Merge remote-tracking branch 'origin/develop' into thermal_controller
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit
This commit is contained in:
@ -1,315 +0,0 @@
|
||||
#include "AcsBoardAssembly.h"
|
||||
|
||||
#include <devices/gpioIds.h>
|
||||
#include <fsfw/power/PowerSwitchIF.h>
|
||||
#include <fsfw/serviceinterface.h>
|
||||
|
||||
#include "OBSWConfig.h"
|
||||
|
||||
AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* switcher,
|
||||
AcsBoardHelper helper, GpioIF* gpioIF)
|
||||
: DualLaneAssemblyBase(objectId, switcher, SWITCH_A, SWITCH_B, POWER_STATE_MACHINE_TIMEOUT,
|
||||
SIDE_SWITCH_TRANSITION_NOT_ALLOWED, TRANSITION_OTHER_SIDE_FAILED),
|
||||
helper(helper),
|
||||
gpioIF(gpioIF) {
|
||||
if (switcher == nullptr) {
|
||||
sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher "
|
||||
"IF passed"
|
||||
<< std::endl;
|
||||
}
|
||||
if (gpioIF == nullptr) {
|
||||
sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid GPIO IF passed" << std::endl;
|
||||
}
|
||||
ModeListEntry entry;
|
||||
initModeTableEntry(helper.mgm0Lis3IdSideA, entry, modeTable);
|
||||
initModeTableEntry(helper.mgm1Rm3100IdSideA, entry, modeTable);
|
||||
initModeTableEntry(helper.mgm2Lis3IdSideB, entry, modeTable);
|
||||
initModeTableEntry(helper.mgm3Rm3100IdSideB, entry, modeTable);
|
||||
initModeTableEntry(helper.gyro0AdisIdSideA, entry, modeTable);
|
||||
initModeTableEntry(helper.gyro1L3gIdSideA, entry, modeTable);
|
||||
initModeTableEntry(helper.gyro2AdisIdSideB, entry, modeTable);
|
||||
initModeTableEntry(helper.gyro3L3gIdSideB, entry, modeTable);
|
||||
initModeTableEntry(helper.gpsId, entry, modeTable);
|
||||
}
|
||||
|
||||
ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
refreshHelperModes();
|
||||
// Initialize the mode table to ensure all devices are in a defined state
|
||||
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GPS].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
|
||||
if (recoveryState == RecoveryState::RECOVERY_IDLE) {
|
||||
result = checkAndHandleHealthStates(mode, submode);
|
||||
if (result == NEED_TO_CHANGE_HEALTH) {
|
||||
return returnvalue::OK;
|
||||
}
|
||||
}
|
||||
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
|
||||
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
|
||||
result = handleNormalOrOnModeCmd(mode, submode);
|
||||
}
|
||||
}
|
||||
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
|
||||
executeTable(tableIter);
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
|
||||
using namespace duallane;
|
||||
refreshHelperModes();
|
||||
if (wantedSubmode == A_SIDE) {
|
||||
if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or
|
||||
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or
|
||||
helper.gpsMode != MODE_ON) {
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
} else if (wantedSubmode == B_SIDE) {
|
||||
if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or
|
||||
(helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
|
||||
helper.gpsMode != MODE_ON) {
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
} else if (wantedSubmode == DUAL_MODE) {
|
||||
if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode and
|
||||
helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or
|
||||
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and
|
||||
helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
|
||||
helper.gpsMode != MODE_ON) {
|
||||
// Trigger event, but don't start any other transitions. This is the last fallback mode.
|
||||
if (dualModeErrorSwitch) {
|
||||
triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0);
|
||||
dualModeErrorSwitch = false;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
bool needsSecondStep = false;
|
||||
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) {
|
||||
if (mode == devMode) {
|
||||
modeTable[tableIdx].setMode(mode);
|
||||
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
|
||||
if (isUseable(objectId, devMode)) {
|
||||
if (devMode == MODE_ON) {
|
||||
modeTable[tableIdx].setMode(mode);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
} else {
|
||||
modeTable[tableIdx].setMode(MODE_ON);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
if (internalState != STATE_SECOND_STEP) {
|
||||
needsSecondStep = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == MODE_ON) {
|
||||
if (isUseable(objectId, devMode)) {
|
||||
modeTable[tableIdx].setMode(MODE_ON);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
}
|
||||
};
|
||||
bool gpsUsable = isUseable(helper.gpsId, helper.gpsMode);
|
||||
switch (submode) {
|
||||
case (A_SIDE): {
|
||||
modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_2_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GYRO_3_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_3_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_2_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_2_B].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_3_B].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
|
||||
cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
|
||||
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
|
||||
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
|
||||
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
|
||||
if (gpsUsable) {
|
||||
gpioHandler(gpioIds::GNSS_0_NRESET, true,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 0 high (used GNSS)");
|
||||
gpioHandler(gpioIds::GNSS_1_NRESET, false,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 1 low (unused GNSS)");
|
||||
gpioHandler(gpioIds::GNSS_SELECT, false,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low");
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (B_SIDE): {
|
||||
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::GYRO_1_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_0_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_0_A].setSubmode(SUBMODE_NONE);
|
||||
modeTable[ModeTableIdx::MGM_1_A].setMode(MODE_OFF);
|
||||
modeTable[ModeTableIdx::MGM_1_A].setSubmode(SUBMODE_NONE);
|
||||
cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
|
||||
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
|
||||
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
|
||||
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
|
||||
if (gpsUsable) {
|
||||
gpioHandler(gpioIds::GNSS_0_NRESET, false,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 0 low (unused GNSS)");
|
||||
gpioHandler(gpioIds::GNSS_1_NRESET, true,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 1 high (used GNSS)");
|
||||
gpioHandler(gpioIds::GNSS_SELECT, true,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high");
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (DUAL_MODE): {
|
||||
cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS);
|
||||
cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
|
||||
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
|
||||
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
|
||||
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
|
||||
cmdSeq(helper.gyro2AdisIdSideB, helper.gyro2SideBMode, ModeTableIdx::GYRO_2_B);
|
||||
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
|
||||
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
|
||||
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
|
||||
ReturnValue_t status = returnvalue::OK;
|
||||
if (gpsUsable) {
|
||||
gpioHandler(gpioIds::GNSS_0_NRESET, true,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 0 high (used GNSS)");
|
||||
gpioHandler(gpioIds::GNSS_1_NRESET, true,
|
||||
"AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull nReset pin"
|
||||
"of GNSS 1 high (used GNSS)");
|
||||
if (defaultSubmode == Submodes::A_SIDE) {
|
||||
status = gpioIF->pullLow(gpioIds::GNSS_SELECT);
|
||||
} else {
|
||||
status = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
|
||||
}
|
||||
if (status != returnvalue::OK) {
|
||||
#if OBSW_VERBOSE_LEVEL >= 1
|
||||
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to"
|
||||
"default side for dual mode"
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl;
|
||||
}
|
||||
}
|
||||
if (gpsUsable) {
|
||||
modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
|
||||
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
if (needsSecondStep) {
|
||||
result = NEED_SECOND_STEP;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) {
|
||||
using namespace duallane;
|
||||
if (submode != Submodes::DUAL_MODE) {
|
||||
return;
|
||||
}
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
if (side == Submodes::A_SIDE) {
|
||||
result = gpioIF->pullLow(gpioIds::GNSS_SELECT);
|
||||
} else {
|
||||
result = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
|
||||
}
|
||||
if (result != returnvalue::OK) {
|
||||
#if OBSW_VERBOSE_LEVEL >= 1
|
||||
sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void AcsBoardAssembly::gpioHandler(gpioId_t gpio, bool high, std::string error) {
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
if (high) {
|
||||
result = gpioIF->pullHigh(gpio);
|
||||
} else {
|
||||
result = gpioIF->pullLow(gpio);
|
||||
}
|
||||
if (result != returnvalue::OK) {
|
||||
#if OBSW_VERBOSE_LEVEL >= 1
|
||||
sif::error << error << std::endl;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void AcsBoardAssembly::refreshHelperModes() {
|
||||
try {
|
||||
helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode;
|
||||
helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode;
|
||||
helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
|
||||
helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
|
||||
helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode;
|
||||
helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode;
|
||||
helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode;
|
||||
helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode;
|
||||
helper.gpsMode = childrenMap.at(helper.gpsId).mode;
|
||||
} catch (const std::out_of_range& e) {
|
||||
sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t AcsBoardAssembly::initialize() {
|
||||
for (const auto& child : childrenMap) {
|
||||
updateChildModeByObjId(child.first, MODE_OFF, 0);
|
||||
}
|
||||
return AssemblyBase::initialize();
|
||||
}
|
||||
|
||||
ReturnValue_t AcsBoardAssembly::checkAndHandleHealthStates(Mode_t deviceMode,
|
||||
Submode_t deviceSubmode) {
|
||||
using namespace returnvalue;
|
||||
ReturnValue_t status = returnvalue::OK;
|
||||
auto overwriteHealthForOneDev = [&](object_id_t dev) {
|
||||
HealthState health = healthHelper.healthTable->getHealth(dev);
|
||||
if (health == FAULTY or health == PERMANENT_FAULTY) {
|
||||
overwriteDeviceHealth(dev, health);
|
||||
status = NEED_TO_CHANGE_HEALTH;
|
||||
} else if (health == EXTERNAL_CONTROL) {
|
||||
modeHelper.setForced(true);
|
||||
}
|
||||
};
|
||||
if (deviceSubmode == duallane::DUAL_MODE) {
|
||||
overwriteHealthForOneDev(helper.mgm0Lis3IdSideA);
|
||||
overwriteHealthForOneDev(helper.mgm1Rm3100IdSideA);
|
||||
overwriteHealthForOneDev(helper.mgm2Lis3IdSideB);
|
||||
overwriteHealthForOneDev(helper.mgm3Rm3100IdSideB);
|
||||
overwriteHealthForOneDev(helper.gyro0AdisIdSideA);
|
||||
overwriteHealthForOneDev(helper.gyro1L3gIdSideA);
|
||||
overwriteHealthForOneDev(helper.gyro2AdisIdSideB);
|
||||
overwriteHealthForOneDev(helper.gyro3L3gIdSideB);
|
||||
overwriteHealthForOneDev(helper.gpsId);
|
||||
}
|
||||
return status;
|
||||
}
|
@ -1,128 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_ACSBOARDASSEMBLY_H_
|
||||
#define MISSION_SYSTEM_ACSBOARDASSEMBLY_H_
|
||||
|
||||
#include <devices/powerSwitcherList.h>
|
||||
#include <fsfw/objectmanager/frameworkObjects.h>
|
||||
#include <fsfw_hal/common/gpio/gpioDefinitions.h>
|
||||
|
||||
#include "DualLaneAssemblyBase.h"
|
||||
#include "DualLanePowerStateMachine.h"
|
||||
#include "eive/eventSubsystemIds.h"
|
||||
|
||||
struct AcsBoardHelper {
|
||||
AcsBoardHelper(object_id_t mgm0Id, object_id_t mgm1Id, object_id_t mgm2Id, object_id_t mgm3Id,
|
||||
object_id_t gyro0Id, object_id_t gyro1Id, object_id_t gyro2Id, object_id_t gyro3Id,
|
||||
object_id_t gpsId)
|
||||
: mgm0Lis3IdSideA(mgm0Id),
|
||||
mgm1Rm3100IdSideA(mgm1Id),
|
||||
mgm2Lis3IdSideB(mgm2Id),
|
||||
mgm3Rm3100IdSideB(mgm3Id),
|
||||
gyro0AdisIdSideA(gyro0Id),
|
||||
gyro1L3gIdSideA(gyro1Id),
|
||||
gyro2AdisIdSideB(gyro2Id),
|
||||
gyro3L3gIdSideB(gyro3Id),
|
||||
gpsId(gpsId) {}
|
||||
|
||||
object_id_t mgm0Lis3IdSideA = objects::NO_OBJECT;
|
||||
object_id_t mgm1Rm3100IdSideA = objects::NO_OBJECT;
|
||||
object_id_t mgm2Lis3IdSideB = objects::NO_OBJECT;
|
||||
object_id_t mgm3Rm3100IdSideB = objects::NO_OBJECT;
|
||||
|
||||
object_id_t gyro0AdisIdSideA = objects::NO_OBJECT;
|
||||
object_id_t gyro1L3gIdSideA = objects::NO_OBJECT;
|
||||
object_id_t gyro2AdisIdSideB = objects::NO_OBJECT;
|
||||
object_id_t gyro3L3gIdSideB = objects::NO_OBJECT;
|
||||
|
||||
object_id_t gpsId = objects::NO_OBJECT;
|
||||
|
||||
Mode_t gyro0SideAMode = HasModesIF::MODE_OFF;
|
||||
Mode_t gyro1SideAMode = HasModesIF::MODE_OFF;
|
||||
Mode_t gyro2SideBMode = HasModesIF::MODE_OFF;
|
||||
Mode_t gyro3SideBMode = HasModesIF::MODE_OFF;
|
||||
Mode_t mgm0SideAMode = HasModesIF::MODE_OFF;
|
||||
Mode_t mgm1SideAMode = HasModesIF::MODE_OFF;
|
||||
Mode_t mgm2SideBMode = HasModesIF::MODE_OFF;
|
||||
Mode_t mgm3SideBMode = HasModesIF::MODE_OFF;
|
||||
Mode_t gpsMode = HasModesIF::MODE_OFF;
|
||||
};
|
||||
|
||||
enum ModeTableIdx : uint8_t {
|
||||
MGM_0_A = 0,
|
||||
MGM_1_A = 1,
|
||||
MGM_2_B = 2,
|
||||
MGM_3_B = 3,
|
||||
GYRO_0_A = 4,
|
||||
GYRO_1_A = 5,
|
||||
GYRO_2_B = 6,
|
||||
GYRO_3_B = 7,
|
||||
GPS = 8
|
||||
};
|
||||
|
||||
class PowerSwitchIF;
|
||||
class GpioIF;
|
||||
|
||||
/**
|
||||
* @brief Assembly class which manages redundant ACS board sides
|
||||
* @details
|
||||
* This class takes care of ensuring that enough devices on the ACS board are available at all
|
||||
* times. It does so by doing autonomous transitions to the redundant side or activating both sides
|
||||
* if not enough devices are available.
|
||||
*
|
||||
* This class also takes care of switching on the A side and/or B side power lanes. Normally,
|
||||
* doing this task would be performed by the device handlers, but this is not possible for the
|
||||
* ACS board where multiple sensors share the same power supply.
|
||||
*/
|
||||
class AcsBoardAssembly : public DualLaneAssemblyBase {
|
||||
public:
|
||||
// Use these variables instead of magic numbers when generator was updated
|
||||
// TRANSITION_OTHER_SIDE_FAILED_ID
|
||||
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID
|
||||
// POWER_STATE_MACHINE_TIMEOUT_ID
|
||||
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
|
||||
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS;
|
||||
static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
|
||||
event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
|
||||
static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE =
|
||||
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
|
||||
static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
|
||||
event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
|
||||
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
|
||||
//! should instead command the assembly off first and then command the assembly on into the
|
||||
//! desired mode/submode combination
|
||||
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
|
||||
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
|
||||
|
||||
static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9;
|
||||
|
||||
AcsBoardAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, AcsBoardHelper helper,
|
||||
GpioIF* gpioIF);
|
||||
|
||||
/**
|
||||
* In dual mode, the A side or the B side GPS device can be used, but not both.
|
||||
* This function can be used to switch the used GPS device.
|
||||
* @param side
|
||||
*/
|
||||
void selectGpsInDualMode(duallane::Submodes side);
|
||||
|
||||
private:
|
||||
static constexpr power::Switches SWITCH_A = power::Switches::PDU1_CH7_ACS_A_SIDE_3V3;
|
||||
static constexpr power::Switches SWITCH_B = power::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3;
|
||||
|
||||
AcsBoardHelper helper;
|
||||
GpioIF* gpioIF = nullptr;
|
||||
|
||||
FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable;
|
||||
void gpioHandler(gpioId_t gpio, bool high, std::string error);
|
||||
|
||||
ReturnValue_t initialize() override;
|
||||
|
||||
// AssemblyBase overrides
|
||||
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
|
||||
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
|
||||
|
||||
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
|
||||
ReturnValue_t checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode);
|
||||
void refreshHelperModes();
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */
|
@ -1,17 +0,0 @@
|
||||
#include "AcsSubsystem.h"
|
||||
|
||||
#include <fsfw/events/EventManagerIF.h>
|
||||
#include <fsfw/ipc/QueueFactory.h>
|
||||
|
||||
#include "fsfw/modes/ModeMessage.h"
|
||||
#include "mission/acsDefs.h"
|
||||
|
||||
AcsSubsystem::AcsSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences,
|
||||
uint32_t maxNumberOfTables)
|
||||
: Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables) {}
|
||||
|
||||
void AcsSubsystem::announceMode(bool recursive) {
|
||||
const char* modeStr = acs::getModeStr(static_cast<acs::AcsMode>(mode));
|
||||
sif::info << "ACS subsystem is now in " << modeStr << " mode" << std::endl;
|
||||
return Subsystem::announceMode(recursive);
|
||||
}
|
@ -1,14 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_ACSSUBSYSTEM_H_
|
||||
#define MISSION_SYSTEM_ACSSUBSYSTEM_H_
|
||||
|
||||
#include <fsfw/subsystem/Subsystem.h>
|
||||
|
||||
class AcsSubsystem : public Subsystem {
|
||||
public:
|
||||
AcsSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables);
|
||||
|
||||
private:
|
||||
void announceMode(bool recursive) override;
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_ACSSUBSYSTEM_H_ */
|
@ -2,18 +2,9 @@ target_sources(
|
||||
${LIB_EIVE_MISSION}
|
||||
PRIVATE EiveSystem.cpp
|
||||
CamSwitcher.cpp
|
||||
AcsSubsystem.cpp
|
||||
ComSubsystem.cpp
|
||||
TcsSubsystem.cpp
|
||||
PayloadSubsystem.cpp
|
||||
AcsBoardAssembly.cpp
|
||||
ImtqAssembly.cpp
|
||||
SyrlinksAssembly.cpp
|
||||
Stack5VHandler.cpp
|
||||
SusAssembly.cpp
|
||||
RwAssembly.cpp
|
||||
DualLanePowerStateMachine.cpp
|
||||
StrAssembly.cpp
|
||||
PowerStateMachineBase.cpp
|
||||
DualLaneAssemblyBase.cpp
|
||||
TcsBoardAssembly.cpp)
|
||||
|
@ -1,230 +0,0 @@
|
||||
#include "ComSubsystem.h"
|
||||
|
||||
#include <fsfw/events/Event.h>
|
||||
#include <fsfw/events/EventManagerIF.h>
|
||||
#include <fsfw/ipc/MutexGuard.h>
|
||||
#include <fsfw/ipc/QueueFactory.h>
|
||||
#include <fsfw/serviceinterface/ServiceInterface.h>
|
||||
#include <linux/ipcore/PdecHandler.h>
|
||||
#include <mission/comDefs.h>
|
||||
#include <mission/config/comCfg.h>
|
||||
#include <mission/controller/controllerdefinitions/tcsCtrlDefs.h>
|
||||
|
||||
#include <utility>
|
||||
|
||||
ComSubsystem::ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences,
|
||||
uint32_t maxNumberOfTables, uint32_t transmitterTimeout)
|
||||
: Subsystem(setObjectId, maxNumberOfSequences, maxNumberOfTables), paramHelper(this) {
|
||||
com::setCurrentDatarate(com::Datarate::LOW_RATE_MODULATION_BPSK);
|
||||
auto mqArgs = MqArgs(setObjectId, static_cast<void *>(this));
|
||||
eventQueue =
|
||||
QueueFactory::instance()->createMessageQueue(10, EventMessage::EVENT_MESSAGE_SIZE, &mqArgs);
|
||||
transmitterCountdown.setTimeout(transmitterTimeout);
|
||||
}
|
||||
|
||||
void ComSubsystem::performChildOperation() {
|
||||
Subsystem::performChildOperation();
|
||||
readEventQueue();
|
||||
if (performRecoveryToRxOnly and not isInTransition) {
|
||||
startRxOnlyRecovery(true);
|
||||
// To avoid immediately enabling TX after falling back.
|
||||
rememberBitLock = false;
|
||||
}
|
||||
// Execute default rate sequence after transition has been completed
|
||||
if (rememberBitLock and not isInTransition) {
|
||||
startRxAndTxLowRateSeq();
|
||||
rememberBitLock = false;
|
||||
}
|
||||
if (countdownActive) {
|
||||
checkTransmitterCountdown();
|
||||
}
|
||||
}
|
||||
|
||||
MessageQueueId_t ComSubsystem::getCommandQueue() const { return Subsystem::getCommandQueue(); }
|
||||
|
||||
ReturnValue_t ComSubsystem::getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
|
||||
ParameterWrapper *parameterWrapper,
|
||||
const ParameterWrapper *newValues, uint16_t startAtIndex) {
|
||||
if ((domainId == 0) and (uniqueIdentifier == static_cast<uint8_t>(com::ParameterId::DATARATE))) {
|
||||
uint8_t newVal = 0;
|
||||
ReturnValue_t result = newValues->getElement(&newVal);
|
||||
if (result != returnvalue::OK) {
|
||||
return result;
|
||||
}
|
||||
if (newVal >= static_cast<uint8_t>(com::Datarate::NUM_DATARATES)) {
|
||||
return HasParametersIF::INVALID_VALUE;
|
||||
}
|
||||
parameterWrapper->set(datarateCfg);
|
||||
com::setCurrentDatarate(static_cast<com::Datarate>(newVal));
|
||||
return returnvalue::OK;
|
||||
} else if ((domainId == 0) and
|
||||
(uniqueIdentifier == static_cast<uint8_t>(com::ParameterId::TRANSMITTER_TIMEOUT))) {
|
||||
uint32_t newVal = 0;
|
||||
ReturnValue_t result = newValues->getElement(&newVal);
|
||||
if (result != returnvalue::OK) {
|
||||
return result;
|
||||
}
|
||||
parameterWrapper->set(transmitterTimeout);
|
||||
transmitterTimeout = newVal;
|
||||
transmitterCountdown.setTimeout(transmitterTimeout);
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t ComSubsystem::handleCommandMessage(CommandMessage *message) {
|
||||
ReturnValue_t result = paramHelper.handleParameterMessage(message);
|
||||
if (result == returnvalue::OK) {
|
||||
return result;
|
||||
}
|
||||
return Subsystem::handleCommandMessage(message);
|
||||
}
|
||||
|
||||
ReturnValue_t ComSubsystem::initialize() {
|
||||
ReturnValue_t result = paramHelper.initialize();
|
||||
if (result != returnvalue::OK) {
|
||||
return result;
|
||||
}
|
||||
EventManagerIF *manager = ObjectManager::instance()->get<EventManagerIF>(objects::EVENT_MANAGER);
|
||||
if (manager == nullptr) {
|
||||
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
||||
sif::error << "ComSubsystem::initialize: Invalid event manager" << std::endl;
|
||||
#endif
|
||||
return ObjectManagerIF::CHILD_INIT_FAILED;
|
||||
}
|
||||
result = manager->registerListener(eventQueue->getId());
|
||||
if (result != returnvalue::OK) {
|
||||
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
||||
sif::warning << "ComSubsystem::initialize: Failed to register Com Subsystem as event "
|
||||
"listener"
|
||||
<< std::endl;
|
||||
#endif
|
||||
}
|
||||
result = manager->subscribeToEvent(eventQueue->getId(),
|
||||
event::getEventId(tcsCtrl::SYRLINKS_OVERHEATING));
|
||||
if (result != returnvalue::OK) {
|
||||
return ObjectManager::CHILD_INIT_FAILED;
|
||||
}
|
||||
result = manager->subscribeToEventRange(eventQueue->getId(),
|
||||
event::getEventId(PdecHandler::CARRIER_LOCK),
|
||||
event::getEventId(PdecHandler::BIT_LOCK_PDEC));
|
||||
if (result != returnvalue::OK) {
|
||||
#if FSFW_CPP_OSTREAM_ENABLED == 1
|
||||
sif::error << "ComSubsystem::initialize: Failed to subscribe to events from PDEC "
|
||||
"handler"
|
||||
<< std::endl;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
return Subsystem::initialize();
|
||||
}
|
||||
|
||||
void ComSubsystem::startTransition(Mode_t mode, Submode_t submode) {
|
||||
// Depending on the submode the transmitter timeout is enabled or
|
||||
// disabled here
|
||||
if (mode == com::Submode::RX_ONLY) {
|
||||
transmitterCountdown.timeOut();
|
||||
countdownActive = false;
|
||||
} else if (isTxMode(mode)) {
|
||||
// Only start transmitter countdown if transmitter is not already on
|
||||
if (not isTxMode(this->mode)) {
|
||||
transmitterCountdown.resetTimer();
|
||||
countdownActive = true;
|
||||
}
|
||||
}
|
||||
Subsystem::startTransition(mode, submode);
|
||||
}
|
||||
|
||||
void ComSubsystem::readEventQueue() {
|
||||
EventMessage event;
|
||||
for (ReturnValue_t result = eventQueue->receiveMessage(&event); result == returnvalue::OK;
|
||||
result = eventQueue->receiveMessage(&event)) {
|
||||
switch (event.getMessageId()) {
|
||||
case EventMessage::EVENT_MESSAGE:
|
||||
handleEventMessage(&event);
|
||||
break;
|
||||
default:
|
||||
sif::debug << "CcsdsHandler::checkEvents: Did not subscribe to this event message"
|
||||
<< std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ComSubsystem::handleEventMessage(EventMessage *eventMessage) {
|
||||
Event event = eventMessage->getEvent();
|
||||
switch (event) {
|
||||
case tcsCtrl::SYRLINKS_OVERHEATING: {
|
||||
// This event overrides the bit lock.
|
||||
rememberBitLock = false;
|
||||
if (mode == com::RX_ONLY) {
|
||||
return;
|
||||
}
|
||||
if (isInTransition) {
|
||||
performRecoveryToRxOnly = true;
|
||||
return;
|
||||
}
|
||||
startRxOnlyRecovery(true);
|
||||
break;
|
||||
}
|
||||
case PdecHandler::BIT_LOCK_PDEC: {
|
||||
handleBitLockEvent();
|
||||
break;
|
||||
}
|
||||
case PdecHandler::CARRIER_LOCK: {
|
||||
handleCarrierLockEvent();
|
||||
break;
|
||||
}
|
||||
default:
|
||||
sif::debug << "ComSubsystem::handleEvent: Did not subscribe to this event" << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ComSubsystem::handleBitLockEvent() {
|
||||
if (isTxMode(mode)) {
|
||||
// Tx already on
|
||||
return;
|
||||
}
|
||||
if (isInTransition) {
|
||||
rememberBitLock = true;
|
||||
return;
|
||||
}
|
||||
triggerEvent(BIT_LOCK_TX_ON);
|
||||
startRxAndTxLowRateSeq();
|
||||
}
|
||||
|
||||
void ComSubsystem::handleCarrierLockEvent() {
|
||||
if (!enableTxWhenCarrierLock) {
|
||||
return;
|
||||
}
|
||||
startRxAndTxLowRateSeq();
|
||||
}
|
||||
|
||||
void ComSubsystem::startRxAndTxLowRateSeq() {
|
||||
// Turns transmitter on
|
||||
startTransition(com::Submode::RX_AND_TX_LOW_DATARATE, SUBMODE_NONE);
|
||||
}
|
||||
|
||||
void ComSubsystem::checkTransmitterCountdown() {
|
||||
if (transmitterCountdown.hasTimedOut()) {
|
||||
triggerEvent(TX_TIMER_EXPIRED, transmitterTimeout);
|
||||
startTransition(com::Submode::RX_ONLY, SUBMODE_NONE);
|
||||
countdownActive = false;
|
||||
}
|
||||
}
|
||||
|
||||
void ComSubsystem::startRxOnlyRecovery(bool forced) {
|
||||
modeHelper.setForced(forced);
|
||||
startTransition(com::RX_ONLY, 0);
|
||||
performRecoveryToRxOnly = false;
|
||||
}
|
||||
|
||||
bool ComSubsystem::isTxMode(Mode_t mode) {
|
||||
if ((mode == com::Submode::RX_AND_TX_DEFAULT_DATARATE) ||
|
||||
(mode == com::Submode::RX_AND_TX_LOW_DATARATE) ||
|
||||
(mode == com::Submode::RX_AND_TX_HIGH_DATARATE)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
@ -1,92 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_COMSUBSYSTEM_H_
|
||||
#define MISSION_SYSTEM_COMSUBSYSTEM_H_
|
||||
|
||||
#include <common/config/eive/eventSubsystemIds.h>
|
||||
#include <fsfw/events/EventMessage.h>
|
||||
#include <fsfw/parameters/HasParametersIF.h>
|
||||
#include <fsfw/parameters/ParameterHelper.h>
|
||||
#include <fsfw/subsystem/Subsystem.h>
|
||||
|
||||
#include "mission/comDefs.h"
|
||||
|
||||
class ComSubsystem : public Subsystem, public ReceivesParameterMessagesIF {
|
||||
public:
|
||||
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::COM_SUBSYSTEM;
|
||||
|
||||
//! [EXPORT] : [COMMENT] The transmit timer to protect the Syrlinks expired
|
||||
//! P1: The current timer value
|
||||
static const Event TX_TIMER_EXPIRED = MAKE_EVENT(1, severity::INFO);
|
||||
//! [EXPORT] : [COMMENT] Transmitter will be turned on due to detection of bitlock
|
||||
static const Event BIT_LOCK_TX_ON = MAKE_EVENT(2, severity::INFO);
|
||||
|
||||
/**
|
||||
* @brief Constructor
|
||||
*
|
||||
* @param setObjectId
|
||||
* @param maxNumberOfSequences
|
||||
* @param maxNumberOfTables
|
||||
* @param transmitterTimeout Maximum time the transmitter of the syrlinks
|
||||
* will
|
||||
* be enabled
|
||||
*/
|
||||
ComSubsystem(object_id_t setObjectId, uint32_t maxNumberOfSequences, uint32_t maxNumberOfTables,
|
||||
uint32_t transmitterTimeout);
|
||||
virtual ~ComSubsystem() = default;
|
||||
|
||||
MessageQueueId_t getCommandQueue() const override;
|
||||
ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueIdentifier,
|
||||
ParameterWrapper *parameterWrapper, const ParameterWrapper *newValues,
|
||||
uint16_t startAtIndex) override;
|
||||
virtual void performChildOperation() override;
|
||||
|
||||
private:
|
||||
static const Mode_t INITIAL_MODE = 0;
|
||||
|
||||
ReturnValue_t handleCommandMessage(CommandMessage *message) override;
|
||||
|
||||
ReturnValue_t initialize() override;
|
||||
|
||||
void startTransition(Mode_t mode, Submode_t submode) override;
|
||||
|
||||
void readEventQueue();
|
||||
void handleEventMessage(EventMessage *eventMessage);
|
||||
void handleBitLockEvent();
|
||||
void handleCarrierLockEvent();
|
||||
void checkTransmitterCountdown();
|
||||
/**
|
||||
* @brief Enables transmitter in low rate mode
|
||||
*/
|
||||
void startRxAndTxLowRateSeq();
|
||||
void startRxOnlyRecovery(bool forced);
|
||||
|
||||
/**
|
||||
* @brief Returns true if mode is a mode where the transmitter is on
|
||||
*/
|
||||
bool isTxMode(Mode_t mode);
|
||||
|
||||
uint8_t datarateCfg = static_cast<uint8_t>(com::Datarate::LOW_RATE_MODULATION_BPSK);
|
||||
|
||||
// Maximum time after which the transmitter will be turned of. This is a
|
||||
// protection mechanism due prevent the syrlinks from overheating
|
||||
uint32_t transmitterTimeout = 0;
|
||||
ParameterHelper paramHelper;
|
||||
|
||||
MessageQueueIF *eventQueue = nullptr;
|
||||
|
||||
bool enableTxWhenCarrierLock = false;
|
||||
bool performRecoveryToRxOnly = false;
|
||||
|
||||
// Countdown will be started as soon as the transmitter was enabled
|
||||
Countdown transmitterCountdown;
|
||||
|
||||
// Transmitter countdown only active when sysrlinks transmitter is on (modes:
|
||||
// rx and tx low rate, rx and tx high rate, rx and tx default rate)
|
||||
bool countdownActive = false;
|
||||
|
||||
// True when bit lock occurred while COM subsystem is in a transition. This
|
||||
// variable is used to remember the bit lock and execute the default rate
|
||||
// sequence after the active transition has been completed
|
||||
bool rememberBitLock = false;
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_COMSUBSYSTEM_H_ */
|
@ -1,260 +0,0 @@
|
||||
#include "DualLaneAssemblyBase.h"
|
||||
|
||||
#include <fsfw/ipc/QueueFactory.h>
|
||||
|
||||
#include "OBSWConfig.h"
|
||||
|
||||
DualLaneAssemblyBase::DualLaneAssemblyBase(object_id_t objectId, PowerSwitchIF* pwrSwitcher,
|
||||
power::Switches switch1, power::Switches switch2,
|
||||
Event pwrTimeoutEvent, Event sideSwitchNotAllowedEvent,
|
||||
Event transitionOtherSideFailedEvent)
|
||||
: AssemblyBase(objectId, 20),
|
||||
pwrStateMachine(switch1, switch2, pwrSwitcher),
|
||||
pwrTimeoutEvent(pwrTimeoutEvent),
|
||||
sideSwitchNotAllowedEvent(sideSwitchNotAllowedEvent),
|
||||
transitionOtherSideFailedEvent(transitionOtherSideFailedEvent) {
|
||||
eventQueue = QueueFactory::instance()->createMessageQueue(10);
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::performChildOperation() {
|
||||
using namespace duallane;
|
||||
if (pwrStateMachine.active()) {
|
||||
ReturnValue_t result = pwrStateMachineWrapper();
|
||||
if (result != returnvalue::OK) {
|
||||
handleModeTransitionFailed(result);
|
||||
}
|
||||
}
|
||||
// Only perform the regular child operation if the power state machine is not active.
|
||||
// It does not make any sense to command device modes while the power switcher is busy
|
||||
// switching off or on devices.
|
||||
if (not pwrStateMachine.active()) {
|
||||
AssemblyBase::performChildOperation();
|
||||
// TODO: Handle Event Queue
|
||||
}
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::startTransition(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
pwrStateMachine.reset();
|
||||
if (mode != MODE_OFF) {
|
||||
// Special exception: A transition from dual side to single mode must be handled like
|
||||
// going OFF.
|
||||
if ((this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) and
|
||||
this->submode == DUAL_MODE and submode != DUAL_MODE) {
|
||||
dualToSingleSideTransition = true;
|
||||
AssemblyBase::startTransition(mode, submode);
|
||||
return;
|
||||
}
|
||||
// If anything other than MODE_OFF is commanded, perform power state machine first
|
||||
// Cache the target modes, required by power state machine
|
||||
pwrStateMachine.start(mode, submode);
|
||||
// Cache these for later after the power state machine has finished
|
||||
targetMode = mode;
|
||||
targetSubmode = submode;
|
||||
} else {
|
||||
AssemblyBase::startTransition(mode, submode);
|
||||
}
|
||||
}
|
||||
|
||||
bool DualLaneAssemblyBase::isUseable(object_id_t object, Mode_t mode) {
|
||||
if (healthHelper.healthTable->isFaulty(object)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if device is already in target mode
|
||||
if (childrenMap[object].mode == mode) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (healthHelper.healthTable->isCommandable(object)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() {
|
||||
using namespace power;
|
||||
OpCodes opCode = pwrStateMachine.fsm();
|
||||
if (customRecoveryStates == RecoveryCustomStates::IDLE) {
|
||||
if (opCode == OpCodes::NONE) {
|
||||
return returnvalue::OK;
|
||||
} else if (opCode == OpCodes::TO_OFF_DONE) {
|
||||
// Will be called for transitions to MODE_OFF, where everything is done after power switching
|
||||
finishModeOp();
|
||||
} else if (opCode == OpCodes::TO_NOT_OFF_DONE) {
|
||||
if (dualToSingleSideTransition) {
|
||||
finishModeOp();
|
||||
} else {
|
||||
// Will be called for transitions from MODE_OFF to anything else, where the mode still has
|
||||
// to be commanded after power switching
|
||||
AssemblyBase::startTransition(targetMode, targetSubmode);
|
||||
}
|
||||
} else if (opCode == OpCodes::TIMEOUT_OCCURED) {
|
||||
if (powerRetryCounter == 0) {
|
||||
powerRetryCounter++;
|
||||
pwrStateMachine.reset();
|
||||
} else {
|
||||
#if OBSW_VERBOSE_LEVEL >= 1
|
||||
sif::warning << "Timeout occured in power state machine" << std::endl;
|
||||
#endif
|
||||
triggerEvent(pwrTimeoutEvent, 0, 0);
|
||||
return returnvalue::FAILED;
|
||||
}
|
||||
}
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t DualLaneAssemblyBase::isModeCombinationValid(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) {
|
||||
return returnvalue::FAILED;
|
||||
}
|
||||
if (sideSwitchTransition(mode, submode)) {
|
||||
// I could implement this but this would increase the already high complexity. This is not
|
||||
// necessary. The operator should can send a command to switch the assembly off first and
|
||||
// then send a command to turn on the other side, either to ON or to NORMAL
|
||||
triggerEvent(SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID, 0, 0);
|
||||
return TRANS_NOT_ALLOWED;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::handleModeReached() {
|
||||
using namespace duallane;
|
||||
if (targetMode == MODE_OFF) {
|
||||
pwrStateMachine.start(targetMode, targetSubmode);
|
||||
// Now we can switch off the power. After that, the AssemblyBase::handleModeReached function
|
||||
// will be called
|
||||
// Ignore failures for now.
|
||||
pwrStateMachineWrapper();
|
||||
} else {
|
||||
// For dual to single side transition, devices should be logically off, but the switch
|
||||
// handling still needs to be done.
|
||||
if (dualToSingleSideTransition) {
|
||||
pwrStateMachine.start(targetMode, targetSubmode);
|
||||
pwrStateMachineWrapper();
|
||||
return;
|
||||
}
|
||||
finishModeOp();
|
||||
}
|
||||
}
|
||||
|
||||
MessageQueueId_t DualLaneAssemblyBase::getEventReceptionQueue() { return eventQueue->getId(); }
|
||||
|
||||
void DualLaneAssemblyBase::handleChildrenLostMode(ReturnValue_t result) {
|
||||
using namespace duallane;
|
||||
// Some ACS board components are required for Safe-Mode. It would be good if the software
|
||||
// transitions from A side to B side and from B side to dual mode autonomously
|
||||
// to ensure that that enough sensors are available without an operators intervention.
|
||||
// Therefore, the lost mode handler was overwritten to start these transitions
|
||||
Submode_t nextSubmode = Submodes::A_SIDE;
|
||||
if (submode == Submodes::A_SIDE) {
|
||||
nextSubmode = Submodes::B_SIDE;
|
||||
}
|
||||
if (not tryingOtherSide) {
|
||||
triggerEvent(CANT_KEEP_MODE, mode, submode);
|
||||
startTransition(mode, nextSubmode);
|
||||
tryingOtherSide = true;
|
||||
} else {
|
||||
// Not sure when this would happen. This flag is reset if the mode was reached. If it
|
||||
// was not reached, the transition failure handler should be called.
|
||||
sif::error << "DualLaneAssemblyBase::handleChildrenLostMode: Wrong handler called" << std::endl;
|
||||
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
|
||||
startTransition(mode, Submodes::DUAL_MODE);
|
||||
}
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::handleModeTransitionFailed(ReturnValue_t result) {
|
||||
using namespace duallane;
|
||||
Submode_t nextSubmode = Submodes::A_SIDE;
|
||||
if (submode == Submodes::A_SIDE) {
|
||||
nextSubmode = Submodes::B_SIDE;
|
||||
}
|
||||
// Check whether the transition was started because the mode could not be kept (not commanded).
|
||||
// If this is not the case, start transition to other side. If it is the case, start
|
||||
// transition to dual mode.
|
||||
if (not tryingOtherSide) {
|
||||
triggerEvent(CANT_KEEP_MODE, mode, submode);
|
||||
startTransition(mode, nextSubmode);
|
||||
tryingOtherSide = true;
|
||||
} else {
|
||||
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
|
||||
startTransition(mode, Submodes::DUAL_MODE);
|
||||
}
|
||||
}
|
||||
|
||||
bool DualLaneAssemblyBase::checkAndHandleRecovery() {
|
||||
using namespace power;
|
||||
OpCodes opCode = OpCodes::NONE;
|
||||
if (recoveryState == RECOVERY_IDLE) {
|
||||
return AssemblyBase::checkAndHandleRecovery();
|
||||
}
|
||||
if (customRecoveryStates == IDLE) {
|
||||
pwrStateMachine.start(MODE_OFF, 0);
|
||||
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_OFF;
|
||||
}
|
||||
if (customRecoveryStates == POWER_SWITCHING_OFF) {
|
||||
opCode = pwrStateMachine.fsm();
|
||||
if (opCode == OpCodes::TO_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
|
||||
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_ON;
|
||||
pwrStateMachine.start(targetMode, targetSubmode);
|
||||
}
|
||||
}
|
||||
if (customRecoveryStates == POWER_SWITCHING_ON) {
|
||||
opCode = pwrStateMachine.fsm();
|
||||
if (opCode == OpCodes::TO_NOT_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
|
||||
customRecoveryStates = RecoveryCustomStates::DONE;
|
||||
}
|
||||
}
|
||||
if (customRecoveryStates == DONE) {
|
||||
bool pendingRecovery = AssemblyBase::checkAndHandleRecovery();
|
||||
if (not pendingRecovery) {
|
||||
pwrStateMachine.reset();
|
||||
customRecoveryStates = RecoveryCustomStates::IDLE;
|
||||
}
|
||||
// For a recovery on one side, only do the recovery once
|
||||
for (auto& child : childrenMap) {
|
||||
if (healthHelper.healthTable->getHealth(child.first) == HasHealthIF::NEEDS_RECOVERY) {
|
||||
sendHealthCommand(child.second.commandQueue, HEALTHY);
|
||||
child.second.healthChanged = false;
|
||||
}
|
||||
}
|
||||
return pendingRecovery;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DualLaneAssemblyBase::sideSwitchTransition(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
if (this->mode == MODE_OFF) {
|
||||
return false;
|
||||
}
|
||||
if (this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) {
|
||||
if (this->submode == Submodes::A_SIDE and submode == Submodes::B_SIDE) {
|
||||
return true;
|
||||
} else if (this->submode == Submodes::B_SIDE and submode == Submodes::A_SIDE) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::finishModeOp() {
|
||||
using namespace duallane;
|
||||
AssemblyBase::handleModeReached();
|
||||
pwrStateMachine.reset();
|
||||
powerRetryCounter = 0;
|
||||
tryingOtherSide = false;
|
||||
dualToSingleSideTransition = false;
|
||||
dualModeErrorSwitch = true;
|
||||
}
|
||||
|
||||
void DualLaneAssemblyBase::setPreferredSide(duallane::Submodes submode) {
|
||||
using namespace duallane;
|
||||
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
|
||||
return;
|
||||
}
|
||||
this->defaultSubmode = submode;
|
||||
}
|
@ -1,103 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_
|
||||
#define MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_
|
||||
|
||||
#include <fsfw/devicehandlers/AssemblyBase.h>
|
||||
#include <mission/system/objects/DualLanePowerStateMachine.h>
|
||||
|
||||
/**
|
||||
* @brief Encapsulates assemblies which are also responsible for dual lane power switching
|
||||
* @details
|
||||
* This is the base class for both the ACS board and the SUS board. Both boards have redundant
|
||||
* power lanes and are required for the majority of satellite modes. Therefore, there is a lot
|
||||
* of common code, for example the power switching.
|
||||
*/
|
||||
class DualLaneAssemblyBase : public AssemblyBase, public ConfirmsFailuresIF {
|
||||
public:
|
||||
static constexpr UniqueEventId_t TRANSITION_OTHER_SIDE_FAILED_ID = 0;
|
||||
static constexpr UniqueEventId_t NOT_ENOUGH_DEVICES_DUAL_MODE_ID = 1;
|
||||
static constexpr UniqueEventId_t POWER_STATE_MACHINE_TIMEOUT_ID = 2;
|
||||
static constexpr UniqueEventId_t SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID = 3;
|
||||
|
||||
DualLaneAssemblyBase(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switches switch1,
|
||||
power::Switches switch2, Event pwrSwitchTimeoutEvent,
|
||||
Event sideSwitchNotAllowedEvent, Event transitionOtherSideFailedEvent);
|
||||
|
||||
protected:
|
||||
// This helper object complete encapsulates power switching
|
||||
DualLanePowerStateMachine pwrStateMachine;
|
||||
Event pwrTimeoutEvent;
|
||||
Event sideSwitchNotAllowedEvent;
|
||||
Event transitionOtherSideFailedEvent;
|
||||
uint8_t powerRetryCounter = 0;
|
||||
bool tryingOtherSide = false;
|
||||
bool dualModeErrorSwitch = true;
|
||||
bool dualToSingleSideTransition = false;
|
||||
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
|
||||
|
||||
enum RecoveryCustomStates {
|
||||
IDLE,
|
||||
POWER_SWITCHING_OFF,
|
||||
POWER_SWITCHING_ON,
|
||||
DONE
|
||||
} customRecoveryStates = RecoveryCustomStates::IDLE;
|
||||
|
||||
MessageQueueIF* eventQueue = nullptr;
|
||||
|
||||
/**
|
||||
* Check whether it makes sense to send mode commands to the device
|
||||
* @param object
|
||||
* @param mode
|
||||
* @return
|
||||
*/
|
||||
bool isUseable(object_id_t object, Mode_t mode);
|
||||
|
||||
/**
|
||||
* Thin wrapper function which is required because the helper class
|
||||
* can not access protected member functions.
|
||||
* @param mode
|
||||
* @param submode
|
||||
*/
|
||||
virtual ReturnValue_t pwrStateMachineWrapper();
|
||||
virtual ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
|
||||
/**
|
||||
* Custom recovery implementation to ensure that the power lines are commanded off for a
|
||||
* recovery.
|
||||
* @return
|
||||
*/
|
||||
virtual bool checkAndHandleRecovery() override;
|
||||
void setPreferredSide(duallane::Submodes submode);
|
||||
virtual void performChildOperation() override;
|
||||
virtual void startTransition(Mode_t mode, Submode_t submode) override;
|
||||
virtual void handleChildrenLostMode(ReturnValue_t result) override;
|
||||
virtual void handleModeTransitionFailed(ReturnValue_t result) override;
|
||||
virtual void handleModeReached() override;
|
||||
ReturnValue_t checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode);
|
||||
|
||||
MessageQueueId_t getEventReceptionQueue() override;
|
||||
|
||||
bool sideSwitchTransition(Mode_t mode, Submode_t submode);
|
||||
|
||||
/**
|
||||
* Implemented by user. Will be called if a full mode operation has finished.
|
||||
* This includes both the regular mode state machine operations and the power state machine
|
||||
* operations
|
||||
*/
|
||||
virtual void finishModeOp();
|
||||
|
||||
template <size_t MAX_SIZE>
|
||||
void initModeTableEntry(object_id_t id, ModeListEntry& entry,
|
||||
FixedArrayList<ModeListEntry, MAX_SIZE>& modeTable);
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
template <size_t MAX_SIZE>
|
||||
inline void DualLaneAssemblyBase::initModeTableEntry(
|
||||
object_id_t id, ModeListEntry& entry, FixedArrayList<ModeListEntry, MAX_SIZE>& modeTable) {
|
||||
entry.setObject(id);
|
||||
entry.setMode(MODE_OFF);
|
||||
entry.setSubmode(SUBMODE_NONE);
|
||||
modeTable.insert(entry);
|
||||
}
|
||||
|
||||
#endif /* MISSION_SYSTEM_DUALLANEASSEMBLYBASE_H_ */
|
@ -1,111 +0,0 @@
|
||||
#include "DualLanePowerStateMachine.h"
|
||||
|
||||
#include <fsfw/devicehandlers/AssemblyBase.h>
|
||||
#include <fsfw/power/PowerSwitchIF.h>
|
||||
|
||||
DualLanePowerStateMachine::DualLanePowerStateMachine(power::Switch_t switchA,
|
||||
power::Switch_t switchB,
|
||||
PowerSwitchIF* pwrSwitcher,
|
||||
dur_millis_t checkTimeout)
|
||||
: PowerStateMachineBase(pwrSwitcher, checkTimeout), SWITCH_A(switchA), SWITCH_B(switchB) {}
|
||||
|
||||
power::OpCodes DualLanePowerStateMachine::fsm() {
|
||||
using namespace duallane;
|
||||
ReturnValue_t switchStateA = returnvalue::OK;
|
||||
ReturnValue_t switchStateB = returnvalue::OK;
|
||||
if (state == power::States::IDLE or state == power::States::MODE_COMMANDING) {
|
||||
return opResult;
|
||||
}
|
||||
if (state == power::States::SWITCHING_POWER or state == power::States::CHECKING_POWER) {
|
||||
switchStateA = pwrSwitcher->getSwitchState(SWITCH_A);
|
||||
switchStateB = pwrSwitcher->getSwitchState(SWITCH_B);
|
||||
} else {
|
||||
return opResult;
|
||||
}
|
||||
if (targetMode == HasModesIF::MODE_OFF) {
|
||||
if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) {
|
||||
state = power::States::IDLE;
|
||||
opResult = power::OpCodes::TO_OFF_DONE;
|
||||
return opResult;
|
||||
}
|
||||
} else {
|
||||
switch (targetSubmode) {
|
||||
case (A_SIDE): {
|
||||
if (switchStateA == PowerSwitchIF::SWITCH_ON and
|
||||
switchStateB == PowerSwitchIF::SWITCH_OFF) {
|
||||
state = power::States::MODE_COMMANDING;
|
||||
opResult = power::OpCodes::TO_NOT_OFF_DONE;
|
||||
return opResult;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (B_SIDE): {
|
||||
if (switchStateA == PowerSwitchIF::SWITCH_OFF and
|
||||
switchStateB == PowerSwitchIF::SWITCH_ON) {
|
||||
state = power::States::MODE_COMMANDING;
|
||||
opResult = power::OpCodes::TO_NOT_OFF_DONE;
|
||||
return opResult;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (DUAL_MODE): {
|
||||
if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) {
|
||||
state = power::States::MODE_COMMANDING;
|
||||
opResult = power::OpCodes::TO_NOT_OFF_DONE;
|
||||
return opResult;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (state == power::States::SWITCHING_POWER) {
|
||||
if (targetMode == HasModesIF::MODE_OFF) {
|
||||
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
|
||||
}
|
||||
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
|
||||
}
|
||||
checkTimeout.resetTimer();
|
||||
} else {
|
||||
switch (targetSubmode) {
|
||||
case (A_SIDE): {
|
||||
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
|
||||
}
|
||||
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
|
||||
}
|
||||
checkTimeout.resetTimer();
|
||||
break;
|
||||
}
|
||||
case (B_SIDE): {
|
||||
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
|
||||
}
|
||||
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
|
||||
}
|
||||
checkTimeout.resetTimer();
|
||||
break;
|
||||
}
|
||||
case (DUAL_MODE): {
|
||||
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
|
||||
}
|
||||
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
|
||||
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
|
||||
}
|
||||
checkTimeout.resetTimer();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
state = power::States::CHECKING_POWER;
|
||||
}
|
||||
if (state == power::States::CHECKING_POWER) {
|
||||
if (checkTimeout.hasTimedOut()) {
|
||||
return power::OpCodes::TIMEOUT_OCCURED;
|
||||
}
|
||||
}
|
||||
return opResult;
|
||||
}
|
@ -1,25 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
|
||||
#define MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
|
||||
|
||||
#include <devices/powerSwitcherList.h>
|
||||
#include <fsfw/modes/HasModesIF.h>
|
||||
#include <mission/system/objects/PowerStateMachineBase.h>
|
||||
|
||||
#include "definitions.h"
|
||||
|
||||
class AssemblyBase;
|
||||
class PowerSwitchIF;
|
||||
|
||||
class DualLanePowerStateMachine : public PowerStateMachineBase {
|
||||
public:
|
||||
DualLanePowerStateMachine(power::Switch_t switchA, power::Switch_t switchB,
|
||||
PowerSwitchIF* pwrSwitcher, dur_millis_t checkTimeout = 5000);
|
||||
power::OpCodes fsm() override;
|
||||
|
||||
const power::Switch_t SWITCH_A;
|
||||
const power::Switch_t SWITCH_B;
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_ */
|
@ -3,7 +3,8 @@
|
||||
#include <eive/objects.h>
|
||||
#include <fsfw/events/EventManager.h>
|
||||
#include <fsfw/ipc/QueueFactory.h>
|
||||
#include <mission/acsDefs.h>
|
||||
|
||||
#include <mission/acs/defs.h>
|
||||
#include <mission/comDefs.h>
|
||||
#include <mission/controller/controllerdefinitions/tcsCtrlDefs.h>
|
||||
|
||||
|
@ -1,54 +0,0 @@
|
||||
#include "ImtqAssembly.h"
|
||||
|
||||
#include <eive/objects.h>
|
||||
|
||||
using namespace returnvalue;
|
||||
|
||||
ImtqAssembly::ImtqAssembly(object_id_t objectId) : AssemblyBase(objectId) {
|
||||
ModeListEntry entry;
|
||||
entry.setObject(objects::IMTQ_HANDLER);
|
||||
entry.setMode(MODE_OFF);
|
||||
entry.setSubmode(SUBMODE_NONE);
|
||||
commandTable.insert(entry);
|
||||
}
|
||||
|
||||
ReturnValue_t ImtqAssembly::commandChildren(Mode_t mode, Submode_t submode) {
|
||||
commandTable[0].setMode(mode);
|
||||
commandTable[0].setSubmode(submode);
|
||||
if (recoveryState == RECOVERY_IDLE) {
|
||||
ReturnValue_t result = checkAndHandleHealthState(mode, submode);
|
||||
if (result == NEED_TO_CHANGE_HEALTH) {
|
||||
return OK;
|
||||
}
|
||||
}
|
||||
HybridIterator<ModeListEntry> iter(commandTable.begin(), commandTable.end());
|
||||
executeTable(iter);
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t ImtqAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
|
||||
if (childrenMap[objects::IMTQ_HANDLER].mode != wantedMode) {
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t ImtqAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
|
||||
if (mode == MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_OFF) {
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return returnvalue::FAILED;
|
||||
}
|
||||
|
||||
ReturnValue_t ImtqAssembly::checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode) {
|
||||
HealthState health = healthHelper.healthTable->getHealth(objects::IMTQ_HANDLER);
|
||||
if (health == FAULTY or health == PERMANENT_FAULTY) {
|
||||
overwriteDeviceHealth(objects::IMTQ_HANDLER, health);
|
||||
return NEED_TO_CHANGE_HEALTH;
|
||||
} else if (health == EXTERNAL_CONTROL) {
|
||||
modeHelper.setForced(true);
|
||||
}
|
||||
return OK;
|
||||
}
|
||||
|
||||
void ImtqAssembly::handleChildrenLostMode(ReturnValue_t result) { startTransition(mode, submode); }
|
@ -1,18 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <fsfw/devicehandlers/AssemblyBase.h>
|
||||
|
||||
class ImtqAssembly : public AssemblyBase {
|
||||
public:
|
||||
ImtqAssembly(object_id_t objectId);
|
||||
|
||||
private:
|
||||
FixedArrayList<ModeListEntry, 1> commandTable;
|
||||
|
||||
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
|
||||
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
|
||||
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
|
||||
void handleChildrenLostMode(ReturnValue_t result) override;
|
||||
|
||||
ReturnValue_t checkAndHandleHealthState(Mode_t deviceMode, Submode_t deviceSubmode);
|
||||
};
|
@ -5,7 +5,7 @@
|
||||
#include <fsfw/power/PowerSwitchIF.h>
|
||||
#include <fsfw/timemanager/Countdown.h>
|
||||
|
||||
#include "definitions.h"
|
||||
#include "mission/powerDefs.h"
|
||||
|
||||
class PowerStateMachineBase {
|
||||
public:
|
||||
|
@ -1,186 +0,0 @@
|
||||
#include "RwAssembly.h"
|
||||
|
||||
RwAssembly::RwAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switch_t switcher,
|
||||
RwHelper helper)
|
||||
: AssemblyBase(objectId), helper(helper), switcher(pwrSwitcher, switcher) {
|
||||
ModeListEntry entry;
|
||||
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
|
||||
entry.setObject(helper.rwIds[idx]);
|
||||
entry.setMode(MODE_OFF);
|
||||
entry.setSubmode(SUBMODE_NONE);
|
||||
modeTable.insert(entry);
|
||||
}
|
||||
}
|
||||
|
||||
void RwAssembly::performChildOperation() {
|
||||
auto state = switcher.getState();
|
||||
if (state != PowerSwitcher::WAIT_OFF and state != PowerSwitcher::WAIT_ON) {
|
||||
AssemblyBase::performChildOperation();
|
||||
return;
|
||||
}
|
||||
switcher.doStateMachine();
|
||||
if (state == PowerSwitcher::WAIT_OFF and switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) {
|
||||
// Indicator that a transition to off is finished
|
||||
AssemblyBase::handleModeReached();
|
||||
} else if (state == PowerSwitcher::WAIT_ON and
|
||||
switcher.getState() == PowerSwitcher::SWITCH_IS_ON) {
|
||||
// Indicator that mode commanding can be performed now
|
||||
AssemblyBase::startTransition(targetMode, targetSubmode);
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t RwAssembly::commandChildren(Mode_t mode, Submode_t submode) {
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
modeTransitionFailedSwitch = true;
|
||||
// Initialize the mode table to ensure all devices are in a defined state
|
||||
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
|
||||
modeTable[idx].setMode(MODE_OFF);
|
||||
modeTable[idx].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
|
||||
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
|
||||
result = handleNormalOrOnModeCmd(mode, submode);
|
||||
}
|
||||
}
|
||||
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
|
||||
executeTable(tableIter);
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t RwAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
|
||||
int devsInCorrectMode = 0;
|
||||
try {
|
||||
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
|
||||
if (childrenMap.at(helper.rwIds[idx]).mode == wantedMode) {
|
||||
devsInCorrectMode++;
|
||||
}
|
||||
}
|
||||
} catch (const std::out_of_range& e) {
|
||||
sif::error << "RwAssembly: Invalid children map: " << e.what() << std::endl;
|
||||
}
|
||||
if (devsInCorrectMode < 3) {
|
||||
if (warningSwitch) {
|
||||
sif::warning << "RwAssembly::checkChildrenStateOn: Only " << devsInCorrectMode
|
||||
<< " devices in correct mode" << std::endl;
|
||||
warningSwitch = false;
|
||||
}
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t RwAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
|
||||
if (mode == MODE_ON or mode == MODE_OFF or mode == DeviceHandlerIF::MODE_NORMAL) {
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return HasModesIF::INVALID_MODE;
|
||||
}
|
||||
|
||||
void RwAssembly::startTransition(Mode_t mode, Submode_t submode) {
|
||||
if (mode != MODE_OFF) {
|
||||
switcher.turnOn(true);
|
||||
switcher.doStateMachine();
|
||||
if (switcher.getState() == PowerSwitcher::SWITCH_IS_ON) {
|
||||
AssemblyBase::startTransition(mode, submode);
|
||||
} else {
|
||||
// Need to wait with mode commanding until power switcher is done
|
||||
targetMode = mode;
|
||||
targetSubmode = submode;
|
||||
}
|
||||
} else {
|
||||
// Perform regular mode commanding first
|
||||
AssemblyBase::startTransition(mode, submode);
|
||||
}
|
||||
}
|
||||
|
||||
void RwAssembly::handleModeReached() {
|
||||
if (targetMode == MODE_OFF) {
|
||||
switcher.turnOff(true);
|
||||
switcher.doStateMachine();
|
||||
// Need to wait with call to AssemblyBase::handleModeReached until power switcher is done
|
||||
if (switcher.getState() == PowerSwitcher::SWITCH_IS_OFF) {
|
||||
AssemblyBase::handleModeReached();
|
||||
}
|
||||
} else {
|
||||
AssemblyBase::handleModeReached();
|
||||
}
|
||||
}
|
||||
|
||||
void RwAssembly::handleChildrenLostMode(ReturnValue_t result) {
|
||||
AssemblyBase::handleChildrenLostMode(result);
|
||||
}
|
||||
|
||||
ReturnValue_t RwAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
bool needsSecondStep = false;
|
||||
Mode_t devMode = 0;
|
||||
object_id_t objId = 0;
|
||||
try {
|
||||
for (uint8_t idx = 0; idx < NUMBER_RWS; idx++) {
|
||||
devMode = childrenMap.at(helper.rwIds[idx]).mode;
|
||||
objId = helper.rwIds[idx];
|
||||
if (mode == devMode) {
|
||||
modeTable[idx].setMode(mode);
|
||||
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
|
||||
if (isUseable(objId, devMode)) {
|
||||
if (devMode == MODE_ON) {
|
||||
modeTable[idx].setMode(mode);
|
||||
modeTable[idx].setSubmode(SUBMODE_NONE);
|
||||
} else {
|
||||
modeTable[idx].setMode(MODE_ON);
|
||||
modeTable[idx].setSubmode(SUBMODE_NONE);
|
||||
if (internalState != STATE_SECOND_STEP) {
|
||||
needsSecondStep = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == MODE_ON) {
|
||||
if (isUseable(objId, devMode)) {
|
||||
modeTable[idx].setMode(MODE_ON);
|
||||
modeTable[idx].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (const std::out_of_range& e) {
|
||||
sif::error << "TcsBoardAssembly: Invalid children map: " << e.what() << std::endl;
|
||||
}
|
||||
if (needsSecondStep) {
|
||||
result = NEED_SECOND_STEP;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool RwAssembly::isUseable(object_id_t object, Mode_t mode) {
|
||||
if (healthHelper.healthTable->isFaulty(object)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if device is already in target mode
|
||||
if (childrenMap[object].mode == mode) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (healthHelper.healthTable->isCommandable(object)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ReturnValue_t RwAssembly::initialize() {
|
||||
for (auto objId : helper.rwIds) {
|
||||
updateChildModeByObjId(objId, MODE_OFF, SUBMODE_NONE);
|
||||
}
|
||||
return AssemblyBase::initialize();
|
||||
}
|
||||
|
||||
void RwAssembly::handleModeTransitionFailed(ReturnValue_t result) {
|
||||
if (targetMode == MODE_OFF) {
|
||||
AssemblyBase::handleModeTransitionFailed(result);
|
||||
} else {
|
||||
if (modeTransitionFailedSwitch) {
|
||||
// To avoid transitioning back to off
|
||||
triggerEvent(MODE_TRANSITION_FAILED, result);
|
||||
modeTransitionFailedSwitch = false;
|
||||
}
|
||||
}
|
||||
}
|
@ -1,51 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_RWASS_H_
|
||||
#define MISSION_SYSTEM_RWASS_H_
|
||||
|
||||
#include <fsfw/devicehandlers/AssemblyBase.h>
|
||||
#include <fsfw/power/PowerSwitcher.h>
|
||||
|
||||
struct RwHelper {
|
||||
RwHelper(std::array<object_id_t, 4> rwIds) : rwIds(rwIds) {}
|
||||
|
||||
std::array<object_id_t, 4> rwIds = {};
|
||||
};
|
||||
|
||||
class RwAssembly : public AssemblyBase {
|
||||
public:
|
||||
RwAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, power::Switch_t switcher,
|
||||
RwHelper helper);
|
||||
|
||||
private:
|
||||
static constexpr uint8_t NUMBER_RWS = 4;
|
||||
RwHelper helper;
|
||||
PowerSwitcher switcher;
|
||||
bool warningSwitch = true;
|
||||
bool modeTransitionFailedSwitch = true;
|
||||
FixedArrayList<ModeListEntry, NUMBER_RWS> modeTable;
|
||||
|
||||
ReturnValue_t initialize() override;
|
||||
|
||||
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
|
||||
/**
|
||||
* Check whether it makes sense to send mode commands to the device
|
||||
* @param object
|
||||
* @param mode
|
||||
* @return
|
||||
*/
|
||||
bool isUseable(object_id_t object, Mode_t mode);
|
||||
|
||||
// AssemblyBase implementation
|
||||
void performChildOperation() override;
|
||||
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
|
||||
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
|
||||
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
|
||||
void startTransition(Mode_t mode, Submode_t submode) override;
|
||||
void handleModeReached() override;
|
||||
|
||||
// These two overrides prevent a transition of the whole assembly back to off just because
|
||||
// some devices are not working
|
||||
void handleChildrenLostMode(ReturnValue_t result) override;
|
||||
void handleModeTransitionFailed(ReturnValue_t result) override;
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_RWASS_H_ */
|
@ -1,176 +0,0 @@
|
||||
#include "SusAssembly.h"
|
||||
|
||||
#include <devices/powerSwitcherList.h>
|
||||
#include <fsfw/power/PowerSwitchIF.h>
|
||||
#include <fsfw/serviceinterface.h>
|
||||
|
||||
SusAssembly::SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper)
|
||||
: DualLaneAssemblyBase(objectId, pwrSwitcher, SWITCH_NOM, SWITCH_RED,
|
||||
POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
|
||||
TRANSITION_OTHER_SIDE_FAILED),
|
||||
helper(helper),
|
||||
pwrSwitcher(pwrSwitcher) {
|
||||
ModeListEntry entry;
|
||||
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
|
||||
initModeTableEntry(helper.susIds[idx], entry, modeTable);
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
refreshHelperModes();
|
||||
// Initialize the mode table to ensure all devices are in a defined state
|
||||
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
|
||||
modeTable[idx].setMode(MODE_OFF);
|
||||
modeTable[idx].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
if (recoveryState == RecoveryState::RECOVERY_IDLE) {
|
||||
result = checkAndHandleHealthStates(mode, submode);
|
||||
if (result == NEED_TO_CHANGE_HEALTH) {
|
||||
return returnvalue::OK;
|
||||
}
|
||||
}
|
||||
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
|
||||
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
|
||||
result = handleNormalOrOnModeCmd(mode, submode);
|
||||
}
|
||||
}
|
||||
|
||||
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
|
||||
executeTable(tableIter);
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
|
||||
using namespace duallane;
|
||||
ReturnValue_t result = returnvalue::OK;
|
||||
bool needsSecondStep = false;
|
||||
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) {
|
||||
if (mode == devMode) {
|
||||
modeTable[tableIdx].setMode(mode);
|
||||
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
|
||||
if (isUseable(objectId, devMode)) {
|
||||
if (devMode == MODE_ON) {
|
||||
modeTable[tableIdx].setMode(mode);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
} else {
|
||||
modeTable[tableIdx].setMode(MODE_ON);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
if (internalState != STATE_SECOND_STEP) {
|
||||
needsSecondStep = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == MODE_ON) {
|
||||
if (isUseable(objectId, devMode)) {
|
||||
modeTable[tableIdx].setMode(MODE_ON);
|
||||
modeTable[tableIdx].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
}
|
||||
};
|
||||
switch (submode) {
|
||||
case (A_SIDE): {
|
||||
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
|
||||
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
|
||||
// Switch off devices on redundant side
|
||||
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
|
||||
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (B_SIDE): {
|
||||
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
|
||||
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
|
||||
// Switch devices on nominal side
|
||||
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
|
||||
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case (DUAL_MODE): {
|
||||
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
|
||||
cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (needsSecondStep) {
|
||||
result = NEED_SECOND_STEP;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
|
||||
using namespace duallane;
|
||||
refreshHelperModes();
|
||||
if (wantedSubmode == A_SIDE) {
|
||||
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
|
||||
if (helper.susModes[idx] != wantedMode) {
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
}
|
||||
return returnvalue::OK;
|
||||
} else if (wantedSubmode == B_SIDE) {
|
||||
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
|
||||
if (helper.susModes[idx] != wantedMode) {
|
||||
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
|
||||
}
|
||||
}
|
||||
return returnvalue::OK;
|
||||
} else {
|
||||
// Trigger event if devices are faulty? This is the last fallback mode, returning
|
||||
// a failure here would trigger a transition to MODE_OFF unless handleModeTransitionFailed
|
||||
// is overriden
|
||||
return returnvalue::OK;
|
||||
}
|
||||
return returnvalue::OK;
|
||||
}
|
||||
|
||||
ReturnValue_t SusAssembly::initialize() {
|
||||
for (const auto& child : childrenMap) {
|
||||
updateChildModeByObjId(child.first, MODE_OFF, 0);
|
||||
}
|
||||
return AssemblyBase::initialize();
|
||||
}
|
||||
|
||||
bool SusAssembly::isUseable(object_id_t object, Mode_t mode) {
|
||||
if (healthHelper.healthTable->isFaulty(object)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if device is already in target mode
|
||||
if (childrenMap[object].mode == mode) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (healthHelper.healthTable->isCommandable(object)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void SusAssembly::refreshHelperModes() {
|
||||
for (uint8_t idx = 0; idx < helper.susModes.size(); idx++) {
|
||||
helper.susModes[idx] = childrenMap[helper.susIds[idx]].mode;
|
||||
}
|
||||
}
|
||||
|
||||
ReturnValue_t SusAssembly::checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode) {
|
||||
using namespace returnvalue;
|
||||
ReturnValue_t status = returnvalue::OK;
|
||||
auto overwriteHealthForOneDev = [&](object_id_t dev) {
|
||||
HealthState health = healthHelper.healthTable->getHealth(dev);
|
||||
if (health == FAULTY or health == PERMANENT_FAULTY) {
|
||||
overwriteDeviceHealth(dev, health);
|
||||
status = NEED_TO_CHANGE_HEALTH;
|
||||
} else if (health == EXTERNAL_CONTROL) {
|
||||
modeHelper.setForced(true);
|
||||
}
|
||||
};
|
||||
if (deviceSubmode == duallane::DUAL_MODE) {
|
||||
for (uint8_t idx = 0; idx < 12; idx++) {
|
||||
overwriteHealthForOneDev(helper.susIds[idx]);
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
@ -1,72 +0,0 @@
|
||||
#ifndef MISSION_SYSTEM_SUSASSEMBLY_H_
|
||||
#define MISSION_SYSTEM_SUSASSEMBLY_H_
|
||||
|
||||
#include <devices/powerSwitcherList.h>
|
||||
#include <fsfw/devicehandlers/AssemblyBase.h>
|
||||
|
||||
#include "DualLaneAssemblyBase.h"
|
||||
#include "events/subsystemIdRanges.h"
|
||||
#include "returnvalues/classIds.h"
|
||||
|
||||
struct SusAssHelper {
|
||||
public:
|
||||
SusAssHelper(std::array<object_id_t, 12> susIds) : susIds(susIds) {}
|
||||
std::array<object_id_t, 12> susIds = {objects::NO_OBJECT};
|
||||
std::array<Mode_t, 12> susModes = {HasModesIF::MODE_OFF};
|
||||
};
|
||||
|
||||
class PowerSwitchIF;
|
||||
|
||||
class SusAssembly : public DualLaneAssemblyBase {
|
||||
public:
|
||||
static constexpr uint8_t NUMBER_SUN_SENSORS_ONE_SIDE = 6;
|
||||
static constexpr uint8_t NUMBER_SUN_SENSORS = 12;
|
||||
|
||||
// Use these variables instead of magic numbers when generator was updated
|
||||
// TRANSITION_OTHER_SIDE_FAILED_ID
|
||||
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID
|
||||
// POWER_STATE_MACHINE_TIMEOUT_ID
|
||||
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
|
||||
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SUS_BOARD_ASS;
|
||||
static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
|
||||
event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
|
||||
static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE =
|
||||
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
|
||||
static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
|
||||
event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
|
||||
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
|
||||
//! should instead command the assembly off first and then command the assembly on into the
|
||||
//! desired mode/submode combination
|
||||
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
|
||||
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
|
||||
|
||||
SusAssembly(object_id_t objectId, PowerSwitchIF* pwrSwitcher, SusAssHelper helper);
|
||||
|
||||
private:
|
||||
enum class States { IDLE, SWITCHING_POWER, MODE_COMMANDING } state = States::IDLE;
|
||||
static constexpr power::Switches SWITCH_NOM = power::Switches::PDU1_CH4_SUS_NOMINAL_3V3;
|
||||
static constexpr power::Switches SWITCH_RED = power::Switches::PDU2_CH4_SUS_REDUNDANT_3V3;
|
||||
FixedArrayList<ModeListEntry, NUMBER_SUN_SENSORS> modeTable;
|
||||
|
||||
SusAssHelper helper;
|
||||
PowerSwitchIF* pwrSwitcher = nullptr;
|
||||
ReturnValue_t initialize() override;
|
||||
|
||||
// AssemblyBase overrides
|
||||
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
|
||||
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
|
||||
|
||||
/**
|
||||
* Check whether it makes sense to send mode commands to the device
|
||||
* @param object
|
||||
* @param mode
|
||||
* @return
|
||||
*/
|
||||
bool isUseable(object_id_t object, Mode_t mode);
|
||||
void powerStateMachine(Mode_t mode, Submode_t submode);
|
||||
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
|
||||
void refreshHelperModes();
|
||||
ReturnValue_t checkAndHandleHealthStates(Mode_t deviceMode, Submode_t deviceSubmode);
|
||||
};
|
||||
|
||||
#endif /* MISSION_SYSTEM_SUSASSEMBLY_H_ */
|
@ -1,16 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <fsfw/modes/ModeMessage.h>
|
||||
|
||||
namespace power {
|
||||
|
||||
enum class States { IDLE, SWITCHING_POWER, CHECKING_POWER, MODE_COMMANDING };
|
||||
enum class OpCodes { NONE, TO_OFF_DONE, TO_NOT_OFF_DONE, TIMEOUT_OCCURED };
|
||||
|
||||
} // namespace power
|
||||
|
||||
namespace duallane {
|
||||
|
||||
enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 };
|
||||
|
||||
} // namespace duallane
|
Reference in New Issue
Block a user