v1.10.0 #220

Merged
meierj merged 592 commits from develop into main 2022-04-22 07:42:20 +02:00
16 changed files with 381 additions and 191 deletions
Showing only changes of commit acd0307591 - Show all commits

View File

@ -6,6 +6,8 @@
#include <linux/obc/PdecHandler.h> #include <linux/obc/PdecHandler.h>
#include <linux/obc/Ptme.h> #include <linux/obc/Ptme.h>
#include <linux/obc/PtmeConfig.h> #include <linux/obc/PtmeConfig.h>
#include <mission/system/AcsBoardFdir.h>
#include <mission/system/SusAssembly.h>
#include "OBSWConfig.h" #include "OBSWConfig.h"
#include "bsp_q7s/boardtest/Q7STestTask.h" #include "bsp_q7s/boardtest/Q7STestTask.h"
@ -580,6 +582,7 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
Levels::LOW); Levels::LOW);
gpioCookieAcsBoard->addGpio(gpioIds::GNSS_SELECT, gpio); gpioCookieAcsBoard->addGpio(gpioIds::GNSS_SELECT, gpio);
gpioComIF->addGpios(gpioCookieAcsBoard); gpioComIF->addGpios(gpioCookieAcsBoard);
AcsBoardFdir* fdir = nullptr;
#if OBSW_ADD_ACS_HANDLERS == 1 #if OBSW_ADD_ACS_HANDLERS == 1
std::string spiDev = q7s::SPI_DEFAULT_DEV; std::string spiDev = q7s::SPI_DEFAULT_DEV;
@ -588,6 +591,8 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
MGMLIS3MDL::MAX_BUFFER_SIZE, spi::DEFAULT_LIS3_MODE, spi::DEFAULT_LIS3_SPEED); MGMLIS3MDL::MAX_BUFFER_SIZE, spi::DEFAULT_LIS3_MODE, spi::DEFAULT_LIS3_SPEED);
auto mgmLis3Handler = new MgmLIS3MDLHandler(objects::MGM_0_LIS3_HANDLER, objects::SPI_COM_IF, auto mgmLis3Handler = new MgmLIS3MDLHandler(objects::MGM_0_LIS3_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::LIS3_TRANSITION_DELAY); spiCookie, spi::LIS3_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::MGM_0_LIS3_HANDLER);
mgmLis3Handler->setCustomFdir(fdir);
static_cast<void>(mgmLis3Handler); static_cast<void>(mgmLis3Handler);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
mgmLis3Handler->setStartUpImmediately(); mgmLis3Handler->setStartUpImmediately();
@ -602,6 +607,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
RM3100::MAX_BUFFER_SIZE, spi::DEFAULT_RM3100_MODE, spi::DEFAULT_RM3100_SPEED); RM3100::MAX_BUFFER_SIZE, spi::DEFAULT_RM3100_MODE, spi::DEFAULT_RM3100_SPEED);
auto mgmRm3100Handler = new MgmRM3100Handler(objects::MGM_1_RM3100_HANDLER, objects::SPI_COM_IF, auto mgmRm3100Handler = new MgmRM3100Handler(objects::MGM_1_RM3100_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::RM3100_TRANSITION_DELAY); spiCookie, spi::RM3100_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::MGM_1_RM3100_HANDLER);
mgmRm3100Handler->setCustomFdir(fdir);
mgmRm3100Handler->setParent(objects::ACS_BOARD_ASS);
static_cast<void>(mgmRm3100Handler); static_cast<void>(mgmRm3100Handler);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
mgmRm3100Handler->setStartUpImmediately(); mgmRm3100Handler->setStartUpImmediately();
@ -616,6 +624,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
MGMLIS3MDL::MAX_BUFFER_SIZE, spi::DEFAULT_LIS3_MODE, spi::DEFAULT_LIS3_SPEED); MGMLIS3MDL::MAX_BUFFER_SIZE, spi::DEFAULT_LIS3_MODE, spi::DEFAULT_LIS3_SPEED);
mgmLis3Handler = new MgmLIS3MDLHandler(objects::MGM_2_LIS3_HANDLER, objects::SPI_COM_IF, mgmLis3Handler = new MgmLIS3MDLHandler(objects::MGM_2_LIS3_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::LIS3_TRANSITION_DELAY); spiCookie, spi::LIS3_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::MGM_2_LIS3_HANDLER);
mgmLis3Handler->setCustomFdir(fdir);
mgmLis3Handler->setParent(objects::ACS_BOARD_ASS);
static_cast<void>(mgmLis3Handler); static_cast<void>(mgmLis3Handler);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
mgmLis3Handler->setStartUpImmediately(); mgmLis3Handler->setStartUpImmediately();
@ -629,6 +640,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
RM3100::MAX_BUFFER_SIZE, spi::DEFAULT_RM3100_MODE, spi::DEFAULT_RM3100_SPEED); RM3100::MAX_BUFFER_SIZE, spi::DEFAULT_RM3100_MODE, spi::DEFAULT_RM3100_SPEED);
mgmRm3100Handler = new MgmRM3100Handler(objects::MGM_3_RM3100_HANDLER, objects::SPI_COM_IF, mgmRm3100Handler = new MgmRM3100Handler(objects::MGM_3_RM3100_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::RM3100_TRANSITION_DELAY); spiCookie, spi::RM3100_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::MGM_3_RM3100_HANDLER);
mgmRm3100Handler->setCustomFdir(fdir);
mgmRm3100Handler->setParent(objects::ACS_BOARD_ASS);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
mgmRm3100Handler->setStartUpImmediately(); mgmRm3100Handler->setStartUpImmediately();
mgmRm3100Handler->setToGoToNormalMode(true); mgmRm3100Handler->setToGoToNormalMode(true);
@ -644,6 +658,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
spi::DEFAULT_ADIS16507_SPEED); spi::DEFAULT_ADIS16507_SPEED);
auto adisHandler = new GyroADIS1650XHandler(objects::GYRO_0_ADIS_HANDLER, objects::SPI_COM_IF, auto adisHandler = new GyroADIS1650XHandler(objects::GYRO_0_ADIS_HANDLER, objects::SPI_COM_IF,
spiCookie, ADIS1650X::Type::ADIS16505); spiCookie, ADIS1650X::Type::ADIS16505);
fdir = new AcsBoardFdir(objects::GYRO_0_ADIS_HANDLER);
adisHandler->setCustomFdir(fdir);
adisHandler->setParent(objects::ACS_BOARD_ASS);
static_cast<void>(adisHandler); static_cast<void>(adisHandler);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
adisHandler->setStartUpImmediately(); adisHandler->setStartUpImmediately();
@ -659,6 +676,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
spi::DEFAULT_L3G_MODE, spi::DEFAULT_L3G_SPEED); spi::DEFAULT_L3G_MODE, spi::DEFAULT_L3G_SPEED);
auto gyroL3gHandler = new GyroHandlerL3GD20H(objects::GYRO_1_L3G_HANDLER, objects::SPI_COM_IF, auto gyroL3gHandler = new GyroHandlerL3GD20H(objects::GYRO_1_L3G_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::L3G_TRANSITION_DELAY); spiCookie, spi::L3G_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::GYRO_1_L3G_HANDLER);
gyroL3gHandler->setCustomFdir(fdir);
gyroL3gHandler->setParent(objects::ACS_BOARD_ASS);
static_cast<void>(gyroL3gHandler); static_cast<void>(gyroL3gHandler);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
gyroL3gHandler->setStartUpImmediately(); gyroL3gHandler->setStartUpImmediately();
@ -674,6 +694,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
spi::DEFAULT_ADIS16507_SPEED); spi::DEFAULT_ADIS16507_SPEED);
adisHandler = new GyroADIS1650XHandler(objects::GYRO_2_ADIS_HANDLER, objects::SPI_COM_IF, adisHandler = new GyroADIS1650XHandler(objects::GYRO_2_ADIS_HANDLER, objects::SPI_COM_IF,
spiCookie, ADIS1650X::Type::ADIS16505); spiCookie, ADIS1650X::Type::ADIS16505);
fdir = new AcsBoardFdir(objects::GYRO_2_ADIS_HANDLER);
adisHandler->setCustomFdir(fdir);
adisHandler->setParent(objects::ACS_BOARD_ASS);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
adisHandler->setStartUpImmediately(); adisHandler->setStartUpImmediately();
adisHandler->setToGoToNormalModeImmediately(); adisHandler->setToGoToNormalModeImmediately();
@ -684,6 +707,9 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
spi::DEFAULT_L3G_MODE, spi::DEFAULT_L3G_SPEED); spi::DEFAULT_L3G_MODE, spi::DEFAULT_L3G_SPEED);
gyroL3gHandler = new GyroHandlerL3GD20H(objects::GYRO_3_L3G_HANDLER, objects::SPI_COM_IF, gyroL3gHandler = new GyroHandlerL3GD20H(objects::GYRO_3_L3G_HANDLER, objects::SPI_COM_IF,
spiCookie, spi::L3G_TRANSITION_DELAY); spiCookie, spi::L3G_TRANSITION_DELAY);
fdir = new AcsBoardFdir(objects::GYRO_3_L3G_HANDLER);
gyroL3gHandler->setCustomFdir(fdir);
gyroL3gHandler->setParent(objects::ACS_BOARD_ASS);
#if OBSW_TEST_ACS == 1 #if OBSW_TEST_ACS == 1
gyroL3gHandler->setStartUpImmediately(); gyroL3gHandler->setStartUpImmediately();
gyroL3gHandler->setToGoToNormalMode(true); gyroL3gHandler->setToGoToNormalMode(true);
@ -713,7 +739,14 @@ void ObjectFactory::createAcsBoardComponents(LinuxLibgpioIF* gpioComIF, UartComI
auto acsAss = new AcsBoardAssembly(objects::ACS_BOARD_ASS, objects::NO_OBJECT, pwrSwitcher, auto acsAss = new AcsBoardAssembly(objects::ACS_BOARD_ASS, objects::NO_OBJECT, pwrSwitcher,
acsBoardHelper, gpioComIF); acsBoardHelper, gpioComIF);
static_cast<void>(acsAss); static_cast<void>(acsAss);
std::array<object_id_t, 12> susIds = {objects::SUS_0, objects::SUS_1, objects::SUS_2,
objects::SUS_3, objects::SUS_4, objects::SUS_5,
objects::SUS_6, objects::SUS_7, objects::SUS_8,
objects::SUS_9, objects::SUS_10, objects::SUS_11};
SusAssHelper susAssHelper = SusAssHelper(susIds);
auto susAss =
new SusAssembly(objects::SUS_BOARD_ASS, objects::NO_OBJECT, pwrSwitcher, susAssHelper);
static_cast<void>(susAss);
#if OBSW_TEST_ACS_BOARD_ASS == 1 #if OBSW_TEST_ACS_BOARD_ASS == 1
CommandMessage msg; CommandMessage msg;
ModeMessage::setModeMessage(&msg, ModeMessage::CMD_MODE_COMMAND, DeviceHandlerIF::MODE_NORMAL, ModeMessage::setModeMessage(&msg, ModeMessage::CMD_MODE_COMMAND, DeviceHandlerIF::MODE_NORMAL,

View File

@ -93,7 +93,8 @@ enum commonObjects: uint32_t {
PTME_CONFIG = 44330004, PTME_CONFIG = 44330004,
// 0x73 ('s') for assemblies and system/subsystem components // 0x73 ('s') for assemblies and system/subsystem components
ACS_BOARD_ASS = 0x73000001 ACS_BOARD_ASS = 0x73000001,
SUS_BOARD_ASS = 0x73000002
}; };
} }

2
fsfw

@ -1 +1 @@
Subproject commit fec5f83f4f2459facee25939e0292115f89a6d73 Subproject commit ddc1cdb1f5d1ee6f532c04b0419e24f8f40566cf

View File

@ -114,12 +114,14 @@ void GPSHyperionLinuxController::readGpsDataFromGpsd() {
gps = myGpsmm.read(); gps = myGpsmm.read();
if (gps == nullptr) { if (gps == nullptr) {
sif::warning << "GPSHyperionHandler::readGpsDataFromGpsd: Reading GPS data failed" << std::endl; sif::warning << "GPSHyperionHandler::readGpsDataFromGpsd: Reading GPS data failed" << std::endl;
return;
} }
PoolReadGuard pg(&gpsSet); PoolReadGuard pg(&gpsSet);
if (pg.getReadResult() != HasReturnvaluesIF::RETURN_OK) { if (pg.getReadResult() != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
sif::warning << "GPSHyperionHandler::readGpsDataFromGpsd: Reading dataset failed" << std::endl; sif::warning << "GPSHyperionHandler::readGpsDataFromGpsd: Reading dataset failed" << std::endl;
#endif #endif
return;
} }
// 0: Not seen, 1: No fix, 2: 2D-Fix, 3: 3D-Fix // 0: Not seen, 1: No fix, 2: 2D-Fix, 3: 3D-Fix

View File

@ -7,7 +7,8 @@
AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId, AcsBoardAssembly::AcsBoardAssembly(object_id_t objectId, object_id_t parentId,
PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF) PowerSwitchIF* switcher, AcsBoardHelper helper, GpioIF* gpioIF)
: DualLaneAssemblyBase(objectId, parentId, switcher, SWITCH_A, SWITCH_B, : DualLaneAssemblyBase(objectId, parentId, switcher, SWITCH_A, SWITCH_B,
POWER_STATE_MACHINE_TIMEOUT), POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
TRANSITION_OTHER_SIDE_FAILED),
helper(helper), helper(helper),
gpioIF(gpioIF) { gpioIF(gpioIF) {
if (switcher == nullptr) { if (switcher == nullptr) {
@ -34,9 +35,7 @@ ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode)
using namespace duallane; using namespace duallane;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
refreshHelperModes(); refreshHelperModes();
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) { // Initialize the mode table to ensure all devices are in a defined state
result = handleNormalOrOnModeCmd(mode, submode);
} else {
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GYRO_0_A].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_1_A].setMode(MODE_OFF);
@ -55,6 +54,10 @@ ReturnValue_t AcsBoardAssembly::commandChildren(Mode_t mode, Submode_t submode)
modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::MGM_3_B].setSubmode(SUBMODE_NONE);
modeTable[ModeTableIdx::GPS].setMode(MODE_OFF); modeTable[ModeTableIdx::GPS].setMode(MODE_OFF);
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE); modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
result = handleNormalOrOnModeCmd(mode, submode);
}
} }
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end()); HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
executeTable(tableIter); executeTable(tableIter);
@ -99,16 +102,22 @@ ReturnValue_t AcsBoardAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_
ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane; using namespace duallane;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
bool needsSecondStep = false;
auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) { auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, ModeTableIdx tableIdx) {
if (mode == DeviceHandlerIF::MODE_NORMAL) { if (mode == devMode) {
modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(submode);
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objectId, devMode)) { if (isUseable(objectId, devMode)) {
if (devMode == MODE_ON) { if (devMode == MODE_ON) {
modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} else { } else {
modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
if (internalState != STATE_SECOND_STEP) {
needsSecondStep = true;
}
} }
} }
} else if (mode == MODE_ON) { } else if (mode == MODE_ON) {
@ -118,11 +127,7 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
} }
} }
}; };
if (this->mode == MODE_OFF and mode == DeviceHandlerIF::MODE_NORMAL) { bool gpsUsable = isUseable(helper.gpsId, helper.gpsMode);
if (internalState != STATE_SECOND_STEP) {
result = NEED_SECOND_STEP;
}
}
switch (submode) { switch (submode) {
case (A_SIDE): { case (A_SIDE): {
modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_2_B].setMode(MODE_OFF);
@ -137,15 +142,15 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A); cmdSeq(helper.gyro1L3gIdSideA, helper.gyro1SideAMode, ModeTableIdx::GYRO_1_A);
cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A); cmdSeq(helper.mgm0Lis3IdSideA, helper.mgm0SideAMode, ModeTableIdx::MGM_0_A);
cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A); cmdSeq(helper.mgm1Rm3100IdSideA, helper.mgm1SideAMode, ModeTableIdx::MGM_1_A);
modeTable[ModeTableIdx::GPS].setMode(MODE_ON); if (gpsUsable) {
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
if (gpioIF->pullLow(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) { if (gpioIF->pullLow(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1 #if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low" sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select low"
<< std::endl; << std::endl;
#endif #endif
} }
return result; }
break;
} }
case (B_SIDE): { case (B_SIDE): {
modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF); modeTable[ModeTableIdx::GYRO_0_A].setMode(MODE_OFF);
@ -160,15 +165,15 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
modeTable[ModeTableIdx::GPS].setMode(MODE_ON); if (gpsUsable) {
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
if (gpioIF->pullHigh(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) { if (gpioIF->pullHigh(gpioIds::GNSS_SELECT) != HasReturnvaluesIF::RETURN_OK) {
#if OBSW_VERBOSE_LEVEL >= 1 #if OBSW_VERBOSE_LEVEL >= 1
sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high" sif::error << "AcsBoardAssembly::handleNormalOrOnModeCmd: Could not pull GNSS select high"
<< std::endl; << std::endl;
#endif #endif
} }
return result; }
break;
} }
case (DUAL_MODE): { case (DUAL_MODE): {
cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS); cmdSeq(helper.gpsId, helper.gpsMode, ModeTableIdx::GPS);
@ -180,9 +185,8 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B); cmdSeq(helper.gyro3L3gIdSideB, helper.gyro3SideBMode, ModeTableIdx::GYRO_3_B);
cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B); cmdSeq(helper.mgm2Lis3IdSideB, helper.mgm2SideBMode, ModeTableIdx::MGM_2_B);
cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B); cmdSeq(helper.mgm3Rm3100IdSideB, helper.mgm3SideBMode, ModeTableIdx::MGM_3_B);
modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
ReturnValue_t status = RETURN_OK; ReturnValue_t status = RETURN_OK;
if (gpsUsable) {
if (defaultSubmode == Submodes::A_SIDE) { if (defaultSubmode == Submodes::A_SIDE) {
status = gpioIF->pullLow(gpioIds::GNSS_SELECT); status = gpioIF->pullLow(gpioIds::GNSS_SELECT);
} else { } else {
@ -195,65 +199,23 @@ ReturnValue_t AcsBoardAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t s
<< std::endl; << std::endl;
#endif #endif
} }
return result; }
break;
} }
default: { default: {
sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl; sif::error << "AcsBoardAssembly::handleNormalModeCmd: Unknown submode" << std::endl;
} }
} }
if (gpsUsable) {
modeTable[ModeTableIdx::GPS].setMode(MODE_ON);
modeTable[ModeTableIdx::GPS].setSubmode(SUBMODE_NONE);
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
}
return result; return result;
} }
void AcsBoardAssembly::handleChildrenLostMode(ReturnValue_t result) {
using namespace duallane;
// Some ACS board components are required for Safe-Mode. It would be good if the software
// transitions from A side to B side and from B side to dual mode autonomously
// to ensure that that enough sensors are available without an operators intervention.
// Therefore, the lost mode handler was overwritten to start these transitions
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
// Not sure when this would happen. This flag is reset if the mode was reached. If it
// was not reached, the transition failure handler should be called.
sif::error << "AcsBoardAssembly::handleChildrenLostMode: Wrong handler called" << std::endl;
triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void AcsBoardAssembly::handleModeTransitionFailed(ReturnValue_t result) {
using namespace duallane;
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
// Check whether the transition was started because the mode could not be kept (not commanded).
// If this is not the case, start transition to other side. If it is the case, start
// transition to dual mode.
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
triggerEvent(TRANSITION_OTHER_SIDE_FAILED, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void AcsBoardAssembly::setPreferredSide(duallane::Submodes submode) {
using namespace duallane;
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
return;
}
this->defaultSubmode = submode;
}
void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) { void AcsBoardAssembly::selectGpsInDualMode(duallane::Submodes side) {
using namespace duallane; using namespace duallane;
if (submode != Submodes::DUAL_MODE) { if (submode != Submodes::DUAL_MODE) {
@ -288,15 +250,6 @@ void AcsBoardAssembly::refreshHelperModes() {
} }
} }
void AcsBoardAssembly::finishModeOp() {
using namespace duallane;
AssemblyBase::handleModeReached();
pwrStateMachine.reset();
powerRetryCounter = 0;
tryingOtherSide = false;
dualModeErrorSwitch = true;
}
ReturnValue_t AcsBoardAssembly::initialize() { ReturnValue_t AcsBoardAssembly::initialize() {
ReturnValue_t result = registerChild(helper.gyro0AdisIdSideA); ReturnValue_t result = registerChild(helper.gyro0AdisIdSideA);
if (result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {

View File

@ -77,6 +77,7 @@ class AcsBoardAssembly : public DualLaneAssemblyBase {
// TRANSITION_OTHER_SIDE_FAILED_ID // TRANSITION_OTHER_SIDE_FAILED_ID
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID // NOT_ENOUGH_DEVICES_DUAL_MODE_ID
// POWER_STATE_MACHINE_TIMEOUT_ID // POWER_STATE_MACHINE_TIMEOUT_ID
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS; static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::ACS_BOARD_ASS;
static constexpr Event TRANSITION_OTHER_SIDE_FAILED = static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH); event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
@ -84,14 +85,17 @@ class AcsBoardAssembly : public DualLaneAssemblyBase {
event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH); event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
static constexpr Event POWER_STATE_MACHINE_TIMEOUT = static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM); event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
//! should instead command the assembly off first and then command the assembly on into the
//! desired mode/submode combination
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9; static constexpr uint8_t NUMBER_DEVICES_MODE_TABLE = 9;
AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, AcsBoardAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
AcsBoardHelper helper, GpioIF* gpioIF); AcsBoardHelper helper, GpioIF* gpioIF);
void setPreferredSide(duallane::Submodes submode);
/** /**
* In dual mode, the A side or the B side GPS device can be used, but not both. * In dual mode, the A side or the B side GPS device can be used, but not both.
* This function can be used to switch the used GPS device. * This function can be used to switch the used GPS device.
@ -106,12 +110,10 @@ class AcsBoardAssembly : public DualLaneAssemblyBase {
pcduSwitches::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3; pcduSwitches::Switches::PDU2_CH7_ACS_BOARD_SIDE_B_3V3;
bool tryingOtherSide = false; bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
AcsBoardHelper helper; AcsBoardHelper helper;
GpioIF* gpioIF = nullptr; GpioIF* gpioIF = nullptr;
// duallane::PwrStates state = duallane::PwrStates::IDLE;
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
bool dualModeErrorSwitch = true;
FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable; FixedArrayList<ModeListEntry, NUMBER_DEVICES_MODE_TABLE> modeTable;
ReturnValue_t initialize() override; ReturnValue_t initialize() override;
@ -120,12 +122,8 @@ class AcsBoardAssembly : public DualLaneAssemblyBase {
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override; ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override; ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
void handleModeTransitionFailed(ReturnValue_t result) override;
void handleChildrenLostMode(ReturnValue_t result) override;
ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode); ReturnValue_t handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode);
void refreshHelperModes(); void refreshHelperModes();
void finishModeOp();
}; };
#endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */ #endif /* MISSION_SYSTEM_ACSBOARDASSEMBLY_H_ */

View File

@ -0,0 +1,6 @@
#include "AcsBoardFdir.h"
#include <common/config/commonObjects.h>
AcsBoardFdir::AcsBoardFdir(object_id_t sensorId)
: DeviceHandlerFailureIsolation(sensorId, objects::ACS_BOARD_ASS) {}

View File

@ -0,0 +1,11 @@
#ifndef MISSION_SYSTEM_ACSBOARDFDIR_H_
#define MISSION_SYSTEM_ACSBOARDFDIR_H_
#include <fsfw/devicehandlers/DeviceHandlerFailureIsolation.h>
class AcsBoardFdir : public DeviceHandlerFailureIsolation {
public:
AcsBoardFdir(object_id_t sensorId);
};
#endif /* MISSION_SYSTEM_ACSBOARDFDIR_H_ */

View File

@ -8,4 +8,5 @@ target_sources(${LIB_EIVE_MISSION} PRIVATE
TcsSubsystem.cpp TcsSubsystem.cpp
DualLanePowerStateMachine.cpp DualLanePowerStateMachine.cpp
DualLaneAssemblyBase.cpp DualLaneAssemblyBase.cpp
AcsBoardFdir.cpp
) )

View File

@ -1,12 +1,20 @@
#include "DualLaneAssemblyBase.h" #include "DualLaneAssemblyBase.h"
#include <fsfw/ipc/QueueFactory.h>
DualLaneAssemblyBase::DualLaneAssemblyBase(object_id_t objectId, object_id_t parentId, DualLaneAssemblyBase::DualLaneAssemblyBase(object_id_t objectId, object_id_t parentId,
PowerSwitchIF* pwrSwitcher, PowerSwitchIF* pwrSwitcher,
pcduSwitches::Switches switch1, pcduSwitches::Switches switch1,
pcduSwitches::Switches switch2, Event pwrTimeoutEvent) pcduSwitches::Switches switch2, Event pwrTimeoutEvent,
Event sideSwitchNotAllowedEvent,
Event transitionOtherSideFailedEvent)
: AssemblyBase(objectId, parentId), : AssemblyBase(objectId, parentId),
pwrStateMachine(switch1, switch2, pwrSwitcher), pwrStateMachine(switch1, switch2, pwrSwitcher),
pwrTimeoutEvent(pwrTimeoutEvent) {} pwrTimeoutEvent(pwrTimeoutEvent),
sideSwitchNotAllowedEvent(sideSwitchNotAllowedEvent),
transitionOtherSideFailedEvent(transitionOtherSideFailedEvent) {
eventQueue = QueueFactory::instance()->createMessageQueue(10);
}
void DualLaneAssemblyBase::performChildOperation() { void DualLaneAssemblyBase::performChildOperation() {
using namespace duallane; using namespace duallane;
@ -22,21 +30,17 @@ void DualLaneAssemblyBase::performChildOperation() {
} }
void DualLaneAssemblyBase::startTransition(Mode_t mode, Submode_t submode) { void DualLaneAssemblyBase::startTransition(Mode_t mode, Submode_t submode) {
// doStartTransition(mode, submode);
using namespace duallane; using namespace duallane;
pwrStateMachine.reset(); pwrStateMachine.reset();
// If anything other than MODE_OFF is commanded, perform power state machine first
if (mode != MODE_OFF) { if (mode != MODE_OFF) {
// If anything other than MODE_OFF is commanded, perform power state machine first
// Cache the target modes, required by power state machine // Cache the target modes, required by power state machine
pwrStateMachine.start(mode, submode); pwrStateMachine.start(mode, submode);
// Cache these for later after the power state machine has finished // Cache these for later after the power state machine has finished
targetMode = mode; targetMode = mode;
targetSubmode = submode; targetSubmode = submode;
// Perform power state machine first, then start mode transition. The power state machine will
// start the transition after it has finished
pwrStateMachineWrapper();
} else { } else {
// Command the devices to off first before switching off the power. The handleModeReached
// custom implementation will take care of starting the power state machine.
AssemblyBase::startTransition(mode, submode); AssemblyBase::startTransition(mode, submode);
} }
} }
@ -60,12 +64,13 @@ bool DualLaneAssemblyBase::isUseable(object_id_t object, Mode_t mode) {
ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() { ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() {
using namespace duallane; using namespace duallane;
OpCodes opCode = pwrStateMachine.powerStateMachine(); OpCodes opCode = pwrStateMachine.powerStateMachine();
if (customRecoveryStates == RecoveryCustomStates::IDLE) {
if (opCode == OpCodes::NONE) { if (opCode == OpCodes::NONE) {
return RETURN_OK; return RETURN_OK;
} else if (opCode == OpCodes::FINISH_OP) { } else if (opCode == OpCodes::TO_OFF_DONE) {
// Will be called for transitions to MODE_OFF, where everything is done after power switching // Will be called for transitions to MODE_OFF, where everything is done after power switching
finishModeOp(); finishModeOp();
} else if (opCode == OpCodes::START_TRANSITION) { } else if (opCode == OpCodes::TO_NOT_OFF_DONE) {
// Will be called for transitions from MODE_OFF to anything else, where the mode still has // Will be called for transitions from MODE_OFF to anything else, where the mode still has
// to be commanded after power switching // to be commanded after power switching
AssemblyBase::startTransition(targetMode, targetSubmode); AssemblyBase::startTransition(targetMode, targetSubmode);
@ -81,6 +86,7 @@ ReturnValue_t DualLaneAssemblyBase::pwrStateMachineWrapper() {
return RETURN_FAILED; return RETURN_FAILED;
} }
} }
}
return RETURN_OK; return RETURN_OK;
} }
@ -89,6 +95,13 @@ ReturnValue_t DualLaneAssemblyBase::isModeCombinationValid(Mode_t mode, Submode_
if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) { if (submode != A_SIDE and submode != B_SIDE and submode != DUAL_MODE) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
if (sideSwitchTransition(mode, submode)) {
// I could implement this but this would increase the already high complexity. This is not
// necessary. The operator should can send a command to switch the assembly off first and
// then send a command to turn on the other side, either to ON or to NORMAL
triggerEvent(SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID, 0, 0);
return TRANS_NOT_ALLOWED;
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
@ -103,3 +116,121 @@ void DualLaneAssemblyBase::handleModeReached() {
finishModeOp(); finishModeOp();
} }
} }
MessageQueueId_t DualLaneAssemblyBase::getEventReceptionQueue() { return eventQueue->getId(); }
void DualLaneAssemblyBase::handleChildrenLostMode(ReturnValue_t result) {
using namespace duallane;
// Some ACS board components are required for Safe-Mode. It would be good if the software
// transitions from A side to B side and from B side to dual mode autonomously
// to ensure that that enough sensors are available without an operators intervention.
// Therefore, the lost mode handler was overwritten to start these transitions
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
// Not sure when this would happen. This flag is reset if the mode was reached. If it
// was not reached, the transition failure handler should be called.
sif::error << "DualLaneAssemblyBase::handleChildrenLostMode: Wrong handler called" << std::endl;
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
void DualLaneAssemblyBase::handleModeTransitionFailed(ReturnValue_t result) {
using namespace duallane;
Submode_t nextSubmode = Submodes::A_SIDE;
if (submode == Submodes::A_SIDE) {
nextSubmode = Submodes::B_SIDE;
}
// Check whether the transition was started because the mode could not be kept (not commanded).
// If this is not the case, start transition to other side. If it is the case, start
// transition to dual mode.
if (not tryingOtherSide) {
triggerEvent(CANT_KEEP_MODE, mode, submode);
startTransition(mode, nextSubmode);
tryingOtherSide = true;
} else {
triggerEvent(transitionOtherSideFailedEvent, mode, targetSubmode);
startTransition(mode, Submodes::DUAL_MODE);
}
}
bool DualLaneAssemblyBase::checkAndHandleRecovery() {
using namespace duallane;
OpCodes opCode = OpCodes::NONE;
if (recoveryState == RECOVERY_IDLE) {
return AssemblyBase::checkAndHandleRecovery();
}
if (customRecoveryStates == IDLE) {
pwrStateMachine.start(MODE_OFF, 0);
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_OFF;
}
if (customRecoveryStates == POWER_SWITCHING_OFF) {
opCode = pwrStateMachine.powerStateMachine();
if (opCode == OpCodes::TO_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
customRecoveryStates = RecoveryCustomStates::POWER_SWITCHING_ON;
pwrStateMachine.start(targetMode, targetSubmode);
}
}
if (customRecoveryStates == POWER_SWITCHING_ON) {
opCode = pwrStateMachine.powerStateMachine();
if (opCode == OpCodes::TO_NOT_OFF_DONE or opCode == OpCodes::TIMEOUT_OCCURED) {
customRecoveryStates = RecoveryCustomStates::DONE;
}
}
if (customRecoveryStates == DONE) {
bool pendingRecovery = AssemblyBase::checkAndHandleRecovery();
if (not pendingRecovery) {
pwrStateMachine.reset();
customRecoveryStates = RecoveryCustomStates::IDLE;
}
// For a recovery on one side, only do the recovery once
for (auto& child : childrenMap) {
if (healthHelper.healthTable->getHealth(child.first) == HasHealthIF::NEEDS_RECOVERY) {
sendHealthCommand(child.second.commandQueue, HEALTHY);
child.second.healthChanged = false;
}
}
return pendingRecovery;
}
return true;
}
bool DualLaneAssemblyBase::sideSwitchTransition(Mode_t mode, Submode_t submode) {
using namespace duallane;
if (this->mode == MODE_OFF) {
return false;
}
if (this->mode == MODE_ON or this->mode == DeviceHandlerIF::MODE_NORMAL) {
if (this->submode == Submodes::A_SIDE and submode == Submodes::B_SIDE) {
return true;
} else if (this->submode == Submodes::B_SIDE and submode == Submodes::A_SIDE) {
return true;
}
return false;
}
return false;
}
void DualLaneAssemblyBase::finishModeOp() {
using namespace duallane;
AssemblyBase::handleModeReached();
pwrStateMachine.reset();
powerRetryCounter = 0;
tryingOtherSide = false;
dualModeErrorSwitch = true;
}
void DualLaneAssemblyBase::setPreferredSide(duallane::Submodes submode) {
using namespace duallane;
if (submode != Submodes::A_SIDE and submode != Submodes::B_SIDE) {
return;
}
this->defaultSubmode = submode;
}

View File

@ -11,21 +11,37 @@
* power lanes and are required for the majority of satellite modes. Therefore, there is a lot * power lanes and are required for the majority of satellite modes. Therefore, there is a lot
* of common code, for example the power switching. * of common code, for example the power switching.
*/ */
class DualLaneAssemblyBase : public AssemblyBase { class DualLaneAssemblyBase : public AssemblyBase, public ConfirmsFailuresIF {
public: public:
static constexpr uint8_t TRANSITION_OTHER_SIDE_FAILED_ID = 0; static constexpr UniqueEventId_t TRANSITION_OTHER_SIDE_FAILED_ID = 0;
static constexpr uint8_t NOT_ENOUGH_DEVICES_DUAL_MODE_ID = 1; static constexpr UniqueEventId_t NOT_ENOUGH_DEVICES_DUAL_MODE_ID = 1;
static constexpr uint8_t POWER_STATE_MACHINE_TIMEOUT_ID = 2; static constexpr UniqueEventId_t POWER_STATE_MACHINE_TIMEOUT_ID = 2;
static constexpr UniqueEventId_t SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID = 3;
DualLaneAssemblyBase(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, DualLaneAssemblyBase(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
pcduSwitches::Switches switch1, pcduSwitches::Switches switch2, pcduSwitches::Switches switch1, pcduSwitches::Switches switch2,
Event pwrSwitchTimeoutEvent); Event pwrSwitchTimeoutEvent, Event sideSwitchNotAllowedEvent,
Event transitionOtherSideFailedEvent);
protected: protected:
// This helper object complete encapsulates power switching // This helper object complete encapsulates power switching
DualLanePowerStateMachine pwrStateMachine; DualLanePowerStateMachine pwrStateMachine;
Event pwrTimeoutEvent; Event pwrTimeoutEvent;
Event sideSwitchNotAllowedEvent;
Event transitionOtherSideFailedEvent;
uint8_t powerRetryCounter = 0; uint8_t powerRetryCounter = 0;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
duallane::Submodes defaultSubmode = duallane::Submodes::A_SIDE;
enum RecoveryCustomStates {
IDLE,
POWER_SWITCHING_OFF,
POWER_SWITCHING_ON,
DONE
} customRecoveryStates = RecoveryCustomStates::IDLE;
MessageQueueIF* eventQueue = nullptr;
/** /**
* Check whether it makes sense to send mode commands to the device * Check whether it makes sense to send mode commands to the device
@ -42,16 +58,29 @@ class DualLaneAssemblyBase : public AssemblyBase {
*/ */
virtual ReturnValue_t pwrStateMachineWrapper(); virtual ReturnValue_t pwrStateMachineWrapper();
virtual ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override; virtual ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
/**
* Custom recovery implementation to ensure that the power lines are commanded off for a
* recovery.
* @return
*/
virtual bool checkAndHandleRecovery() override;
void setPreferredSide(duallane::Submodes submode);
virtual void performChildOperation() override; virtual void performChildOperation() override;
virtual void startTransition(Mode_t mode, Submode_t submode) override; virtual void startTransition(Mode_t mode, Submode_t submode) override;
virtual void handleChildrenLostMode(ReturnValue_t result) override;
virtual void handleModeTransitionFailed(ReturnValue_t result) override;
virtual void handleModeReached(); virtual void handleModeReached();
MessageQueueId_t getEventReceptionQueue() override;
bool sideSwitchTransition(Mode_t mode, Submode_t submode);
/** /**
* Implemented by user. Will be called if a full mode operation has finished. * Implemented by user. Will be called if a full mode operation has finished.
* This includes both the regular mode state machine operations and the power state machine * This includes both the regular mode state machine operations and the power state machine
* operations * operations
*/ */
virtual void finishModeOp() = 0; virtual void finishModeOp();
template <size_t MAX_SIZE> template <size_t MAX_SIZE>
void initModeTableEntry(object_id_t id, ModeListEntry& entry, void initModeTableEntry(object_id_t id, ModeListEntry& entry,

View File

@ -14,6 +14,7 @@ void DualLanePowerStateMachine::setCheckTimeout(dur_millis_t timeout) {
} }
void DualLanePowerStateMachine::start(Mode_t mode, Submode_t submode) { void DualLanePowerStateMachine::start(Mode_t mode, Submode_t submode) {
reset();
checkTimeout.resetTimer(); checkTimeout.resetTimer();
targetMode = mode; targetMode = mode;
targetSubmode = submode; targetSubmode = submode;
@ -34,18 +35,19 @@ duallane::OpCodes DualLanePowerStateMachine::powerStateMachine() {
ReturnValue_t switchStateA = RETURN_OK; ReturnValue_t switchStateA = RETURN_OK;
ReturnValue_t switchStateB = RETURN_OK; ReturnValue_t switchStateB = RETURN_OK;
if (state == PwrStates::IDLE or state == PwrStates::MODE_COMMANDING) { if (state == PwrStates::IDLE or state == PwrStates::MODE_COMMANDING) {
return duallane::OpCodes::NONE; return opResult;
} }
if (state == PwrStates::SWITCHING_POWER or state == PwrStates::CHECKING_POWER) { if (state == PwrStates::SWITCHING_POWER or state == PwrStates::CHECKING_POWER) {
switchStateA = pwrSwitcher->getSwitchState(SWITCH_A); switchStateA = pwrSwitcher->getSwitchState(SWITCH_A);
switchStateB = pwrSwitcher->getSwitchState(SWITCH_B); switchStateB = pwrSwitcher->getSwitchState(SWITCH_B);
} else { } else {
return OpCodes::NONE; return opResult;
} }
if (targetMode == HasModesIF::MODE_OFF) { if (targetMode == HasModesIF::MODE_OFF) {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) { if (switchStateA == PowerSwitchIF::SWITCH_OFF and switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = PwrStates::IDLE; state = PwrStates::IDLE;
return OpCodes::FINISH_OP; opResult = OpCodes::TO_OFF_DONE;
return opResult;
} }
} else { } else {
switch (targetSubmode) { switch (targetSubmode) {
@ -53,7 +55,8 @@ duallane::OpCodes DualLanePowerStateMachine::powerStateMachine() {
if (switchStateA == PowerSwitchIF::SWITCH_ON and if (switchStateA == PowerSwitchIF::SWITCH_ON and
switchStateB == PowerSwitchIF::SWITCH_OFF) { switchStateB == PowerSwitchIF::SWITCH_OFF) {
state = PwrStates::MODE_COMMANDING; state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION; opResult = OpCodes::TO_NOT_OFF_DONE;
return opResult;
} }
break; break;
} }
@ -61,14 +64,16 @@ duallane::OpCodes DualLanePowerStateMachine::powerStateMachine() {
if (switchStateA == PowerSwitchIF::SWITCH_OFF and if (switchStateA == PowerSwitchIF::SWITCH_OFF and
switchStateB == PowerSwitchIF::SWITCH_ON) { switchStateB == PowerSwitchIF::SWITCH_ON) {
state = PwrStates::MODE_COMMANDING; state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION; opResult = OpCodes::TO_NOT_OFF_DONE;
return opResult;
} }
break; break;
} }
case (DUAL_MODE): { case (DUAL_MODE): {
if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) { if (switchStateA == PowerSwitchIF::SWITCH_ON and switchStateB == PowerSwitchIF::SWITCH_ON) {
state = PwrStates::MODE_COMMANDING; state = PwrStates::MODE_COMMANDING;
return OpCodes::START_TRANSITION; opResult = OpCodes::TO_NOT_OFF_DONE;
return opResult;
} }
} }
} }
@ -123,11 +128,12 @@ duallane::OpCodes DualLanePowerStateMachine::powerStateMachine() {
return OpCodes::TIMEOUT_OCCURED; return OpCodes::TIMEOUT_OCCURED;
} }
} }
return OpCodes::NONE; return opResult;
} }
void DualLanePowerStateMachine::reset() { void DualLanePowerStateMachine::reset() {
state = duallane::PwrStates::IDLE; state = duallane::PwrStates::IDLE;
opResult = duallane::OpCodes::NONE;
targetMode = HasModesIF::MODE_OFF; targetMode = HasModesIF::MODE_OFF;
targetSubmode = 0; targetSubmode = 0;
checkTimeout.resetTimer(); checkTimeout.resetTimer();

View File

@ -23,6 +23,7 @@ class DualLanePowerStateMachine : public HasReturnvaluesIF {
const pcduSwitches::Switches SWITCH_B; const pcduSwitches::Switches SWITCH_B;
private: private:
duallane::OpCodes opResult = duallane::OpCodes::NONE;
duallane::PwrStates state = duallane::PwrStates::IDLE; duallane::PwrStates state = duallane::PwrStates::IDLE;
PowerSwitchIF* pwrSwitcher = nullptr; PowerSwitchIF* pwrSwitcher = nullptr;
Mode_t targetMode = HasModesIF::MODE_OFF; Mode_t targetMode = HasModesIF::MODE_OFF;

View File

@ -7,7 +7,8 @@
SusAssembly::SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, SusAssembly::SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
SusAssHelper helper) SusAssHelper helper)
: DualLaneAssemblyBase(objectId, parentId, pwrSwitcher, SWITCH_NOM, SWITCH_RED, : DualLaneAssemblyBase(objectId, parentId, pwrSwitcher, SWITCH_NOM, SWITCH_RED,
POWER_STATE_MACHINE_TIMEOUT), POWER_STATE_MACHINE_TIMEOUT, SIDE_SWITCH_TRANSITION_NOT_ALLOWED,
TRANSITION_OTHER_SIDE_FAILED),
helper(helper), helper(helper),
pwrSwitcher(pwrSwitcher) { pwrSwitcher(pwrSwitcher) {
ModeListEntry entry; ModeListEntry entry;
@ -19,16 +20,15 @@ SusAssembly::SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitch
ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) { ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
refreshHelperModes(); refreshHelperModes();
powerStateMachine(mode, submode); // Initialize the mode table to ensure all devices are in a defined state
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
if (state == States::MODE_COMMANDING) {
handleNormalOrOnModeCmd(mode, submode);
}
} else {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
modeTable[idx].setMode(MODE_OFF); modeTable[idx].setMode(MODE_OFF);
modeTable[idx].setSubmode(SUBMODE_NONE); modeTable[idx].setSubmode(SUBMODE_NONE);
} }
if (recoveryState != RecoveryState::RECOVERY_STARTED) {
if (mode == DeviceHandlerIF::MODE_NORMAL or mode == MODE_ON) {
handleNormalOrOnModeCmd(mode, submode);
}
} }
HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end()); HybridIterator<ModeListEntry> tableIter(modeTable.begin(), modeTable.end());
@ -39,20 +39,26 @@ ReturnValue_t SusAssembly::commandChildren(Mode_t mode, Submode_t submode) {
ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) { ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submode) {
using namespace duallane; using namespace duallane;
ReturnValue_t result = RETURN_OK; ReturnValue_t result = RETURN_OK;
auto cmdSeq = [&](object_id_t objectId, uint8_t tableIdx) { bool needsSecondStep = false;
if (mode == DeviceHandlerIF::MODE_NORMAL) { auto cmdSeq = [&](object_id_t objectId, Mode_t devMode, uint8_t tableIdx) {
if (isUseable(objectId, mode)) { if (mode == devMode) {
if (helper.susModes[tableIdx] != MODE_OFF) { modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(submode);
} else if (mode == DeviceHandlerIF::MODE_NORMAL) {
if (isUseable(objectId, devMode)) {
if (devMode == MODE_ON) {
modeTable[tableIdx].setMode(mode); modeTable[tableIdx].setMode(mode);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} else { } else {
result = NEED_SECOND_STEP;
modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
if (internalState != STATE_SECOND_STEP) {
needsSecondStep = true;
}
} }
} }
} else if (mode == MODE_ON) { } else if (mode == MODE_ON) {
if (isUseable(objectId, mode)) { if (isUseable(objectId, devMode)) {
modeTable[tableIdx].setMode(MODE_ON); modeTable[tableIdx].setMode(MODE_ON);
modeTable[tableIdx].setSubmode(SUBMODE_NONE); modeTable[tableIdx].setSubmode(SUBMODE_NONE);
} }
@ -61,31 +67,34 @@ ReturnValue_t SusAssembly::handleNormalOrOnModeCmd(Mode_t mode, Submode_t submod
switch (submode) { switch (submode) {
case (A_SIDE): { case (A_SIDE): {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS_ONE_SIDE; idx++) {
cmdSeq(helper.susIds[idx], idx); cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
// Switch off devices on redundant side // Switch off devices on redundant side
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF); modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE); modeTable[idx + NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
} }
return result; break;
} }
case (B_SIDE): { case (B_SIDE): {
for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) { for (uint8_t idx = NUMBER_SUN_SENSORS_ONE_SIDE; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], idx); cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
// Switch devices on nominal side // Switch devices on nominal side
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF); modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setMode(MODE_OFF);
modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE); modeTable[idx - NUMBER_SUN_SENSORS_ONE_SIDE].setSubmode(SUBMODE_NONE);
} }
return result; break;
} }
case (DUAL_MODE): { case (DUAL_MODE): {
for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) { for (uint8_t idx = 0; idx < NUMBER_SUN_SENSORS; idx++) {
cmdSeq(helper.susIds[idx], idx); cmdSeq(helper.susIds[idx], helper.susModes[idx], idx);
}
break;
}
}
if (needsSecondStep) {
result = NEED_SECOND_STEP;
} }
return result; return result;
} }
}
return RETURN_OK;
}
ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) { ReturnValue_t SusAssembly::checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) {
using namespace duallane; using namespace duallane;

View File

@ -20,13 +20,23 @@ class SusAssembly : DualLaneAssemblyBase {
static constexpr uint8_t NUMBER_SUN_SENSORS_ONE_SIDE = 6; static constexpr uint8_t NUMBER_SUN_SENSORS_ONE_SIDE = 6;
static constexpr uint8_t NUMBER_SUN_SENSORS = 12; static constexpr uint8_t NUMBER_SUN_SENSORS = 12;
// Use these variables instead of magic numbers when generator was updated
// TRANSITION_OTHER_SIDE_FAILED_ID
// NOT_ENOUGH_DEVICES_DUAL_MODE_ID
// POWER_STATE_MACHINE_TIMEOUT_ID
// SIDE_SWITCH_TRANSITION_NOT_ALLOWED_ID
static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SUS_BOARD_ASS; static constexpr uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::SUS_BOARD_ASS;
static constexpr Event TRANSITION_OTHER_SIDE_FAILED = static constexpr Event TRANSITION_OTHER_SIDE_FAILED =
event::makeEvent(SUBSYSTEM_ID, TRANSITION_OTHER_SIDE_FAILED_ID, severity::HIGH); event::makeEvent(SUBSYSTEM_ID, 0, severity::HIGH);
static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE = static constexpr Event NOT_ENOUGH_DEVICES_DUAL_MODE =
event::makeEvent(SUBSYSTEM_ID, NOT_ENOUGH_DEVICES_DUAL_MODE_ID, severity::HIGH); event::makeEvent(SUBSYSTEM_ID, 1, severity::HIGH);
static constexpr Event POWER_STATE_MACHINE_TIMEOUT = static constexpr Event POWER_STATE_MACHINE_TIMEOUT =
event::makeEvent(SUBSYSTEM_ID, POWER_STATE_MACHINE_TIMEOUT_ID, severity::MEDIUM); event::makeEvent(SUBSYSTEM_ID, 2, severity::MEDIUM);
//! [EXPORT] : [COMMENT] Not implemented, would increase already high complexity. Operator
//! should instead command the assembly off first and then command the assembly on into the
//! desired mode/submode combination
static constexpr Event SIDE_SWITCH_TRANSITION_NOT_ALLOWED =
event::makeEvent(SUBSYSTEM_ID, 3, severity::LOW);
SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher, SusAssembly(object_id_t objectId, object_id_t parentId, PowerSwitchIF* pwrSwitcher,
SusAssHelper helper); SusAssHelper helper);
@ -41,15 +51,14 @@ class SusAssembly : DualLaneAssemblyBase {
SusAssHelper helper; SusAssHelper helper;
PowerSwitchIF* pwrSwitcher = nullptr; PowerSwitchIF* pwrSwitcher = nullptr;
bool tryingOtherSide = false;
bool dualModeErrorSwitch = true;
ReturnValue_t initialize() override; ReturnValue_t initialize() override;
// AssemblyBase overrides // AssemblyBase overrides
ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override; ReturnValue_t commandChildren(Mode_t mode, Submode_t submode) override;
ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override; ReturnValue_t checkChildrenStateOn(Mode_t wantedMode, Submode_t wantedSubmode) override;
ReturnValue_t isModeCombinationValid(Mode_t mode, Submode_t submode) override;
void handleModeReached() override; void handleModeReached() override;
void handleModeTransitionFailed(ReturnValue_t result) override;
/** /**
* Check whether it makes sense to send mode commands to the device * Check whether it makes sense to send mode commands to the device

View File

@ -6,7 +6,7 @@
namespace duallane { namespace duallane {
enum class PwrStates { IDLE, SWITCHING_POWER, CHECKING_POWER, MODE_COMMANDING }; enum class PwrStates { IDLE, SWITCHING_POWER, CHECKING_POWER, MODE_COMMANDING };
enum class OpCodes { NONE, FINISH_OP, START_TRANSITION, TIMEOUT_OCCURED }; enum class OpCodes { NONE, TO_OFF_DONE, TO_NOT_OFF_DONE, TIMEOUT_OCCURED };
enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 }; enum Submodes : Submode_t { A_SIDE = 0, B_SIDE = 1, DUAL_MODE = 2 };
} // namespace duallane } // namespace duallane