition of the whole assembly back to off just because
// some devices are not working
void handleChildrenLostMode(ReturnValue_t result) override;
void handleModeTransitionFailed(ReturnValue_t result) override;
};
#endif /* MISSION_SYSTEM_RWASS_H_ */

View File

@ -1,176 +0,0 @@
#include "SusAssembly.h"
#include <devices/powerSwitcherList.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/serviceinterface.h>
SusAssembly::SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper)
: DualLaneAssemblyBase(objectId, pwrSwitcher, SWITCH_NOM, SWITCH_RED,
POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
TRANSITION_OTHER_SIDE_FAILED),
helper(helper),
pwrSwitcher(pwrSwitcher) {
ModeListEntry entry;
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
initModeTableEntry(helper.susIds[idx], entry, modeTable);
}
}
ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
ReturnValue_t result = returnvalue::OK;
refreshHelperModes();
// Initialize the mode table to ensure all devices are in a defined state
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
modeTable[idx].setMode(MODE_OFF);
modeTable[idx].setSubmode(SUBMODE_NONE);
}
if (recoveryState == RecoveryState::RECOVERY_IDLE) {
result = checkAndHandleHealthStates(mode, submode);
if (result == NEED_TO_CHANGE_HEALTH) {
return returnvalue::OK;
}
}
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
result = handleNormalOrOnModeCmd(mode, submode);
}
}
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
executeTable(tableIter);
return result;
}
ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t result = returnvalue::OK;
bool needsSecondStep = false;
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) {
if (mode == devMode) {
modeTable[tableIdx].setMode(mode);
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objectId, devMode)) {
if (devMode == MODE_ON) {
modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} else {
modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
if (internalState != STATE_SECOND_STEP) {
needsSecondStep = true;
}
}
}
} else if (mode == MODE_ON) {
if (isUseable(objectId, devMode)) {
modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
}
}
};
switch (submode) {
case (A_SIDE): {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
// Switch off devices on redundant side
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
}
break;
}
case (B_SIDE): {
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
// Switch devices on nominal side
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
}
break;
}
case (DUAL_MODE): {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
}
break;
}
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
}
return result;
}
ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
using namespace duallane;
refreshHelperModes();
if (wantedSubmode == A_SIDE) {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
if (helper.susModes[idx] != wantedMode) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
return returnvalue::OK;
} else if (wantedSubmode == B_SIDE) {
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
if (helper.susModes[idx] != wantedMode) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
}
}
return returnvalue::OK;
} else {
// Trigger event if devices are faulty? This is the last fallback mode, returning
// a failure here would trigger a transition to MODE_OFF unless handleModeTransitionFailed
// is overriden
return returnvalue::OK;
}
return returnvalue::OK;
}
ReturnValue_t SusAssembly::initialize() {
for (const auto& child : childrenMap) {
updateChildModeByObjId(child.first, MODE_OFF, 0);
}
return AssemblyBase::initialize();
}
bool SusAssembly::isUseable(object_id_t object, Mode_t mode) {
if (healthHelper.healthTable->isFaulty(object)) {
return false;
}
// Check if device is already in target mode
if (childrenMap[object].mode == mode) {
return true;
}
if (healthHelper.healthTable->isCommandable(object)) {
return true;
}
return false;
}
void SusAssembly::refreshHelperModes() {
for (uint8_t idx = 0; idx < helper.susModes.size(); idx++) {
helper.susModes[idx] = childrenMap[helper.susIds[idx]].mode;
}
}
ReturnValue_t SusAssembly::checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode) {
using namespace returnvalue;
ReturnValue_t status = returnvalue::OK;
auto overwriteHealthForOneDev = [&](object_id_t dev) {
HealthState health = healthHelper.healthTable->getHealth(dev);
if (health == FAULTY or health == PERMANENT_FAULTY) {
overwriteDeviceHealth(dev, health);
status = NEED_TO_CHANGE_HEALTH;
} else if (health == EXTERNAL_CONTROL) {
modeHelper.setForced(true);
}
};
if (deviceSubmode == duallane::DUAL_MODE) {
for (uint8_t idx = 0; idx < 12; idx++) {
overwriteHealthForOneDev(helper.susIds[idx]);
}
}
return status;
}

View File

@ -1,72 +0,0 @@
#ifndef MISSION_SYSTEM_SUSASSEMBLY_H_
#define MISSION_SYSTEM_SUSASSEMBLY_H_
#include <devices/powerSwitcherList.h>
#include <fsfw/devicehandlers/AssemblyBase.h>
#include "DualLaneAssemblyBase.h"
#include "events/subsystemIdRanges.h"
#include "returnvalues/classIds.h"
struct SusAssHelper {
public:
SusAssHelper(std::array<object_id_t, 12> susIds) : susIds(susIds) {}
std::array<object_id_t, 12> susIds = {objects::NO_OBJECT};
std::array<Mode_t, 12> susModes = {HasModesIF::MODE_OFF};
};
class PowerSwitchIF;
class SusAssembly : public DualLaneAssemblyBase {
public:
static constexpr uint8_t NUMBER_SUN_SENSORS_ONE_SIDE = 6;
static constexpr uint8_t NUMBER_SUN_SENSORS = 12;
// Use these variables instead of magic numbers when generator was updated
// TRANSITION_OTHER_SIDE_FAILED_ID
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID
// POWER_STATE_MACHINE_TIMEOUT_ID
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SUS_BOARD_ASS;
static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE =
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
//! should instead command the assembly off first and then command the assembly on into the
//! desired mode/submode combination
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper);
private:
enum class States { IDLE, SWITCHING_POWER, MODE_COMMANDING } state = States::IDLE;
static constexpr power::Switches SWITCH_NOM = power::Switches::PDU1_CH4_SUS_NOMINAL_3V3;
static constexpr power::Switches SWITCH_RED = power::Switches::PDU2_CH4_SUS_REDUNDANT_3V3;
FixedArrayList<ModeListEntry, NUMBER_SUN_SENSORS> modeTable;
SusAssHelper helper;
PowerSwitchIF* pwrSwitcher = nullptr;
ReturnValue_t initialize() override;
// AssemblyBase overrides
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
/**
* Check whether it makes sense to send mode commands to the device
* @param object
* @param mode
* @return
*/
bool isUseable(object_id_t object, Mode_t mode);
void powerStateMachine(Mode_t mode, Submode_t submode);
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
void refreshHelperModes();
ReturnValue_t checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode);
};
#endif /* MISSION_SYSTEM_SUSASSEMBLY_H_ */

View File

@ -1,16 +0,0 @@
#pragma once
#include <fsfw/modes/ModeMessage.h>
namespace power {
enum class States { IDLE, SWITCHING_POWER, CHECKING_POWER, MODE_COMMANDING };
enum class OpCodes { NONE, TO_OFF_DONE, TO_NOT_OFF_DONE, TIMEOUT_OCCURED };
} // namespace power
namespace duallane {
enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 };
} // namespace duallane