Merge remote-tracking branch 'origin/develop' into mueller/master

This commit is contained in:
Robin Müller 2021-02-22 12:59:05 +01:00 committed by Robin Mueller
commit fd5e1ee544
18 changed files with 685 additions and 37 deletions

View File

@ -15,6 +15,8 @@
#include <mission/devices/PCDUHandler.h>
#include <mission/devices/P60DockHandler.h>
#include <mission/devices/Tmp1075Handler.h>
#include <mission/devices/HeaterHandler.h>
#include <mission/devices/SolarArrayDeploymentHandler.h>
#include <mission/devices/devicedefinitions/GomSpacePackets.h>
#include <mission/devices/devicedefinitions/GomspaceDefinitions.h>
#include <mission/utility/TmFunnel.h>
@ -114,46 +116,59 @@ void ObjectFactory::produce(){
i2cCookieTmp1075tcs2);
tmp1075Handler_2->setStartUpImmediately();
GpioCookie* gpioCookie = new GpioCookie;
GpioCookie* heaterGpiosCookie = new GpioCookie;
new LinuxLibgpioIF(objects::GPIO_IF);
#if TE0720 == 0
/* Pin H2-11 on stack connector */
GpioConfig_t gpioConfigHeater0(std::string("gpiochip7"), 18,
std::string("Heater0"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_0, gpioConfigHeater0);
heaterGpiosCookie->addGpio(gpioIds::HEATER_0, gpioConfigHeater0);
/* Pin H2-12 on stack connector */
GpioConfig_t gpioConfigHeater1(std::string("gpiochip7"), 14,
std::string("Heater1"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_1, gpioConfigHeater1);
heaterGpiosCookie->addGpio(gpioIds::HEATER_1, gpioConfigHeater1);
/* Pin H2-13 on stack connector */
GpioConfig_t gpioConfigHeater2(std::string("gpiochip7"), 20,
std::string("Heater2"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_2, gpioConfigHeater2);
heaterGpiosCookie->addGpio(gpioIds::HEATER_2, gpioConfigHeater2);
GpioConfig_t gpioConfigHeater3(std::string("gpiochip7"), 16,
std::string("Heater3"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_3, gpioConfigHeater3);
heaterGpiosCookie->addGpio(gpioIds::HEATER_3, gpioConfigHeater3);
GpioConfig_t gpioConfigHeater4(std::string("gpiochip7"), 24,
std::string("Heater4"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_4, gpioConfigHeater4);
heaterGpiosCookie->addGpio(gpioIds::HEATER_4, gpioConfigHeater4);
GpioConfig_t gpioConfigHeater5(std::string("gpiochip7"), 26,
std::string("Heater5"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_5, gpioConfigHeater5);
heaterGpiosCookie->addGpio(gpioIds::HEATER_5, gpioConfigHeater5);
GpioConfig_t gpioConfigHeater6(std::string("gpiochip7"), 22,
std::string("Heater6"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_6, gpioConfigHeater6);
heaterGpiosCookie->addGpio(gpioIds::HEATER_6, gpioConfigHeater6);
GpioConfig_t gpioConfigHeater7(std::string("gpiochip7"), 28,
std::string("Heater7"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_7, gpioConfigHeater7);
heaterGpiosCookie->addGpio(gpioIds::HEATER_7, gpioConfigHeater7);
new HeaterHandler(objects::HEATER_HANDLER, objects::GPIO_IF, gpioCookie, objects::PCDU_HANDLER,
new HeaterHandler(objects::HEATER_HANDLER, objects::GPIO_IF, heaterGpiosCookie, objects::PCDU_HANDLER,
pcduSwitches::TCS_BOARD_8V_HEATER_IN);
GpioCookie* solarArrayDeplCookie = new GpioCookie;
GpioConfig_t gpioConfigDeplSA1(std::string("gpiochip7"), 25,
std::string("DeplSA1"), gpio::OUT, 0);
solarArrayDeplCookie->addGpio(gpioIds::DEPLSA1, gpioConfigDeplSA1);
GpioConfig_t gpioConfigDeplSA2(std::string("gpiochip7"), 23,
std::string("DeplSA2"), gpio::OUT, 0);
solarArrayDeplCookie->addGpio(gpioIds::DEPLSA2, gpioConfigDeplSA2);
//TODO: Find out burn time. For now set to 1000 ms.
new SolarArrayDeploymentHandler(objects::SOLAR_ARRAY_DEPL_HANDLER, objects::GPIO_IF,
solarArrayDeplCookie, objects::PCDU_HANDLER, pcduSwitches::DEPLOYMENT_MECHANISM,
gpioIds::DEPLSA1, gpioIds::DEPLSA2, 1000);
#endif
new TmTcUnixUdpBridge(objects::UDP_BRIDGE,
@ -165,14 +180,15 @@ void ObjectFactory::produce(){
/* Configure MIO0 as input */
GpioConfig_t gpioConfigMio0(std::string("gpiochip0"), 0,
std::string("MIO0"), gpio::IN, 0);
GpioCookie* gpioCookie = new GpioCookie;
gpioCookie->addGpio(gpioIds::Test_ID, gpioConfigMio0);
new LibgpiodTest(objects::LIBGPIOD_TEST, objects::GPIO_IF, gpioCookie);
#elif TE0720 == 1
/* Configuration for MIO0 on TE0720-03-1CFA */
GpioConfig_t gpioConfigForDummyHeater(std::string("gpiochip0"), 0,
std::string("Heater0"), gpio::OUT, 0);
gpioCookie->addGpio(gpioIds::HEATER_0, gpioConfigForDummyHeater);
new HeaterHandler(objects::HEATER_HANDLER, objects::GPIO_IF, gpioCookie, objects::PCDU_HANDLER,
heaterGpiosCookie->addGpio(gpioIds::HEATER_0, gpioConfigForDummyHeater);
new HeaterHandler(objects::HEATER_HANDLER, objects::GPIO_IF, heaterGpiosCookie, objects::PCDU_HANDLER,
pcduSwitches::TCS_BOARD_8V_HEATER_IN);
#endif
}

View File

@ -5,7 +5,6 @@
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/action/HasActionsIF.h>
#include <fsfw/modes/HasModesIF.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfwconfig/devices/heaterSwitcherList.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
@ -52,7 +51,7 @@ public:
private:
static const uint8_t INTERFACE_ID = CLASS_ID::PCDU_HANDLER;
static const uint8_t INTERFACE_ID = CLASS_ID::HEATER_HANDLER;
static const ReturnValue_t COMMAND_NOT_SUPPORTED = MAKE_RETURN_CODE(0xA1);
static const ReturnValue_t INIT_FAILED = MAKE_RETURN_CODE(0xA2);
@ -60,7 +59,7 @@ private:
static const ReturnValue_t MAIN_SWITCH_SET_TIMEOUT = MAKE_RETURN_CODE(0xA4);
static const ReturnValue_t COMMAND_ALREADY_WAITING = MAKE_RETURN_CODE(0xA5);
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PCDU_HANDLER;
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::HEATER_HANDLER;
static const Event GPIO_PULL_HIGH_FAILED = MAKE_EVENT(0, severity::LOW);
static const Event GPIO_PULL_LOW_FAILED = MAKE_EVENT(1, severity::LOW);
static const Event SWITCH_ALREADY_ON = MAKE_EVENT(2, severity::LOW);
@ -139,9 +138,6 @@ private:
void readCommandQueue();
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen);
/**
* @brief Returns the state of a switch (ON - true, or OFF - false).
* @param switchNr The number of the switch to check.

View File

@ -19,9 +19,10 @@ debugging. */
#define TE0720 0
#define P60DOCK_DEBUG 0
#define PDU1_DEBUG 0
#define PDU2_DEBUG 0
#define P60DOCK_DEBUG 0
#define PDU1_DEBUG 0
#define PDU2_DEBUG 0
#define ACU_DEBUG 1
#ifdef __cplusplus

View File

@ -13,6 +13,8 @@ namespace gpioIds {
HEATER_5,
HEATER_6,
HEATER_7,
DEPLSA1,
DEPLSA2,
Test_ID
};
}

View File

@ -19,7 +19,9 @@ enum: uint8_t {
PUS_SERVICE_23,
MGM_LIS3MDL,
MGM_RM3100,
PCDU_HANDLER
PCDU_HANDLER,
HEATER_HANDLER,
SA_DEPL_HANDLER
};
}

View File

@ -43,10 +43,11 @@ namespace objects {
TMP1075_HANDLER_2 = 0x44000006,
/* Custom device handler */
PCDU_HANDLER = 0x45000001,
PCDU_HANDLER = 0x44000007,
SOLAR_ARRAY_DEPL_HANDLER = 0x44000008,
/* 0x54 ('T') for thermal objects */
HEATER_HANDLER = 0x54000001,
HEATER_HANDLER = 0x54000003,
/* 0x54 ('T') for test handlers */
TEST_TASK = 0x54694269,

View File

@ -15,6 +15,8 @@ ReturnValue_t pst::pollingSequenceInitDefault(FixedTimeslotTaskIF *thisSequence)
thisSequence->addSlot(objects::TMP1075_HANDLER_2, length * 0,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::HEATER_HANDLER, length * 0, DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::SOLAR_ARRAY_DEPL_HANDLER, length * 0,
DeviceHandlerIF::PERFORM_OPERATION);
thisSequence->addSlot(objects::TMP1075_HANDLER_1, length * 0.2, DeviceHandlerIF::SEND_WRITE);
thisSequence->addSlot(objects::TMP1075_HANDLER_2, length * 0.2, DeviceHandlerIF::SEND_WRITE);

View File

@ -14,7 +14,9 @@ enum {
MGM_LIS3MDL,
MGM_RM3100,
LINUX_LIBGPIO_IF,
PCDU_HANDLER
PCDU_HANDLER,
HEATER_HANDLER,
SA_DEPL_HANDLER
};
}

View File

@ -214,6 +214,7 @@ ReturnValue_t CspComIF::cspTransfer(uint8_t cspAddress, uint8_t cspPort,
if(expectedSize != 0){
sif::error << "CspComIF::cspTransfer: Received more bytes than requested" << std::endl;
sif::debug << "CspComIF::cspTransfer: Received bytes: " << bytesRead << std::endl;
csp_close(conn);
return RETURN_FAILED;
}

View File

@ -41,7 +41,7 @@ public:
virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0;
/**
* @brief This function requires a child to implement the functionaliy to read the state of
* @brief This function requires a child to implement the functionality to read the state of
* an ouput or input gpio.
*
* @param gpioId A unique number which specifies the GPIO to read.

View File

@ -1,14 +1,268 @@
#include "ACUHandler.h"
#include "OBSWConfig.h"
ACUHandler::ACUHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie) :
GomspaceDeviceHandler(objectId, comIF, comCookie, ACU::MAX_CONFIGTABLE_ADDRESS,
ACU::MAX_HKTABLE_ADDRESS, ACU::HK_TABLE_SIZE, &acuHkTableDataset), acuHkTableDataset(
ACU::MAX_HKTABLE_ADDRESS, ACU::HK_TABLE_REPLY_SIZE, &acuHkTableDataset), acuHkTableDataset(
this) {
}
ACUHandler::~ACUHandler() {
}
ReturnValue_t ACUHandler::buildNormalDeviceCommand(
DeviceCommandId_t * id) {
*id = GOMSPACE::REQUEST_HK_TABLE;
return buildCommandFromCommand(*id, NULL, 0);
}
void ACUHandler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {
parseHkTableReply(packet);
handleDeviceTM(&acuHkTableDataset, id, true);
#if OBSW_ENHANCED_PRINTOUT == 1 && ACU_DEBUG == 1
acuHkTableDataset.read();
float temperatureC_1 = acuHkTableDataset.temperature1.value * 0.1;
float temperatureC_2 = acuHkTableDataset.temperature2.value * 0.1;
float temperatureC_3 = acuHkTableDataset.temperature3.value * 0.1;
sif::info << "ACU: Temperature 1: " << temperatureC_1 << " °C" << std::endl;
sif::info << "ACU: Temperature 2: " << temperatureC_2 << " °C" << std::endl;
sif::info << "ACU: Temperature 3: " << temperatureC_3 << " °C" << std::endl;
sif::info << "ACU: Ground Watchdog Timer Count: "
<< acuHkTableDataset.wdtCntGnd.value << std::endl;
sif::info << "ACU: Ground watchdog timer, seconds left before reboot: "
<< acuHkTableDataset.wdtGndLeft.value << std::endl;
acuHkTableDataset.commit();
#endif
}
void ACUHandler::parseHkTableReply(const uint8_t *packet) {
uint16_t dataOffset = 0;
acuHkTableDataset.read();
dataOffset += 12;
acuHkTableDataset.currentInChannel0 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.currentInChannel1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.currentInChannel2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.currentInChannel3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.currentInChannel4 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.currentInChannel5 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel0 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel4 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.voltageInChannel5 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vcc = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vbat = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.temperature1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.temperature2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.temperature3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.mpptMode = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.vboostInChannel0 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vboostInChannel1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vboostInChannel2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vboostInChannel3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vboostInChannel4 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.vboostInChannel5 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel0 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel4 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.powerInChannel5 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dac0Enable = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.dac1Enable = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.dac2Enable = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.dacRawChannelVal0 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dacRawChannelVal1 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dacRawChannelVal2 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dacRawChannelVal3 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dacRawChannelVal4 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.dacRawChannelVal5 = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.bootCause = *(packet + dataOffset) << 24 | *(packet + dataOffset + 1) << 16 | *(packet + dataOffset + 2) << 8 | *(packet + dataOffset + 3);
dataOffset += 6;
acuHkTableDataset.bootcnt = *(packet + dataOffset) << 24 | *(packet + dataOffset + 1) << 16 | *(packet + dataOffset + 2) << 8 | *(packet + dataOffset + 3);
dataOffset += 6;
acuHkTableDataset.uptime = *(packet + dataOffset) << 24 | *(packet + dataOffset + 1) << 16 | *(packet + dataOffset + 2) << 8 | *(packet + dataOffset + 3);
dataOffset += 6;
acuHkTableDataset.resetCause = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.mpptTime = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
/* +12 because here starts the second csp packet */
dataOffset += 2 + 12;
acuHkTableDataset.mpptPeriod = *(packet + dataOffset) << 8 | *(packet + dataOffset + 1);
dataOffset += 4;
acuHkTableDataset.device0 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device1 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device2 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device3 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device4 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device5 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device6 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device7 = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device0Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device1Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device2Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device3Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device4Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device5Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device6Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.device7Status = *(packet + dataOffset);
dataOffset += 3;
acuHkTableDataset.wdtCntGnd = *(packet + dataOffset) << 24 | *(packet + dataOffset + 1) << 16 | *(packet + dataOffset + 2) << 8 | *(packet + dataOffset + 3);
dataOffset += 6;
acuHkTableDataset.wdtGndLeft = *(packet + dataOffset) << 24 | *(packet + dataOffset + 1) << 16 | *(packet + dataOffset + 2) << 8 | *(packet + dataOffset + 3);
dataOffset += 6;
acuHkTableDataset.commit();
}
ReturnValue_t ACUHandler::initializeLocalDataPool(
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL0, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL1, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL2, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL3, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL4, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_CURRENT_IN_CHANNEL5, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL0, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL1, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL2, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL3, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL4, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VOLTAGE_IN_CHANNEL5, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VCC, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBAT, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_TEMPERATURE_1, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_TEMPERATURE_2, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_TEMPERATURE_3, new PoolEntry<int16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_MPPT_MODE, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL0, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL1, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL2, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL3, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL4, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_VBOOST_CHANNEL5, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL0, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL1, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL2, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL3, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL4, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_POWER_CHANNEL5, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_EN_0, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_EN_1, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_EN_2, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_0, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_1, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_2, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_3, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_4, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DAC_RAW_5, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_BOOTCAUSE, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_BOOTCNT, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_UPTIME, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_RESET_CAUSE, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_MPPT_TIME, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_MPPT_PERIOD, new PoolEntry<uint16_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_0, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_1, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_2, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_3, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_4, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_5, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_6, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_7, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_0_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_1_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_2_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_3_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_4_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_5_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_6_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_DEVICE_7_STATUS, new PoolEntry<uint8_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_WDT_CNT_GND, new PoolEntry<uint32_t>( { 0 }));
localDataPoolMap.emplace(P60System::ACU_WDT_GND_LEFT, new PoolEntry<uint32_t>( { 0 }));
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -12,13 +12,28 @@ class ACUHandler: public GomspaceDeviceHandler {
public:
ACUHandler(object_id_t objectId, object_id_t comIF, CookieIF * comCookie);
virtual ~ACUHandler();
virtual ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
protected:
virtual void letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) override;
/**
* @brief As soon as the device is in MODE_NORMAL, this function is executed periodically.
*/
virtual ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t * id) override;
private:
ACU::HkTableDataset acuHkTableDataset;
/**
* @brief Function extracts the hk table information from the received csp packet and stores
* the values in the acuHkTableDataset.
*/
void parseHkTableReply(const uint8_t *packet);
};
#endif /* MISSION_DEVICES_ACUHANDLER_H_ */

View File

@ -10,6 +10,8 @@ target_sources(${TARGET_NAME} PUBLIC
PDU1Handler.cpp
PDU2Handler.cpp
ACUHandler.cpp
HeaterHandler.cpp
SolarArrayDeploymentHandler.cpp
)

View File

@ -206,6 +206,10 @@ void PCDUHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) const
memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_TCS_BOARD_HEATER_IN;
pdu = objectManager->get<GomspaceDeviceHandler>(objects::PDU2_HANDLER);
break;
case pcduSwitches::DEPLOYMENT_MECHANISM:
memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_DEPLOYMENT_MECHANISM;
pdu = objectManager->get<GomspaceDeviceHandler>(objects::PDU2_HANDLER);
break;
default:
sif::error << "PCDUHandler::sendSwitchCommand: Invalid switch number " << std::endl;
return;

View File

@ -15,7 +15,6 @@ ReturnValue_t PDU1Handler::buildNormalDeviceCommand(
DeviceCommandId_t * id) {
*id = GOMSPACE::REQUEST_HK_TABLE;
return buildCommandFromCommand(*id, NULL, 0);
return RETURN_OK;
}
void PDU1Handler::letChildHandleHkReply(DeviceCommandId_t id, const uint8_t *packet) {

View File

@ -0,0 +1,197 @@
#include <mission/devices/SolarArrayDeploymentHandler.h>
#include <fsfwconfig/devices/powerSwitcherList.h>
#include <fsfw/ipc/QueueFactory.h>
#include <devices/gpioIds.h>
SolarArrayDeploymentHandler::SolarArrayDeploymentHandler(object_id_t setObjectId_,
object_id_t gpioDriverId_, CookieIF * gpioCookie_, object_id_t mainLineSwitcherObjectId_,
uint8_t mainLineSwitch_, gpioId_t deplSA1, gpioId_t deplSA2, uint32_t burnTimeMs) :
SystemObject(setObjectId_), gpioDriverId(gpioDriverId_), gpioCookie(gpioCookie_), mainLineSwitcherObjectId(
mainLineSwitcherObjectId_), mainLineSwitch(mainLineSwitch_), deplSA1(deplSA1), deplSA2(
deplSA2), burnTimeMs(burnTimeMs), actionHelper(this, nullptr) {
commandQueue = QueueFactory::instance()->createMessageQueue(cmdQueueSize,
MessageQueueMessage::MAX_MESSAGE_SIZE);
}
SolarArrayDeploymentHandler::~SolarArrayDeploymentHandler() {
}
ReturnValue_t SolarArrayDeploymentHandler::performOperation(uint8_t operationCode) {
if (operationCode == DeviceHandlerIF::PERFORM_OPERATION) {
handleStateMachine();
return RETURN_OK;
}
return RETURN_OK;
}
ReturnValue_t SolarArrayDeploymentHandler::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
gpioInterface = objectManager->get<GpioIF>(gpioDriverId);
if (gpioInterface == nullptr) {
sif::error << "SolarArrayDeploymentHandler::initialize: Invalid Gpio interface."
<< std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
result = gpioInterface->initialize(gpioCookie);
if (result != RETURN_OK) {
sif::error << "SolarArrayDeploymentHandler::initialize: Failed to initialize Gpio interface"
<< std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
if (mainLineSwitcherObjectId != objects::NO_OBJECT) {
mainLineSwitcher = objectManager->get<PowerSwitchIF>(mainLineSwitcherObjectId);
if (mainLineSwitcher == nullptr) {
sif::error
<< "SolarArrayDeploymentHandler::initialize: Main line switcher failed to fetch object"
<< "from object ID." << std::endl;
return ObjectManagerIF::CHILD_INIT_FAILED;
}
}
result = actionHelper.initialize(commandQueue);
if (result != RETURN_OK) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
return RETURN_OK;
}
void SolarArrayDeploymentHandler::handleStateMachine() {
switch (stateMachine) {
case WAIT_ON_DELOYMENT_COMMAND:
readCommandQueue();
break;
case SWITCH_8V_ON:
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_ON);
mainSwitchCountdown.setTimeout(mainLineSwitcher->getSwitchDelayMs());
stateMachine = WAIT_ON_8V_SWITCH;
break;
case WAIT_ON_8V_SWITCH:
performWaitOn8VActions();
break;
case SWITCH_DEPL_GPIOS:
switchDeploymentTransistors();
break;
case WAIT_ON_DEPLOYMENT_FINISH:
handleDeploymentFinish();
break;
case WAIT_FOR_MAIN_SWITCH_OFF:
if (mainLineSwitcher->getSwitchState(mainLineSwitch) == PowerSwitchIF::SWITCH_OFF) {
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
} else if (mainSwitchCountdown.hasTimedOut()) {
triggerEvent(MAIN_SWITCH_OFF_TIMEOUT);
sif::error << "SolarArrayDeploymentHandler::handleStateMachine: Failed to switch main"
<< " switch off" << std::endl;
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
}
break;
default:
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Invalid state" << std::endl;
break;
}
}
void SolarArrayDeploymentHandler::performWaitOn8VActions() {
if (mainLineSwitcher->getSwitchState(mainLineSwitch) == PowerSwitchIF::SWITCH_ON) {
stateMachine = SWITCH_DEPL_GPIOS;
} else {
if (mainSwitchCountdown.hasTimedOut()) {
triggerEvent(MAIN_SWITCH_ON_TIMEOUT);
actionHelper.finish(rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
MAIN_SWITCH_TIMEOUT_FAILURE);
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
}
}
}
void SolarArrayDeploymentHandler::switchDeploymentTransistors() {
ReturnValue_t result = RETURN_OK;
result = gpioInterface->pullHigh(deplSA1);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 1 high " << std::endl;
/* If gpio switch high failed, state machine is reset to wait for a command reinitiating
* the deployment sequence. */
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
triggerEvent(DEPL_SA1_GPIO_SWTICH_ON_FAILED);
actionHelper.finish(rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
SWITCHING_DEPL_SA2_FAILED);
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
}
result = gpioInterface->pullHigh(deplSA2);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 2 high " << std::endl;
stateMachine = WAIT_ON_DELOYMENT_COMMAND;
triggerEvent(DEPL_SA2_GPIO_SWTICH_ON_FAILED);
actionHelper.finish(rememberCommanderId, DEPLOY_SOLAR_ARRAYS,
SWITCHING_DEPL_SA2_FAILED);
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
}
deploymentCountdown.setTimeout(burnTimeMs);
stateMachine = WAIT_ON_DEPLOYMENT_FINISH;
}
void SolarArrayDeploymentHandler::handleDeploymentFinish() {
ReturnValue_t result = RETURN_OK;
if (deploymentCountdown.hasTimedOut()) {
actionHelper.finish(rememberCommanderId, DEPLOY_SOLAR_ARRAYS, RETURN_OK);
result = gpioInterface->pullLow(deplSA1);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 1 low " << std::endl;
}
result = gpioInterface->pullLow(deplSA2);
if (result != RETURN_OK) {
sif::debug << "SolarArrayDeploymentHandler::handleStateMachine: Failed to pull solar"
" array deployment switch 2 low " << std::endl;
}
mainLineSwitcher->sendSwitchCommand(mainLineSwitch, PowerSwitchIF::SWITCH_OFF);
mainSwitchCountdown.setTimeout(mainLineSwitcher->getSwitchDelayMs());
stateMachine = WAIT_FOR_MAIN_SWITCH_OFF;
}
}
void SolarArrayDeploymentHandler::readCommandQueue() {
CommandMessage command;
ReturnValue_t result = commandQueue->receiveMessage(&command);
if (result != RETURN_OK) {
return;
}
result = actionHelper.handleActionMessage(&command);
if (result == RETURN_OK) {
return;
}
}
ReturnValue_t SolarArrayDeploymentHandler::executeAction(ActionId_t actionId,
MessageQueueId_t commandedBy, const uint8_t* data, size_t size) {
ReturnValue_t result;
if (stateMachine != WAIT_ON_DELOYMENT_COMMAND) {
sif::error << "SolarArrayDeploymentHandler::executeAction: Received command while not in"
<< "waiting-on-command-state" << std::endl;
return DEPLOYMENT_ALREADY_EXECUTING;
}
if (actionId != DEPLOY_SOLAR_ARRAYS) {
sif::error << "SolarArrayDeploymentHandler::executeAction: Received invalid command"
<< std::endl;
result = COMMAND_NOT_SUPPORTED;
} else {
stateMachine = SWITCH_8V_ON;
rememberCommanderId = commandedBy;
result = RETURN_OK;
}
return result;
}
MessageQueueId_t SolarArrayDeploymentHandler::getCommandQueue() const {
return commandQueue->getId();
}

View File

@ -0,0 +1,158 @@
#ifndef MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_
#define MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/action/HasActionsIF.h>
#include <fsfw/power/PowerSwitchIF.h>
#include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/timemanager/Countdown.h>
#include <linux/gpio/GpioIF.h>
#include <unordered_map>
/**
* @brief This class is used to control the solar array deployment.
*
* @author J. Meier
*/
class SolarArrayDeploymentHandler: public ExecutableObjectIF,
public SystemObject,
public HasReturnvaluesIF,
public HasActionsIF {
public:
static const DeviceCommandId_t DEPLOY_SOLAR_ARRAYS = 0x5;
/**
* @brief constructor
*
* @param setObjectId The object id of the SolarArrayDeploymentHandler.
* @param gpioDriverId The id of the gpio com if.
* @param gpioCookie GpioCookie holding information about the gpios used to switch the
* transistors.
* @param mainLineSwitcherObjectId The object id of the object responsible for switching
* the 8V power source. This is normally the PCDU.
* @param mainLineSwitch The id of the main line switch. This is defined in
* powerSwitcherList.h.
* @param deplSA1 gpioId of the GPIO controlling the deployment 1 transistor.
* @param deplSA2 gpioId of the GPIO controlling the deployment 2 transistor.
* @param burnTimeMs Time duration the power will be applied to the burn wires.
*/
SolarArrayDeploymentHandler(object_id_t setObjectId, object_id_t gpioDriverId,
CookieIF * gpioCookie, object_id_t mainLineSwitcherObjectId, uint8_t mainLineSwitch,
gpioId_t deplSA1, gpioId_t deplSA2, uint32_t burnTimeMs);
virtual ~SolarArrayDeploymentHandler();
virtual ReturnValue_t performOperation(uint8_t operationCode = 0) override;
virtual MessageQueueId_t getCommandQueue() const override;
virtual ReturnValue_t executeAction(ActionId_t actionId, MessageQueueId_t commandedBy,
const uint8_t* data, size_t size) override;
virtual ReturnValue_t initialize() override;
private:
static const uint8_t INTERFACE_ID = CLASS_ID::SA_DEPL_HANDLER;
static const ReturnValue_t COMMAND_NOT_SUPPORTED = MAKE_RETURN_CODE(0xA0);
static const ReturnValue_t DEPLOYMENT_ALREADY_EXECUTING = MAKE_RETURN_CODE(0xA1);
static const ReturnValue_t MAIN_SWITCH_TIMEOUT_FAILURE = MAKE_RETURN_CODE(0xA2);
static const ReturnValue_t SWITCHING_DEPL_SA1_FAILED = MAKE_RETURN_CODE(0xA3);
static const ReturnValue_t SWITCHING_DEPL_SA2_FAILED = MAKE_RETURN_CODE(0xA4);
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SA_DEPL_HANDLER;
static const Event MAIN_SWITCH_ON_TIMEOUT = MAKE_EVENT(0, severity::LOW);
static const Event MAIN_SWITCH_OFF_TIMEOUT = MAKE_EVENT(1, severity::LOW);
static const Event DEPLOYMENT_FAILED = MAKE_EVENT(2, severity::HIGH);
static const Event DEPL_SA1_GPIO_SWTICH_ON_FAILED = MAKE_EVENT(3, severity::HIGH);
static const Event DEPL_SA2_GPIO_SWTICH_ON_FAILED = MAKE_EVENT(4, severity::HIGH);
enum StateMachine {
WAIT_ON_DELOYMENT_COMMAND,
SWITCH_8V_ON,
WAIT_ON_8V_SWITCH,
SWITCH_DEPL_GPIOS,
WAIT_ON_DEPLOYMENT_FINISH,
WAIT_FOR_MAIN_SWITCH_OFF
};
StateMachine stateMachine = WAIT_ON_DELOYMENT_COMMAND;
/**
* This countdown is used to check if the PCDU sets the 8V line on in the intended time.
*/
Countdown mainSwitchCountdown;
/**
* This countdown is used to wait for the burn wire being successful cut.
*/
Countdown deploymentCountdown;
/**
* The message queue id of the component commanding an action will be stored in this variable.
* This is necessary to send later the action finish replies.
*/
MessageQueueId_t rememberCommanderId = 0;
/** Size of command queue */
size_t cmdQueueSize = 20;
/** The object ID of the GPIO driver which switches the deployment transistors */
object_id_t gpioDriverId;
CookieIF * gpioCookie;
/** Object id of the object responsible to switch the 8V power input. Typically the PCDU. */
object_id_t mainLineSwitcherObjectId;
/** Switch number of the 8V power switch */
uint8_t mainLineSwitch;
gpioId_t deplSA1;
gpioId_t deplSA2;
GpioIF* gpioInterface;
/** Time duration switches are active to cut the burn wire */
uint32_t burnTimeMs;
/** Queue to receive messages from other objects. */
MessageQueueIF* commandQueue = nullptr;
/**
* After initialization this pointer will hold the reference to the main line switcher object.
*/
PowerSwitchIF *mainLineSwitcher = nullptr;
ActionHelper actionHelper;
void readCommandQueue();
/**
* @brief This function performs actions dependent on the current state.
*/
void handleStateMachine();
/**
* @brief This function polls the 8V switch state and changes the state machine when the
* switch has been enabled.
*/
void performWaitOn8VActions();
/**
* @brief This functions handles the switching of the solar array deployment transistors.
*/
void switchDeploymentTransistors();
/**
* @brief This function performs actions to finish the deployment. Essentially switches
* are turned of after the burn time has expired.
*/
void handleDeploymentFinish();
};
#endif /* MISSION_DEVICES_SOLARARRAYDEPLOYMENT_H_ */

View File

@ -318,7 +318,6 @@ namespace P60System {
ACU_POWER_CHANNEL3,
ACU_POWER_CHANNEL4,
ACU_POWER_CHANNEL5,
ACU_POWER_GROUP,
ACU_DAC_EN_0,
ACU_DAC_EN_1,
ACU_DAC_EN_2,
@ -357,10 +356,9 @@ namespace P60System {
namespace P60Dock {
/* The maximum size of a reply from the P60 dock. Maximum size is reached
* when retrieving the full parameter configuration table. 412 bytes of
* payload data and 12 bytes of CSP header data. */
static const uint16_t MAX_REPLY_LENGTH = 424;
/** Max reply size reached when requesting full hk table */
static const uint16_t MAX_REPLY_LENGTH = 407;
static const uint16_t MAX_CONFIGTABLE_ADDRESS = 408;
static const uint16_t MAX_HKTABLE_ADDRESS = 187;
@ -1043,11 +1041,11 @@ namespace ACU {
static const uint32_t HK_TABLE_DATA_SET_ID = 0x4;
/* When receiving full housekeeping (telemetry) table */
static const uint16_t MAX_REPLY_LENGTH = 124;
static const uint16_t MAX_REPLY_LENGTH = 262;
static const uint16_t MAX_CONFIGTABLE_ADDRESS = 26;
static const uint16_t MAX_HKTABLE_ADDRESS = 120;
static const uint16_t HK_TABLE_SIZE = 125;
static const uint8_t HK_TABLE_ENTRIES = 64;
static const uint16_t HK_TABLE_REPLY_SIZE = 262;
/**
* @brief This class defines a dataset for the hk table of the ACU.
@ -1153,8 +1151,6 @@ namespace ACU {
lp_var_t<uint32_t> bootCause = lp_var_t<uint32_t>(sid.objectId,
P60System::ACU_BOOTCAUSE, this);
lp_var_t<uint32_t> bootcause = lp_var_t<uint32_t>(sid.objectId,
P60System::ACU_BOOTCAUSE, this);
lp_var_t<uint32_t> bootcnt = lp_var_t<uint32_t>(sid.objectId,
P60System::ACU_BOOTCNT, this);
lp_var_t<uint32_t> uptime = lp_var_t<uint32_t>(sid.objectId,