Release v1.2.0 #47

Merged
meierj merged 229 commits from develop into master 2021-06-21 17:58:40 +02:00
5 changed files with 1916 additions and 249 deletions
Showing only changes of commit 89b11d725b - Show all commits

View File

@ -542,8 +542,7 @@ void ObjectFactory::produce(void* args){
I2cCookie* imtqI2cCookie = new I2cCookie(addresses::IMTQ, IMTQ::MAX_REPLY_SIZE, I2cCookie* imtqI2cCookie = new I2cCookie(addresses::IMTQ, IMTQ::MAX_REPLY_SIZE,
std::string("/dev/i2c-0")); std::string("/dev/i2c-0"));
IMTQHandler* imtqHandler = new IMTQHandler(objects::IMTQ_HANDLER, objects::I2C_COM_IF, imtqI2cCookie); new IMTQHandler(objects::IMTQ_HANDLER, objects::I2C_COM_IF, imtqI2cCookie);
imtqHandler->setStartUpImmediately();
UartCookie* plocUartCookie = new UartCookie(std::string("/dev/ttyUL3"), 115200, UartCookie* plocUartCookie = new UartCookie(std::string("/dev/ttyUL3"), 115200,
PLOC::MAX_REPLY_SIZE); PLOC::MAX_REPLY_SIZE);

2
fsfw

@ -1 +1 @@
Subproject commit 1630682548a8775bd0c293b3c76c29e120de5bf0 Subproject commit d700fb551c85393b58a3ada96fbd3f807217d14b

File diff suppressed because it is too large Load Diff

View File

@ -82,7 +82,12 @@ private:
IMTQ::EngHkDataset engHkDataset; IMTQ::EngHkDataset engHkDataset;
IMTQ::CalibratedMtmMeasurementSet calMtmMeasurementSet; IMTQ::CalibratedMtmMeasurementSet calMtmMeasurementSet;
IMTQ::RawMtmMeasurementSet rawMtmMeasurementSet; IMTQ::RawMtmMeasurementSet rawMtmMeasurementSet;
IMTQ::PosXselfTestSet posXselfTestDataset; IMTQ::PosXSelfTestSet posXselfTestDataset;
IMTQ::NegXSelfTestSet negXselfTestDataset;
IMTQ::PosYSelfTestSet posYselfTestDataset;
IMTQ::NegYSelfTestSet negYselfTestDataset;
IMTQ::PosZSelfTestSet posZselfTestDataset;
IMTQ::NegZSelfTestSet negZselfTestDataset;
uint8_t commandBuffer[IMTQ::MAX_COMMAND_SIZE]; uint8_t commandBuffer[IMTQ::MAX_COMMAND_SIZE];
@ -170,6 +175,11 @@ private:
* @param packet Pointer to the reply data holding the self test result. * @param packet Pointer to the reply data holding the self test result.
*/ */
void handlePositiveXSelfTestReply(const uint8_t* packet); void handlePositiveXSelfTestReply(const uint8_t* packet);
void handleNegativeXSelfTestReply(const uint8_t* packet);
void handlePositiveYSelfTestReply(const uint8_t* packet);
void handleNegativeYSelfTestReply(const uint8_t* packet);
void handlePositiveZSelfTestReply(const uint8_t* packet);
void handleNegativeZSelfTestReply(const uint8_t* packet);
/** /**
* @brief This function checks the error byte of a self test measurement. * @brief This function checks the error byte of a self test measurement.

View File

@ -29,12 +29,13 @@ namespace IMTQ {
static const uint32_t ENG_HK_DATA_SET_ID = 1; static const uint32_t ENG_HK_DATA_SET_ID = 1;
static const uint32_t CAL_MTM_SET = 2; static const uint32_t CAL_MTM_SET = 2;
static const uint32_t POS_X_TEST_DATASET = 3; static const uint32_t RAW_MTM_SET = 3;
static const uint32_t NEG_X_TEST_DATASET = 4; static const uint32_t POS_X_TEST_DATASET = 4;
static const uint32_t POS_Y_TEST_DATASET = 5; static const uint32_t NEG_X_TEST_DATASET = 5;
static const uint32_t NEG_Y_TEST_DATASET = 6; static const uint32_t POS_Y_TEST_DATASET = 6;
static const uint32_t POS_Z_TEST_DATASET = 7; static const uint32_t NEG_Y_TEST_DATASET = 7;
static const uint32_t NEG_Z_TEST_DATASET = 8; static const uint32_t POS_Z_TEST_DATASET = 8;
static const uint32_t NEG_Z_TEST_DATASET = 9;
static const uint8_t SIZE_ENG_HK_COMMAND = 1; static const uint8_t SIZE_ENG_HK_COMMAND = 1;
static const uint8_t SIZE_STATUS_REPLY = 2; static const uint8_t SIZE_STATUS_REPLY = 2;
@ -405,7 +406,7 @@ public:
}; };
/** /**
* @brief This dataset holds the raw MTM measurements. * @brief This dataset holds the last calibrated MTM measurement.
*/ */
class CalibratedMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> { class CalibratedMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public: public:
@ -428,17 +429,17 @@ public:
}; };
/** /**
* @brief This dataset holds the last calibrated MTM measurement. * @brief This dataset holds the raw MTM measurements.
*/ */
class RawMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> { class RawMtmMeasurementSet: public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public: public:
RawMtmMeasurementSet(HasLocalDataPoolIF* owner) : RawMtmMeasurementSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, CAL_MTM_SET) { StaticLocalDataSet(owner, RAW_MTM_SET) {
} }
RawMtmMeasurementSet(object_id_t objectId) : RawMtmMeasurementSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, CAL_MTM_SET)) { StaticLocalDataSet(sid_t(objectId, RAW_MTM_SET)) {
} }
/** The unit of all measurements is nT */ /** The unit of all measurements is nT */
@ -450,29 +451,71 @@ public:
this); this);
}; };
/** /**
* @brief This dataset can be used to store the self test results of the positve X axis test. * @brief This class can be used to ease the generation of an action message commanding the
* IMTQHandler to configure the magnettorquer with the desired dipoles.
*
* @details Deserialize the packet, write the deserialized data to the ipc store and store the
* the ipc store address in the action message.
*/
class CommandDipolePacket : public SerialLinkedListAdapter<SerializeIF> {
public:
CommandDipolePacket() {
setLinks();
}
private:
/**
* @brief Constructor
*
* @param xDipole The dipole of the x coil in 10 ^ -4 * Am^2
* @param yDipole The dipole of the y coil in 10 ^ -4 * Am^2
* @param zDipole The dipole of the z coil in 10 ^ -4 * Am^2
* @param duration The duration in milliseconds the dipole will be generated by the coils.
* When set to 0, the dipole will be generated until a new dipole actuation
* command is sent.
*/
CommandDipolePacket(uint16_t xDipole, uint16_t yDipole, uint16_t zDipole, uint16_t duration) :
xDipole(xDipole), yDipole(yDipole), zDipole(zDipole), duration(duration) {
}
void setLinks() {
setStart(&xDipole);
xDipole.setNext(&yDipole);
yDipole.setNext(&zDipole);
zDipole.setNext(&duration);
}
SerializeElement<uint16_t> xDipole;
SerializeElement<uint16_t> yDipole;
SerializeElement<uint16_t> zDipole;
SerializeElement<uint16_t> duration;
};
/**
* @brief This dataset can be used to store the self test results of the +X self test.
* *
* @details Units of measurements: * @details Units of measurements:
* Raw magnetic field: [nT] * Raw magnetic field: [nT]
* Calibrated magnetic field: [nT] * Calibrated magnetic field: [nT]
* Coil currents: [mA] * Coil currents: [mA]
* Temperature: [°C] * Temperature: [°C]
* The self test generates for each axis the positive and negative dipole and measures * The +X self test generates a positive dipole in X direction and measures the magnetic
* the magnetic field with the built-in MTM. The procedure of the test is as follows: * field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step) * 1. All coils off (INIT step)
* 2. +X (apply current to generate dipole in positive X direction) * 2. +X actuation
* 3. All coils off (FINA step) * 3. All coils off (FINA step)
*/ */
class PosXselfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> { class PosXSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public: public:
PosXselfTestSet(HasLocalDataPoolIF* owner) : PosXSelfTestSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, POS_X_TEST_DATASET) { StaticLocalDataSet(owner, IMTQ::POS_X_TEST_DATASET) {
} }
PosXselfTestSet(object_id_t objectId) : PosXSelfTestSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, POS_X_TEST_DATASET)) { StaticLocalDataSet(sid_t(objectId, IMTQ::POS_X_TEST_DATASET)) {
} }
/** INIT block */ /** INIT block */
@ -540,45 +583,451 @@ public:
}; };
/** /**
* @brief This class can be used to ease the generation of an action message commanding the * @brief This dataset can be used to store the self test results of the -X self test.
* IMTQHandler to configure the magnettorquer with the desired dipoles.
* *
* @details Deserialize the packet, write the deserialized data to the ipc store and store the * @details Units of measurements:
* the ipc store address in the action message. * Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [°C]
* The -X self test generates a negative dipole in X direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -X actuation
* 3. All coils off (FINA step)
*/ */
class CommandDipolePacket : public SerialLinkedListAdapter<SerializeIF> { class NegXSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public: public:
CommandDipolePacket() { NegXSelfTestSet(HasLocalDataPoolIF* owner) :
setLinks(); StaticLocalDataSet(owner, IMTQ::NEG_X_TEST_DATASET) {
} }
private: NegXSelfTestSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_X_TEST_DATASET)) {
}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_X_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_X_CURRENT,
this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Y_CURRENT,
this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_X_COIL_Z_TEMPERATURE, this);
/** -X block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_X_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_X_CURRENT,
this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Y_CURRENT,
this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_X_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_X_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_X_CURRENT,
this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Y_CURRENT,
this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_X_COIL_Z_TEMPERATURE, this);
};
/** /**
* @brief Constructor * @brief This dataset can be used to store the self test results of the +Y self test.
* *
* @param xDipole The dipole of the x coil in 10 ^ -4 * Am^2 * @details Units of measurements:
* @param yDipole The dipole of the y coil in 10 ^ -4 * Am^2 * Raw magnetic field: [nT]
* @param zDipole The dipole of the z coil in 10 ^ -4 * Am^2 * Calibrated magnetic field: [nT]
* @param duration The duration in milliseconds the dipole will be generated by the coils. * Coil currents: [mA]
* When set to 0, the dipole will be generated until a new dipole actuation * Temperature: [°C]
* command is sent. * The +Y self test generates a positive dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Y actuation
* 3. All coils off (FINA step)
*/ */
CommandDipolePacket(uint16_t xDipole, uint16_t yDipole, uint16_t zDipole, uint16_t duration) : class PosYSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
xDipole(xDipole), yDipole(yDipole), zDipole(zDipole), duration(duration) { public:
PosYSelfTestSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, IMTQ::POS_Y_TEST_DATASET) {
} }
void setLinks() {
setStart(&xDipole); PosYSelfTestSet(object_id_t objectId) :
xDipole.setNext(&yDipole); StaticLocalDataSet(sid_t(objectId, IMTQ::POS_Y_TEST_DATASET)) {
yDipole.setNext(&zDipole);
zDipole.setNext(&duration);
} }
SerializeElement<uint16_t> xDipole;
SerializeElement<uint16_t> yDipole; /** INIT block */
SerializeElement<uint16_t> zDipole; lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Y_ERR, this);
SerializeElement<uint16_t> duration; lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_X_CURRENT,
this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Y_COIL_Z_TEMPERATURE, this);
/** +Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_X_CURRENT,
this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_X_CURRENT,
this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Y_COIL_Z_TEMPERATURE, this);
}; };
/**
* @brief This dataset can be used to store the self test results of the -Y self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [°C]
* The -Y self test generates a negative dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Y actuation
* 3. All coils off (FINA step)
*/
class NegYSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegYSelfTestSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, IMTQ::NEG_Y_TEST_DATASET) {
}
NegYSelfTestSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_Y_TEST_DATASET)) {
}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Y_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_X_CURRENT,
this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Y_COIL_Z_TEMPERATURE, this);
/** -Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_X_CURRENT,
this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_X_CURRENT,
this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Y_CURRENT,
this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Y_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the +Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [°C]
* The +Z self test generates a positive dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Z actuation
* 3. All coils off (FINA step)
*/
class PosZSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosZSelfTestSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, IMTQ::POS_Z_TEST_DATASET) {
}
PosZSelfTestSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, IMTQ::POS_Z_TEST_DATASET)) {
}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_X_CURRENT,
this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_POS_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_X_CURRENT,
this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
POS_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_X_CURRENT,
this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_POS_Z_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [°C]
* The -Z self test generates a negative dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Z actuation
* 3. All coils off (FINA step)
*/
class NegZSelfTestSet: public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegZSelfTestSet(HasLocalDataPoolIF* owner) :
StaticLocalDataSet(owner, IMTQ::NEG_Z_TEST_DATASET) {
}
NegZSelfTestSet(object_id_t objectId) :
StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_Z_TEST_DATASET)) {
}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_X_CURRENT,
this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> initCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
INIT_NEG_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_X_CURRENT,
this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> coilXTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> coilYTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> coilZTemperature = lp_var_t<uint16_t>(sid.objectId,
NEG_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_X_CURRENT,
this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Y_CURRENT,
this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Z_CURRENT,
this);
lp_var_t<uint16_t> finaCoilXTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilYTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> finaCoilZTemperature = lp_var_t<uint16_t>(sid.objectId,
FINA_NEG_Z_COIL_Z_TEMPERATURE, this);
};
} }