v1.10.0 #220

Merged
meierj merged 592 commits from develop into main 2022-04-22 07:42:20 +02:00
17 changed files with 469 additions and 274 deletions
Showing only changes of commit 32def71502 - Show all commits

View File

@ -709,10 +709,10 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
acsBoardHelper, gpioComIF); acsBoardHelper, gpioComIF);
static_cast<void>(acsAss); static_cast<void>(acsAss);
#if OBSW_TEST_ACS_BAORD_ASS == 1 #if OBSW_TEST_ACS_BOARD_ASS == 1
CommandMessage msg; CommandMessage msg;
ModeMessage::setModeMessage(&msg, ModeMessage::CMD_MODE_COMMAND, DeviceHandlerIF::MODE_NORMAL, ModeMessage::setModeMessage(&msg, ModeMessage::CMD_MODE_COMMAND, DeviceHandlerIF::MODE_NORMAL,
AcsBoardAssembly::A_SIDE); duallane::A_SIDE);
ReturnValue_t result = MessageQueueSenderIF::sendMessage(acsAss->getCommandQueue(), &msg); ReturnValue_t result = MessageQueueSenderIF::sendMessage(acsAss->getCommandQueue(), &msg);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::warning << "Sending mode command failed" << std::endl; sif::warning << "Sending mode command failed" << std::endl;

2
fsfw

@ -1 +1 @@
Subproject commit 45f0d7fd453eafddbc8a364e6c61a90b5f577c85 Subproject commit 3c53e2c259c43d2ebcc8fc3642fbb6bff84093c6

View File

@ -30,10 +30,12 @@ ReturnValue_t GPSHyperionLinuxController::checkModeCommand(Mode_t mode, Submode_
uint32_t *msToReachTheMode) { uint32_t *msToReachTheMode) {
if (not modeCommanded) { if (not modeCommanded) {
if (mode == MODE_ON or mode == MODE_OFF) { if (mode == MODE_ON or mode == MODE_OFF) {
// 10 minutes time to reach fix // 5h time to reach fix
*msToReachTheMode = 600000; *msToReachTheMode = MAX_SECONDS_TO_REACH_FIX;
maxTimeToReachFix.resetTimer(); maxTimeToReachFix.resetTimer();
modeCommanded = true; modeCommanded = true;
} else if (mode == MODE_NORMAL) {
return HasModesIF::INVALID_MODE_RETVAL;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;

View File

@ -21,7 +21,7 @@
*/ */
class GPSHyperionLinuxController : public ExtendedControllerBase { class GPSHyperionLinuxController : public ExtendedControllerBase {
public: public:
static constexpr uint32_t MAX_SECONDS_TO_REACH_FIX = 600; static constexpr uint32_t MAX_SECONDS_TO_REACH_FIX = 60 * 60 * 5;
GPSHyperionLinuxController(object_id_t objectId, object_id_t parentId, GPSHyperionLinuxController(object_id_t objectId, object_id_t parentId,
bool debugHyperionGps = false); bool debugHyperionGps = false);
virtual ~GPSHyperionLinuxController(); virtual ~GPSHyperionLinuxController();

View File

@ -672,7 +672,7 @@ ReturnValue_t StarTrackerHandler::isModeCombinationValid(Mode_t mode, Submode_t
return INVALID_SUBMODE; return INVALID_SUBMODE;
} }
default: default:
return HasModesIF::INVALID_MODE; return HasModesIF::INVALID_MODE_RETVAL;
} }
} }

View File

@ -84,7 +84,7 @@ debugging. */
#define OBSW_ADD_UART_TEST_CODE 0 #define OBSW_ADD_UART_TEST_CODE 0
#define OBSW_TEST_ACS 0 #define OBSW_TEST_ACS 0
#define OBSW_TEST_ACS_BAORD_ASS 0 #define OBSW_TEST_ACS_BOARD_ASS 0
#define OBSW_DEBUG_ACS 0 #define OBSW_DEBUG_ACS 0
#define OBSW_TEST_SUS 0 #define OBSW_TEST_SUS 0
#define OBSW_DEBUG_SUS 0 #define OBSW_DEBUG_SUS 0

View File

@ -42,7 +42,7 @@ ReturnValue_t ThermalController::checkModeCommand(Mode_t mode, Submode_t submode
return INVALID_SUBMODE; return INVALID_SUBMODE;
} }
if ((mode != MODE_OFF) && (mode != MODE_ON) && (mode != MODE_NORMAL)) { if ((mode != MODE_OFF) && (mode != MODE_ON) && (mode != MODE_NORMAL)) {
return INVALID_MODE; return INVALID_MODE_RETVAL;
} }
return RETURN_OK; return RETURN_OK;
} }

View File

@ -1,5 +1,7 @@
#include <mission/devices/GomspaceDeviceHandler.h> #include "GomspaceDeviceHandler.h"
#include <mission/devices/devicedefinitions/GomSpacePackets.h>
#include "devicedefinitions/GomSpacePackets.h"
#include "devicedefinitions/powerDefinitions.h"
GomspaceDeviceHandler::GomspaceDeviceHandler(object_id_t objectId, object_id_t comIF, GomspaceDeviceHandler::GomspaceDeviceHandler(object_id_t objectId, object_id_t comIF,
CookieIF* comCookie, uint16_t maxConfigTableAddress, CookieIF* comCookie, uint16_t maxConfigTableAddress,
@ -189,6 +191,11 @@ ReturnValue_t GomspaceDeviceHandler::generateSetParamCommand(const uint8_t* comm
size_t commandDataLen) { size_t commandDataLen) {
ReturnValue_t result = ReturnValue_t result =
setParamCacher.deSerialize(&commandData, &commandDataLen, SerializeIF::Endianness::BIG); setParamCacher.deSerialize(&commandData, &commandDataLen, SerializeIF::Endianness::BIG);
// This breaks layering but I really don't want to accept this command..
if (setParamCacher.getAddress() == PDU2::CONFIG_ADDRESS_OUT_EN_Q7S) {
triggerEvent(power::SWITCHING_Q7S_DENIED, 0, 0);
return HasReturnvaluesIF::RETURN_FAILED;
}
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GomspaceDeviceHandler: Failed to deserialize set parameter " sif::error << "GomspaceDeviceHandler: Failed to deserialize set parameter "
"message" "message"

View File

@ -160,22 +160,24 @@ void PCDUHandler::updatePdu2SwitchStates() {
PoolReadGuard rg(&pdu2HkTableDataset); PoolReadGuard rg(&pdu2HkTableDataset);
if (rg.getReadResult() == RETURN_OK) { if (rg.getReadResult() == RETURN_OK) {
MutexGuard mg(pwrMutex); MutexGuard mg(pwrMutex);
switchStates[Switches::PDU2_CH0_Q7S] = pdu2HkTableDataset.outEnabledQ7S.value; checkAndUpdateSwitch(Switches::PDU2_CH0_Q7S, pdu2HkTableDataset.outEnabledQ7S.value);
switchStates[Switches::PDU2_CH1_PL_PCDU_BATT_0_14V8] =
pdu2HkTableDataset.outEnabledPlPCDUCh1.value; checkAndUpdateSwitch(Switches::PDU2_CH1_PL_PCDU_BATT_0_14V8,
switchStates[Switches::PDU2_CH2_RW_5V] = pdu2HkTableDataset.outEnabledReactionWheels.value; pdu2HkTableDataset.outEnabledPlPCDUCh1.value);
switchStates[Switches::PDU2_CH3_TCS_BOARD_HEATER_IN_8V] = checkAndUpdateSwitch(Switches::PDU2_CH2_RW_5V,
pdu2HkTableDataset.outEnabledTCSBoardHeaterIn.value; pdu2HkTableDataset.outEnabledReactionWheels.value);
switchStates[Switches::PDU2_CH4_SUS_REDUNDANT_3V3] = checkAndUpdateSwitch(Switches::PDU2_CH3_TCS_BOARD_HEATER_IN_8V,
pdu2HkTableDataset.outEnabledSUSRedundant.value; pdu2HkTableDataset.outEnabledTCSBoardHeaterIn.value);
switchStates[Switches::PDU2_CH5_DEPLOYMENT_MECHANISM_8V] = checkAndUpdateSwitch(Switches::PDU2_CH4_SUS_REDUNDANT_3V3,
pdu2HkTableDataset.outEnabledDeplMechanism.value; pdu2HkTableDataset.outEnabledSUSRedundant.value);
switchStates[Switches::PDU2_CH6_PL_PCDU_BATT_1_14V8] = checkAndUpdateSwitch(Switches::PDU2_CH5_DEPLOYMENT_MECHANISM_8V,
pdu2HkTableDataset.outEnabledPlPCDUCh6.value; pdu2HkTableDataset.outEnabledDeplMechanism.value);
switchStates[Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3] = checkAndUpdateSwitch(Switches::PDU2_CH6_PL_PCDU_BATT_1_14V8,
pdu2HkTableDataset.outEnabledAcsBoardSideB.value; pdu2HkTableDataset.outEnabledPlPCDUCh6.value);
switchStates[Switches::PDU2_CH8_PAYLOAD_CAMERA] = checkAndUpdateSwitch(Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3,
pdu2HkTableDataset.outEnabledPayloadCamera.value; pdu2HkTableDataset.outEnabledAcsBoardSideB.value);
checkAndUpdateSwitch(Switches::PDU2_CH8_PAYLOAD_CAMERA,
pdu2HkTableDataset.outEnabledPayloadCamera.value);
} else { } else {
sif::debug << "PCDUHandler::updatePdu2SwitchStates: Failed to read PDU2 Hk Dataset" sif::debug << "PCDUHandler::updatePdu2SwitchStates: Failed to read PDU2 Hk Dataset"
<< std::endl; << std::endl;
@ -187,19 +189,22 @@ void PCDUHandler::updatePdu1SwitchStates() {
PoolReadGuard rg(&pdu1HkTableDataset); PoolReadGuard rg(&pdu1HkTableDataset);
if (rg.getReadResult() == RETURN_OK) { if (rg.getReadResult() == RETURN_OK) {
MutexGuard mg(pwrMutex); MutexGuard mg(pwrMutex);
switchStates[Switches::PDU1_CH0_TCS_BOARD_3V3] = pdu1HkTableDataset.outEnabledTCSBoard3V3.value; checkAndUpdateSwitch(Switches::PDU1_CH0_TCS_BOARD_3V3,
switchStates[Switches::PDU1_CH1_SYRLINKS_12V] = pdu1HkTableDataset.outEnabledSyrlinks.value; pdu1HkTableDataset.outEnabledTCSBoard3V3.value);
switchStates[Switches::PDU1_CH2_STAR_TRACKER_5V] = checkAndUpdateSwitch(Switches::PDU1_CH1_SYRLINKS_12V,
pdu1HkTableDataset.outEnabledStarTracker.value; pdu1HkTableDataset.outEnabledSyrlinks.value);
switchStates[Switches::PDU1_CH3_MGT_5V] = pdu1HkTableDataset.outEnabledMGT.value; checkAndUpdateSwitch(Switches::PDU1_CH2_STAR_TRACKER_5V,
switchStates[Switches::PDU1_CH4_SUS_NOMINAL_3V3] = pdu1HkTableDataset.outEnabledStarTracker.value);
pdu1HkTableDataset.outEnabledSUSNominal.value; checkAndUpdateSwitch(Switches::PDU1_CH3_MGT_5V, pdu1HkTableDataset.outEnabledMGT.value);
switchStates[Switches::PDU1_CH5_SOLAR_CELL_EXP_5V] = checkAndUpdateSwitch(Switches::PDU1_CH4_SUS_NOMINAL_3V3,
pdu1HkTableDataset.outEnabledSolarCellExp.value; pdu1HkTableDataset.outEnabledSUSNominal.value);
switchStates[Switches::PDU1_CH6_PLOC_12V] = pdu1HkTableDataset.outEnabledPLOC.value; checkAndUpdateSwitch(Switches::PDU1_CH5_SOLAR_CELL_EXP_5V,
switchStates[Switches::PDU1_CH7_ACS_A_SIDE_3V3] = pdu1HkTableDataset.outEnabledSolarCellExp.value);
pdu1HkTableDataset.outEnabledAcsBoardSideA.value; checkAndUpdateSwitch(Switches::PDU1_CH6_PLOC_12V, pdu1HkTableDataset.outEnabledPLOC.value);
switchStates[Switches::PDU1_CH8_UNOCCUPIED] = pdu1HkTableDataset.outEnabledChannel8.value; checkAndUpdateSwitch(Switches::PDU1_CH7_ACS_A_SIDE_3V3,
pdu1HkTableDataset.outEnabledAcsBoardSideA.value);
checkAndUpdateSwitch(Switches::PDU1_CH8_UNOCCUPIED,
pdu1HkTableDataset.outEnabledChannel8.value);
} else { } else {
sif::debug << "PCDUHandler::updatePdu1SwitchStates: Failed to read dataset" << std::endl; sif::debug << "PCDUHandler::updatePdu1SwitchStates: Failed to read dataset" << std::endl;
} }
@ -261,11 +266,12 @@ void PCDUHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) const
pdu = ObjectManager::instance()->get<GomspaceDeviceHandler>(objects::PDU1_HANDLER); pdu = ObjectManager::instance()->get<GomspaceDeviceHandler>(objects::PDU1_HANDLER);
break; break;
} }
// That does not really make sense but let's keep it here for completeness reasons.. // This is a dangerous command. Reject/Igore it for now
case pcduSwitches::PDU2_CH0_Q7S: { case pcduSwitches::PDU2_CH0_Q7S: {
memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_Q7S; return;
pdu = ObjectManager::instance()->get<GomspaceDeviceHandler>(objects::PDU2_HANDLER); // memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_Q7S;
break; // pdu = ObjectManager::instance()->get<GomspaceDeviceHandler>(objects::PDU2_HANDLER);
// break;
} }
case pcduSwitches::PDU2_CH1_PL_PCDU_BATT_0_14V8: { case pcduSwitches::PDU2_CH1_PL_PCDU_BATT_0_14V8: {
memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_PAYLOAD_PCDU_CH1; memoryAddress = PDU2::CONFIG_ADDRESS_OUT_EN_PAYLOAD_PCDU_CH1;
@ -344,6 +350,9 @@ void PCDUHandler::sendSwitchCommand(uint8_t switchNr, ReturnValue_t onOff) const
if (result != RETURN_OK) { if (result != RETURN_OK) {
sif::debug << "PCDUHandler::sendSwitchCommand: Failed to send message to PDU Handler" sif::debug << "PCDUHandler::sendSwitchCommand: Failed to send message to PDU Handler"
<< std::endl; << std::endl;
} else {
// Can't use trigger event because of const function constraint, but this hack seems to work
this->forwardEvent(power::SWITCH_CMD_SENT, parameterValue, switchNr);
} }
} }
@ -592,3 +601,10 @@ LocalPoolDataSetBase* PCDUHandler::getDataSetHandle(sid_t sid) {
return nullptr; return nullptr;
} }
} }
void PCDUHandler::checkAndUpdateSwitch(pcduSwitches::Switches switchIdx, uint8_t setValue) {
if (switchStates[switchIdx] != setValue) {
triggerEvent(power::SWITCH_HAS_CHANGED, setValue, switchIdx);
}
switchStates[switchIdx] = setValue;
}

View File

@ -8,13 +8,16 @@
#include <fsfw/tasks/ExecutableObjectIF.h> #include <fsfw/tasks/ExecutableObjectIF.h>
#include <fsfw/timemanager/CCSDSTime.h> #include <fsfw/timemanager/CCSDSTime.h>
#include <mission/devices/GomspaceDeviceHandler.h> #include <mission/devices/GomspaceDeviceHandler.h>
#include <mission/devices/devicedefinitions/GomspaceDefinitions.h>
#include "devicedefinitions/GomspaceDefinitions.h"
#include "devicedefinitions/powerDefinitions.h"
/** /**
* @brief The PCDUHandler provides a compact interface to handle all devices related to the * @brief The PCDUHandler provides a compact interface to handle all devices related to the
* control of power. This is necessary because the fsfw manages all power * control of power.
* related functionalities via one power object. This includes for example the switch on and off of * @details
* devices. * This is necessary because the FSFW manages all power related functionalities via one
* power object. This includes for example switching on and off of devices.
*/ */
class PCDUHandler : public PowerSwitchIF, class PCDUHandler : public PowerSwitchIF,
public HasLocalDataPoolIF, public HasLocalDataPoolIF,
@ -114,6 +117,7 @@ class PCDUHandler : public PowerSwitchIF,
*/ */
void updateHkTableDataset(store_address_t storeId, LocalPoolDataSetBase* dataset, void updateHkTableDataset(store_address_t storeId, LocalPoolDataSetBase* dataset,
CCSDSTime::CDS_short* datasetTimeStamp); CCSDSTime::CDS_short* datasetTimeStamp);
void checkAndUpdateSwitch(pcduSwitches::Switches switchIdx, uint8_t setValue);
}; };
#endif /* MISSION_DEVICES_PCDUHANDLER_H_ */ #endif /* MISSION_DEVICES_PCDUHANDLER_H_ */

View File

@ -0,0 +1,18 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_POWERDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_POWERDEFINITIONS_H_
#include <common/config/commonSubsystemIds.h>
#include <fsfw/events/Event.h>
namespace power {
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::PCDU_HANDLER;
//! [EXPORT] : [COMMENT] Indicated that a FSFW object requested setting a switch
//! P1: 1 if on was requested, 0 for off | P2: Switch Index
static constexpr Event SWITCH_CMD_SENT = event::makeEvent(SUBSYSTEM_ID, 0, severity::INFO);
static constexpr Event SWITCH_HAS_CHANGED = event::makeEvent(SUBSYSTEM_ID, 1, severity::INFO);
static constexpr Event SWITCHING_Q7S_DENIED = event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
} // namespace power
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_POWERDEFINITIONS_H_ */

View File

@ -6,7 +6,10 @@
AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId, AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId,
PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF) PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF)
: AssemblyBase(objectId, parentId), pwrSwitcher(switcher), helper(helper), gpioIF(gpioIF) { : AssemblyBase(objectId, parentId),
pwrStateMachine(SWITCH_A, SWITCH_B, switcher, state),
helper(helper),
gpioIF(gpioIF) {
if (switcher == nullptr) { if (switcher == nullptr) {
sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher " sif::error << "AcsBoardAssembly::AcsBoardAssembly: Invalid Power Switcher "
"IF passed" "IF passed"
@ -27,24 +30,54 @@ AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId,
initModeTableEntry(helper.gpsId, entry); initModeTableEntry(helper.gpsId, entry);
} }
void AcsBoardAssembly::handleChildrenTransition() { void AcsBoardAssembly::performChildOperation() {
if (state == States::SWITCHING_POWER) { using namespace duallane;
powerStateMachine(targetMode, targetSubmode); if (state == PwrStates::SWITCHING_POWER or state == PwrStates::CHECKING_POWER) {
if (state == States::MODE_COMMANDING) { if (targetMode != MODE_OFF) {
AssemblyBase::handleChildrenTransition(); pwrStateMachineWrapper(targetMode, targetSubmode);
}
// This state is the indicator that the power state machine is done
if (state == PwrStates::MODE_COMMANDING) {
AssemblyBase::performChildOperation();
} }
} else { } else {
AssemblyBase::handleChildrenTransition(); AssemblyBase::performChildOperation();
// This state is the indicator that the mode state machine is done
if (state == PwrStates::SWITCHING_POWER) {
pwrStateMachineWrapper(targetMode, targetSubmode);
}
}
}
void AcsBoardAssembly::startTransition(Mode_t mode, Submode_t submode) {
using namespace duallane;
// If anything other than MODE_OFF is commanded, perform power state machine first
if (mode != MODE_OFF) {
if (state != PwrStates::IDLE) {
state = PwrStates::IDLE;
}
// Cache the target modes, required by power state machine
targetMode = mode;
targetSubmode = submode;
state = PwrStates::SWITCHING_POWER;
// Perform power state machine first, then start mode transition. The power state machine will
// start the transition after it has finished
pwrStateMachineWrapper(mode, submode);
} else {
// Command the devices to off first before switching off the power. The handleModeReached
// custom implementation will take care of starting the power state machine.
AssemblyBase::startTransition(mode, submode);
} }
} }
ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) { ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
refreshHelperModes(); refreshHelperModes();
powerStateMachine(mode, submode); pwrStateMachineWrapper(mode, submode);
if (state == States::MODE_COMMANDING) { if (state == PwrStates::MODE_COMMANDING) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
handleNormalOrOnModeCmd(mode, submode); result = handleNormalOrOnModeCmd(mode, submode);
} else { } else {
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
@ -72,8 +105,9 @@ ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode)
} }
ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
using namespace duallane;
refreshHelperModes(); refreshHelperModes();
if (state == States::SWITCHING_POWER) { if (state == PwrStates::SWITCHING_POWER) {
// Wrong mode // Wrong mode
sif::error << "Wrong mode, currently switching power" << std::endl; sif::error << "Wrong mode, currently switching power" << std::endl;
return RETURN_OK; return RETURN_OK;
@ -81,14 +115,14 @@ ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_
if (wantedSubmode == A_SIDE) { if (wantedSubmode == A_SIDE) {
if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or if ((helper.gyro0SideAMode != wantedMode and helper.gyro1SideAMode != wantedMode) or
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode) or
helper.gpsMode != wantedMode) { helper.gpsMode != MODE_ON) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
} }
return RETURN_OK; return RETURN_OK;
} else if (wantedSubmode == B_SIDE) { } else if (wantedSubmode == B_SIDE) {
if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or if ((helper.gyro2SideBMode != wantedMode and helper.gyro3SideBMode != wantedMode) or
(helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or (helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
helper.gpsMode != wantedMode) { helper.gpsMode != MODE_ON) {
return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE; return NOT_ENOUGH_CHILDREN_IN_CORRECT_STATE;
} }
return RETURN_OK; return RETURN_OK;
@ -97,7 +131,7 @@ ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_
helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or helper.gyro2AdisIdSideB != wantedMode and helper.gyro3SideBMode != wantedMode) or
(helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and (helper.mgm0SideAMode != wantedMode and helper.mgm1SideAMode != wantedMode and
helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or helper.mgm2SideBMode != wantedMode and helper.mgm3SideBMode != wantedMode) or
helper.gpsMode != wantedMode) { helper.gpsMode != MODE_ON) {
// Trigger event, but don't start any other transitions. This is the last fallback mode. // Trigger event, but don't start any other transitions. This is the last fallback mode.
if (dualModeErrorSwitch) { if (dualModeErrorSwitch) {
triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0); triggerEvent(NOT_ENOUGH_DEVICES_DUAL_MODE, 0, 0);
@ -111,16 +145,16 @@ ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_
} }
ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) { auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) {
if (mode == DeviceHandlerIF::MODE_NORMAL) { if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objectId, devMode)) { if (isUseable(objectId, devMode)) {
if (mode != MODE_OFF) { if (devMode == MODE_OFF or devMode == HasModesIF::UNDEFINED_MODE) {
modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} else { } else {
result = NEED_SECOND_STEP; modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} }
} }
@ -131,15 +165,20 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
} }
} }
}; };
if (this->mode == MODE_OFF and mode == DeviceHandlerIF::MODE_NORMAL) {
if (internalState != STATE_SECOND_STEP) {
result = NEED_SECOND_STEP;
}
}
switch (submode) { switch (submode) {
case (A_SIDE): { case (A_SIDE): {
cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A); cmdSeq(helper.gyro0AdisIdSideA, helper.gyro0SideAMode, ModeTableIdx::GYRO_0_A);
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
ReturnValue_t result = gpioIF->pullLow(gpioIds::GNSS_SELECT); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
if (result != HasReturnvaluesIF::RETURN_OK) { if (gpioIF->pullLow(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1 #if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low" sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low"
<< std::endl; << std::endl;
@ -161,8 +200,7 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS);
gpioIF->pullHigh(gpioIds::GNSS_SELECT); if (gpioIF->pullHigh(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) {
if (result != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1 #if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high" sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high"
<< std::endl; << std::endl;
@ -188,12 +226,13 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
ReturnValue_t status = RETURN_OK;
if (defaultSubmode == Submodes::A_SIDE) { if (defaultSubmode == Submodes::A_SIDE) {
result = gpioIF->pullLow(gpioIds::GNSS_SELECT); status = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else { } else {
result = gpioIF->pullHigh(gpioIds::GNSS_SELECT); status = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
} }
if (result != HasReturnvaluesIF::RETURN_OK) { if (status != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1 #if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to" sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select to"
"default side for dual mode" "default side for dual mode"
@ -209,89 +248,154 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
return result; return result;
} }
void AcsBoardAssembly::powerStateMachine(Mode_t mode, Submode_t submode) { ReturnValue_t AcsBoardAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
ReturnValue_t switchStateA = RETURN_OK; using namespace duallane;
ReturnValue_t switchStateB = RETURN_OK; if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) {
if (state == States::IDLE or state == States::SWITCHING_POWER) { return HasReturnvaluesIF::RETURN_FAILED;
switchStateA = pwrSwitcher->getSwitchState(SWITCH_A); }
switchStateB = pwrSwitcher->getSwitchState(SWITCH_B); return HasReturnvaluesIF::RETURN_OK;
}
bool AcsBoardAssembly::isUseable(object_id_t object, Mode_t mode) {
if (healthHelper.healthTable->isFaulty(object)) {
return false;
}
// Check if device is already in target mode
if (childrenMap[object].mode == mode) {
return true;
}
if (healthHelper.healthTable->isCommandable(object)) {
return true;
}
return false;
}
void AcsBoardAssembly::handleModeReached() {
using namespace duallane;
if (targetMode == MODE_OFF) {
if (state != PwrStates::IDLE) {
state = PwrStates::IDLE;
}
state = PwrStates::SWITCHING_POWER;
// Now we can switch off the power. After that, the AssemblyBase::handleModeReached function
// will be called
pwrStateMachineWrapper(targetMode, targetSubmode);
} else { } else {
return; finishModeOp();
} }
if (mode == MODE_OFF) {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = States::MODE_COMMANDING;
return;
} }
void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) {
using namespace duallane;
// Some ACS board components are required for Safe-Mode. It would be good if the software
// transitions from A side to B side and from B side to dual mode autonomously
// to ensure that that enough sensors are available without an operators intervention.
// Therefore, the lost mode handler was overwritten to start these transitions
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else { } else {
switch (submode) { // Not sure when this would happen. This flag is reset if the mode was reached. If it
case (A_SIDE): { // was not reached, the transition failure handler should be called.
if (switchStateA == PowerSwitchIF::SWITCH_ON and sif::error << "AcsBoardAssembly::handleChildrenLostMode: Wrong handler called" << std::endl;
switchStateB == PowerSwitchIF::SWITCH_OFF) { triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
state = States::MODE_COMMANDING; startTransition(mode, Submodes::DUAL_MODE);
return;
}
break;
}
case (B_SIDE): {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and
switchStateB == PowerSwitchIF::SWITCH_ON) {
state = States::MODE_COMMANDING;
return;
}
break;
}
case (DUAL_MODE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) {
state = States::MODE_COMMANDING;
return;
} }
} }
void AcsBoardAssembly::handleModeTransitionFailed(ReturnValue_t result) {
using namespace duallane;
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
} }
} // Check whether the transition was started because the mode could not be kept (not commanded).
if (state == States::IDLE) { // If this is not the case, start transition to other side. If it is the case, start
if (mode == MODE_OFF) { // transition to dual mode.
if (switchStateA != PowerSwitchIF::SWITCH_OFF) { if (not tryingOtherSide) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON); triggerEvent(CANT_KEEP_MODE, mode, submode);
} startTransition(mode, nextSubmode);
if (switchStateB != PowerSwitchIF::SWITCH_OFF) { tryingOtherSide = true;
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
} else { } else {
switch (submode) { triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
case (A_SIDE): { startTransition(mode, Submodes::DUAL_MODE);
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
break;
}
case (B_SIDE): {
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
break;
}
case (DUAL_MODE): {
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
}
break;
} }
} }
void AcsBoardAssembly::setPreferredSide(duallane::Submodes submode) {
using namespace duallane;
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
return;
} }
state = States::SWITCHING_POWER; this->defaultSubmode = submode;
} }
if (state == States::SWITCHING_POWER) {
// TODO: Could check for a timeout (temporal or cycles) here and resend command void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) {
using namespace duallane;
if (submode != Submodes::DUAL_MODE) {
return;
}
ReturnValue_t result = RETURN_OK;
if (side == Submodes::A_SIDE) {
result = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else {
result = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
}
if (result != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl;
#endif
}
}
void AcsBoardAssembly::refreshHelperModes() {
try {
helper.gyro0SideAMode = childrenMap.at(helper.gyro0AdisIdSideA).mode;
helper.gyro1SideAMode = childrenMap.at(helper.gyro1L3gIdSideA).mode;
helper.gyro2SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
helper.gyro3SideBMode = childrenMap.at(helper.gyro2AdisIdSideB).mode;
helper.mgm0SideAMode = childrenMap.at(helper.mgm0Lis3IdSideA).mode;
helper.mgm1SideAMode = childrenMap.at(helper.mgm1Rm3100IdSideA).mode;
helper.mgm2SideBMode = childrenMap.at(helper.mgm2Lis3IdSideB).mode;
helper.mgm3SideBMode = childrenMap.at(helper.mgm3Rm3100IdSideB).mode;
helper.gpsMode = childrenMap.at(helper.gpsId).mode;
} catch (const std::out_of_range& e) {
sif::error << "AcsBoardAssembly::refreshHelperModes: Invalid map: " << e.what() << std::endl;
}
}
void AcsBoardAssembly::initModeTableEntry(object_id_t id, ModeListEntry& entry) {
entry.setObject(id);
entry.setMode(MODE_OFF);
entry.setSubmode(SUBMODE_NONE);
entry.setInheritSubmode(false);
modeTable.insert(entry);
}
void AcsBoardAssembly::finishModeOp() {
using namespace duallane;
AssemblyBase::handleModeReached();
state = PwrStates::IDLE;
tryingOtherSide = false;
dualModeErrorSwitch = true;
}
void AcsBoardAssembly::pwrStateMachineWrapper(Mode_t mode, Submode_t submode) {
using namespace duallane;
OpCodes opCode = pwrStateMachine.powerStateMachine(mode, submode);
if (opCode == OpCodes::NONE) {
return;
} else if (opCode == OpCodes::FINISH_OP) {
finishModeOp();
} else if (opCode == OpCodes::START_TRANSITION) {
AssemblyBase::startTransition(mode, submode);
} }
} }
@ -334,116 +438,3 @@ ReturnValue_t AcsBoardAssembly::initialize() {
} }
return AssemblyBase::initialize(); return AssemblyBase::initialize();
} }
ReturnValue_t AcsBoardAssembly::isModeCombinationValid(Mode_t mode, Submode_t submode) {
if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) {
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
bool AcsBoardAssembly::isUseable(object_id_t object, Mode_t mode) {
if (healthHelper.healthTable->isFaulty(object)) {
return false;
}
// Check if device is already in target mode
if (childrenMap[object].mode == mode) {
return true;
}
if (healthHelper.healthTable->isCommandable(object)) {
return true;
}
return false;
}
void AcsBoardAssembly::handleModeReached() {
AssemblyBase::handleModeReached();
state = States::IDLE;
tryingOtherSide = false;
dualModeErrorSwitch = true;
}
void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) {
// Some ACS board components are required for Safe-Mode. It would be good if the software
// transitions from A side to B side and from B side to dual mode autonomously
// to ensure that that enough sensors are available without an operators intervention.
// Therefore, the lost mode handler was overwritten to start these transitions
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
// Not sure when this would happen. This flag is reset if the mode was reached. If it
// was not reached, the transition failure handler should be called.
sif::error << "AcsBoardAssembly::handleChildrenLostMode: Wrong handler called" << std::endl;
triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void AcsBoardAssembly::handleModeTransitionFailed(ReturnValue_t result) {
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
// Check whether the transition was started because the mode could not be kept (not commanded).
// If this is not the case, start transition to other side. If it is the case, start
// transition to dual mode.
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void AcsBoardAssembly::setPreferredSide(Submodes submode) {
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
return;
}
this->defaultSubmode = submode;
}
void AcsBoardAssembly::selectGpsInDualMode(Submodes side) {
if (submode != Submodes::DUAL_MODE) {
return;
}
ReturnValue_t result = RETURN_OK;
if (side == Submodes::A_SIDE) {
result = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else {
result = gpioIF->pullHigh(gpioIds::GNSS_SELECT);
}
if (result != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::switchGpsInDualMode: Switching GPS failed" << std::endl;
#endif
}
}
void AcsBoardAssembly::refreshHelperModes() {
helper.gyro0SideAMode = childrenMap[helper.gyro0AdisIdSideA].mode;
helper.gyro1SideAMode = childrenMap[helper.gyro1L3gIdSideA].mode;
helper.gyro2SideBMode = childrenMap[helper.gyro2AdisIdSideB].mode;
helper.gyro3SideBMode = childrenMap[helper.gyro2AdisIdSideB].mode;
helper.mgm0SideAMode = childrenMap[helper.mgm0Lis3IdSideA].mode;
helper.mgm1SideAMode = childrenMap[helper.mgm1Rm3100IdSideA].mode;
helper.mgm2SideBMode = childrenMap[helper.mgm2Lis3IdSideB].mode;
helper.mgm3SideBMode = childrenMap[helper.mgm3Rm3100IdSideB].mode;
}
void AcsBoardAssembly::initModeTableEntry(object_id_t id, ModeListEntry& entry) {
entry.setObject(id);
entry.setMode(MODE_OFF);
entry.setSubmode(SUBMODE_NONE);
entry.setInheritSubmode(false);
modeTable.insert(entry);
}

View File

@ -6,6 +6,8 @@
#include <fsfw/devicehandlers/AssemblyBase.h> #include <fsfw/devicehandlers/AssemblyBase.h>
#include <fsfw/objectmanager/frameworkObjects.h> #include <fsfw/objectmanager/frameworkObjects.h>
#include "DualLanePowerStateMachine.h"
struct AcsBoardHelper { struct AcsBoardHelper {
AcsBoardHelper(object_id_t mgm0Id, object_id_t mgm1Id, object_id_t mgm2Id, object_id_t mgm3Id, AcsBoardHelper(object_id_t mgm0Id, object_id_t mgm1Id, object_id_t mgm2Id, object_id_t mgm3Id,
object_id_t gyro0Id, object_id_t gyro1Id, object_id_t gyro2Id, object_id_t gyro3Id, object_id_t gyro0Id, object_id_t gyro1Id, object_id_t gyro2Id, object_id_t gyro3Id,
@ -58,6 +60,17 @@ enum ModeTableIdx : uint8_t {
class PowerSwitchIF; class PowerSwitchIF;
class GpioIF; class GpioIF;
/**
* @brief Assembly class which manages redundant ACS board sides
* @details
* This class takes care of ensuring that enough devices on the ACS board are available at all
* times. It does so by doing autonomous transitions to the redundant side or activating both sides
* if not enough devices are available.
*
* This class also takes care of switching on the A side and/or B side power lanes. Normally,
* doing this task would be performed by the device handlers, but this is not possible for the
* ACS board where multiple sensors share the same power supply.
*/
class AcsBoardAssembly : public AssemblyBase { class AcsBoardAssembly : public AssemblyBase {
public: public:
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS; static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS;
@ -67,19 +80,17 @@ class AcsBoardAssembly : public AssemblyBase {
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH); event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9; static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9;
enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 };
AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
AcsBoardHelper helper, GpioIF* gpioIF); AcsBoardHelper helper, GpioIF* gpioIF);
void setPreferredSide(Submodes submode); void setPreferredSide(duallane::Submodes submode);
/** /**
* In dual mode, the A side or the B side GPS device can be used, but not both. * In dual mode, the A side or the B side GPS device can be used, but not both.
* This function can be used to switch the used GPS device. * This function can be used to switch the used GPS device.
* @param side * @param side
*/ */
void selectGpsInDualMode(Submodes side); void selectGpsInDualMode(duallane::Submodes side);
private: private:
static constexpr pcduSwitches::Switches SWITCH_A = static constexpr pcduSwitches::Switches SWITCH_A =
@ -87,13 +98,13 @@ class AcsBoardAssembly : public AssemblyBase {
static constexpr pcduSwitches::Switches SWITCH_B = static constexpr pcduSwitches::Switches SWITCH_B =
pcduSwitches::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3; pcduSwitches::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3;
enum class States { IDLE, SWITCHING_POWER, MODE_COMMANDING } state = States::IDLE; // This helper object complete encapsulates power switching
DualLanePowerStateMachine pwrStateMachine;
PowerSwitchIF* pwrSwitcher = nullptr;
bool tryingOtherSide = false; bool tryingOtherSide = false;
AcsBoardHelper helper; AcsBoardHelper helper;
GpioIF* gpioIF = nullptr; GpioIF* gpioIF = nullptr;
Submodes defaultSubmode = Submodes::A_SIDE; duallane::PwrStates state = duallane::PwrStates::IDLE;
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
bool dualModeErrorSwitch = true; bool dualModeErrorSwitch = true;
FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable; FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable;
@ -103,7 +114,8 @@ class AcsBoardAssembly : public AssemblyBase {
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override; ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override; ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override; ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
void handleChildrenTransition() override; void performChildOperation() override;
void startTransition(Mode_t mode, Submode_t submode) override;
void handleModeReached() override; void handleModeReached() override;
void handleModeTransitionFailed(ReturnValue_t result) override; void handleModeTransitionFailed(ReturnValue_t result) override;
void handleChildrenLostMode(ReturnValue_t result) override; void handleChildrenLostMode(ReturnValue_t result) override;
@ -116,9 +128,16 @@ class AcsBoardAssembly : public AssemblyBase {
*/ */
bool isUseable(object_id_t object, Mode_t mode); bool isUseable(object_id_t object, Mode_t mode);
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode); ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
void powerStateMachine(Mode_t mode, Submode_t submode);
void initModeTableEntry(object_id_t id, ModeListEntry& entry); void initModeTableEntry(object_id_t id, ModeListEntry& entry);
void refreshHelperModes(); void refreshHelperModes();
void finishModeOp();
/**
* Thin wrapper function which is required because the helper class
* can not access protected member functions.
* @param mode
* @param submode
*/
void pwrStateMachineWrapper(Mode_t mode, Submode_t submode);
}; };
#endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */ #endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */

View File

@ -6,4 +6,5 @@ target_sources(${LIB_EIVE_MISSION} PRIVATE
EiveSystem.cpp EiveSystem.cpp
ComSubsystem.cpp ComSubsystem.cpp
TcsSubsystem.cpp TcsSubsystem.cpp
DualLanePowerStateMachine.cpp
) )

View File

@ -0,0 +1,98 @@
#include "DualLanePowerStateMachine.h"
#include <fsfw/devicehandlers/AssemblyBase.h>
#include <fsfw/power/PowerSwitchIF.h>
DualLanePowerStateMachine::DualLanePowerStateMachine(pcduSwitches::Switches switchA,
pcduSwitches::Switches switchB,
PowerSwitchIF* pwrSwitcher,
duallane::PwrStates& state)
: SWITCH_A(switchA), SWITCH_B(switchB), state(state), pwrSwitcher(pwrSwitcher) {}
duallane::OpCodes DualLanePowerStateMachine::powerStateMachine(Mode_t mode, Submode_t submode) {
using namespace duallane;
ReturnValue_t switchStateA = RETURN_OK;
ReturnValue_t switchStateB = RETURN_OK;
if (state == PwrStates::IDLE or state == PwrStates::SWITCHING_POWER or
state == PwrStates::CHECKING_POWER) {
switchStateA = pwrSwitcher->getSwitchState(SWITCH_A);
switchStateB = pwrSwitcher->getSwitchState(SWITCH_B);
} else {
return OpCodes::NONE;
}
if (mode == HasModesIF::MODE_OFF) {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) {
return OpCodes::FINISH_OP;
}
} else {
switch (submode) {
case (A_SIDE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and
switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION;
}
break;
}
case (B_SIDE): {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and
switchStateB == PowerSwitchIF::SWITCH_ON) {
state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION;
}
break;
}
case (DUAL_MODE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) {
state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION;
}
}
}
}
if (state == PwrStates::SWITCHING_POWER) {
if (mode == HasModesIF::MODE_OFF) {
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
} else {
switch (submode) {
case (A_SIDE): {
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
break;
}
case (B_SIDE): {
if (switchStateA != PowerSwitchIF::SWITCH_OFF) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_OFF);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_OFF);
}
break;
}
case (DUAL_MODE): {
if (switchStateA != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_A, PowerSwitchIF::SWITCH_ON);
}
if (switchStateB != PowerSwitchIF::SWITCH_ON) {
pwrSwitcher->sendSwitchCommand(SWITCH_B, PowerSwitchIF::SWITCH_ON);
}
break;
}
}
}
state = PwrStates::CHECKING_POWER;
}
if (state == PwrStates::CHECKING_POWER) {
// TODO: Could check for a timeout (temporal or cycles) here and resend command
}
return OpCodes::NONE;
}

View File

@ -0,0 +1,25 @@
#ifndef MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
#define MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_
#include <devices/powerSwitcherList.h>
#include <fsfw/modes/HasModesIF.h>
#include "definitions.h"
class AssemblyBase;
class PowerSwitchIF;
class DualLanePowerStateMachine : public HasReturnvaluesIF {
public:
DualLanePowerStateMachine(pcduSwitches::Switches switchA, pcduSwitches::Switches switchB,
PowerSwitchIF* pwrSwitcher, duallane::PwrStates& state);
duallane::OpCodes powerStateMachine(Mode_t mode, Submode_t submode);
const pcduSwitches::Switches SWITCH_A;
const pcduSwitches::Switches SWITCH_B;
private:
duallane::PwrStates& state;
PowerSwitchIF* pwrSwitcher = nullptr;
};
#endif /* MISSION_SYSTEM_DUALLANEPOWERSTATEMACHINE_H_ */

View File

@ -0,0 +1,14 @@
#ifndef MISSION_SYSTEM_DEFINITIONS_H_
#define MISSION_SYSTEM_DEFINITIONS_H_
#include <fsfw/modes/ModeMessage.h>
namespace duallane {
enum class PwrStates { IDLE, SWITCHING_POWER, CHECKING_POWER, MODE_COMMANDING };
enum class OpCodes { NONE, FINISH_OP, START_TRANSITION };
enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 };
} // namespace duallane
#endif /* MISSION_SYSTEM_DEFINITIONS_H_ */