Move 2 pool variables #659

Merged
muellerr merged 5 commits from move-pdu-datavar into v3.0.0-dev 2023-06-09 13:40:02 +02:00
19 changed files with 349 additions and 289 deletions
Showing only changes of commit e08a2b76b9 - Show all commits

View File

@ -16,9 +16,11 @@ will consitute of a breaking change warranting a new major release:
# [unreleased]
# [v2.2.0] to be released
# [v4.0.0] to be released
# [v2.1.0] to be released
# [v3.0.0] to be released
- `eive-tmtc` version v4.0.0
## Changed
@ -51,6 +53,8 @@ will consitute of a breaking change warranting a new major release:
reason.
- OFF mode is ignores in TM store for determining whether a store will be written. The modes will
only be used to cancel a transfer.
- Handling of multiple RWs in the ACS Controller is improved and can be changed by parameter
commands.
## Added
@ -60,6 +64,7 @@ will consitute of a breaking change warranting a new major release:
- ACU dummy HK sets
- IMTQ HK sets
- IMTQ dummy now handles power switch
- Added some new ACS parameters
## Fixed
@ -91,6 +96,11 @@ will consitute of a breaking change warranting a new major release:
- Prevent spam of TCS controller heater unavailability event if all heaters are in external control.
- TCS heater switch info set contained invalid values because of a faulty `memcpy` in the TCS
controller. There is not crash risk but the heater states were invalid.
- STR datasets were not set to invalid on shutdown.
- Fixed usage of quaternion valid flag, which does not actually represent the validity of the
quaternion.
- Various fixes for the pointing modes of the `ACS Controller`. All modes should work now as
intended.
# [v2.0.5] 2023-05-11

View File

@ -9,9 +9,9 @@
# ##############################################################################
cmake_minimum_required(VERSION 3.13)
set(OBSW_VERSION_MAJOR 2)
set(OBSW_VERSION_MAJOR 3)
set(OBSW_VERSION_MINOR 0)
set(OBSW_VERSION_REVISION 5)
set(OBSW_VERSION_REVISION 0)
# set(CMAKE_VERBOSE TRUE)

View File

@ -100,6 +100,19 @@ void StarTrackerHandler::doShutDown() {
startupState = StartupState::IDLE;
bootState = FwBootState::NONE;
solutionSet.setReportingEnabled(false);
{
PoolReadGuard pg(&solutionSet);
solutionSet.caliQw.value = 0.0;
solutionSet.caliQx.value = 0.0;
solutionSet.caliQy.value = 0.0;
solutionSet.caliQz.value = 0.0;
solutionSet.isTrustWorthy = 0;
solutionSet.setValidity(false, true);
}
{
PoolReadGuard pg(&temperatureSet);
temperatureSet.setValidity(false, true);
}
reinitNextSetParam = false;
setMode(_MODE_POWER_DOWN);
}

View File

@ -169,7 +169,7 @@ void AcsController::performSafe() {
guidance.getTargetParamsSafe(sunTargetDir);
double magMomMtq[3] = {0, 0, 0}, errAng = 0.0;
uint8_t safeCtrlStrat = safeCtrl.safeCtrlStrategy(
acs::SafeModeStrategy safeCtrlStrat = safeCtrl.safeCtrlStrategy(
mgmDataProcessed.mgmVecTot.isValid(), not mekfInvalidFlag,
gyrDataProcessed.gyrVecTot.isValid(), susDataProcessed.susVecTot.isValid(),
acsParameters.safeModeControllerParameters.useMekf,
@ -205,11 +205,13 @@ void AcsController::performSafe() {
case (acs::SafeModeStrategy::SAFECTRL_NO_SENSORS_FOR_CONTROL):
safeCtrlFailure(0, 1);
break;
default:
sif::error << "AcsController: Invalid safe mode strategy for performSafe" << std::endl;
break;
}
actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs,
*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipolMax);
actuatorCmd.cmdDipoleMtq(*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipoleMax, magMomMtq, cmdDipoleMtqs);
// detumble check and switch
if (mekfData.satRotRateMekf.isValid() && acsParameters.safeModeControllerParameters.useMekf &&
@ -231,8 +233,8 @@ void AcsController::performSafe() {
}
updateCtrlValData(errAng, safeCtrlStrat);
updateActuatorCmdData(cmdDipolMtqs);
commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
updateActuatorCmdData(cmdDipoleMtqs);
commandActuators(cmdDipoleMtqs[0], cmdDipoleMtqs[1], cmdDipoleMtqs[2],
acsParameters.magnetorquerParameter.torqueDuration);
}
@ -259,7 +261,7 @@ void AcsController::performDetumble() {
triggerEvent(acs::MEKF_RECOVERY);
mekfInvalidFlag = false;
}
uint8_t safeCtrlStrat = detumble.detumbleStrategy(
acs::SafeModeStrategy safeCtrlStrat = detumble.detumbleStrategy(
mgmDataProcessed.mgmVecTot.isValid(), gyrDataProcessed.gyrVecTot.isValid(),
mgmDataProcessed.mgmVecTotDerivative.isValid(),
acsParameters.detumbleParameter.useFullDetumbleLaw);
@ -279,11 +281,13 @@ void AcsController::performDetumble() {
case (acs::SafeModeStrategy::SAFECTRL_NO_SENSORS_FOR_CONTROL):
safeCtrlFailure(0, 1);
break;
default:
sif::error << "AcsController: Invalid safe mode strategy for performDetumble" << std::endl;
break;
}
actuatorCmd.cmdDipolMtq(magMomMtq, cmdDipolMtqs,
*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipolMax);
actuatorCmd.cmdDipoleMtq(*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipoleMax, magMomMtq, cmdDipoleMtqs);
if (mekfData.satRotRateMekf.isValid() &&
VectorOperations<double>::norm(mekfData.satRotRateMekf.value, 3) <
@ -304,8 +308,8 @@ void AcsController::performDetumble() {
}
disableCtrlValData();
updateActuatorCmdData(cmdDipolMtqs);
commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
updateActuatorCmdData(cmdDipoleMtqs);
commandActuators(cmdDipoleMtqs[0], cmdDipoleMtqs[1], cmdDipoleMtqs[2],
acsParameters.magnetorquerParameter.torqueDuration);
}
@ -349,8 +353,10 @@ void AcsController::performPointingCtrl() {
double rwPseudoInv[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
result = guidance.getDistributionMatrixRw(&sensorValues, *rwPseudoInv);
if (result == returnvalue::FAILED) {
if (multipleRwUnavailableCounter == 5) {
if (multipleRwUnavailableCounter >=
acsParameters.rwHandlingParameters.multipleRwInvalidTimeout) {
triggerEvent(acs::MULTIPLE_RW_INVALID);
multipleRwUnavailableCounter = 0;
}
multipleRwUnavailableCounter++;
return;
@ -364,24 +370,26 @@ void AcsController::performPointingCtrl() {
// Variables required for setting actuators
double torquePtgRws[4] = {0, 0, 0, 0}, rwTrqNs[4] = {0, 0, 0, 0}, torqueRws[4] = {0, 0, 0, 0},
mgtDpDes[3] = {0, 0, 0};
switch (mode) {
case acs::PTG_IDLE:
guidance.targetQuatPtgSun(susDataProcessed.sunIjkModel.value, targetQuat, targetSatRotRate);
guidance.targetQuatPtgSun(now, susDataProcessed.sunIjkModel.value, targetQuat,
targetSatRotRate);
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.idleModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace(
&acsParameters.idleModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
ptgCtrl.ptgNullspace(&acsParameters.idleModeControllerParameters,
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, acsParameters.rwHandlingParameters.maxTrq);
ptgCtrl.ptgDesaturation(
&acsParameters.idleModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, mgtDpDes);
enableAntiStiction = acsParameters.idleModeControllerParameters.enableAntiStiction;
break;
@ -395,17 +403,17 @@ void AcsController::performPointingCtrl() {
errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.targetModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace(
&acsParameters.targetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
ptgCtrl.ptgNullspace(&acsParameters.targetModeControllerParameters,
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, acsParameters.rwHandlingParameters.maxTrq);
ptgCtrl.ptgDesaturation(
&acsParameters.targetModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, mgtDpDes);
enableAntiStiction = acsParameters.targetModeControllerParameters.enableAntiStiction;
break;
@ -416,17 +424,17 @@ void AcsController::performPointingCtrl() {
targetSatRotRate, errorQuat, errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.gsTargetModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace(
&acsParameters.gsTargetModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
ptgCtrl.ptgNullspace(&acsParameters.gsTargetModeControllerParameters,
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, acsParameters.rwHandlingParameters.maxTrq);
ptgCtrl.ptgDesaturation(
&acsParameters.gsTargetModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, mgtDpDes);
enableAntiStiction = acsParameters.gsTargetModeControllerParameters.enableAntiStiction;
break;
@ -440,63 +448,61 @@ void AcsController::performPointingCtrl() {
errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.nadirModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace(
&acsParameters.nadirModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
ptgCtrl.ptgNullspace(&acsParameters.nadirModeControllerParameters,
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, acsParameters.rwHandlingParameters.maxTrq);
ptgCtrl.ptgDesaturation(
&acsParameters.nadirModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, mgtDpDes);
enableAntiStiction = acsParameters.nadirModeControllerParameters.enableAntiStiction;
break;
case acs::PTG_INERTIAL:
std::memcpy(targetQuat, acsParameters.inertialModeControllerParameters.tgtQuat,
4 * sizeof(double));
sizeof(targetQuat));
guidance.comparePtg(mekfData.quatMekf.value, mekfData.satRotRateMekf.value, targetQuat,
targetSatRotRate, acsParameters.inertialModeControllerParameters.quatRef,
acsParameters.inertialModeControllerParameters.refRotRate, errorQuat,
errorSatRotRate, errorAngle);
ptgCtrl.ptgLaw(&acsParameters.inertialModeControllerParameters, errorQuat, errorSatRotRate,
*rwPseudoInv, torquePtgRws);
ptgCtrl.ptgNullspace(
&acsParameters.inertialModeControllerParameters, &(sensorValues.rw1Set.currSpeed.value),
&(sensorValues.rw2Set.currSpeed.value), &(sensorValues.rw3Set.currSpeed.value),
&(sensorValues.rw4Set.currSpeed.value), rwTrqNs);
ptgCtrl.ptgNullspace(&acsParameters.inertialModeControllerParameters,
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
rwTrqNs);
VectorOperations<double>::add(torquePtgRws, rwTrqNs, torqueRws, 4);
actuatorCmd.scalingTorqueRws(torqueRws, acsParameters.rwHandlingParameters.maxTrq);
ptgCtrl.ptgDesaturation(
&acsParameters.inertialModeControllerParameters, mgmDataProcessed.mgmVecTot.value,
mgmDataProcessed.mgmVecTot.isValid(), mekfData.satRotRateMekf.value,
&(sensorValues.rw1Set.currSpeed.value), &(sensorValues.rw2Set.currSpeed.value),
&(sensorValues.rw3Set.currSpeed.value), &(sensorValues.rw4Set.currSpeed.value), mgtDpDes);
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, mgtDpDes);
enableAntiStiction = acsParameters.inertialModeControllerParameters.enableAntiStiction;
break;
default:
sif::error << "AcsController: Invalid mode for performPointingCtrl";
sif::error << "AcsController: Invalid mode for performPointingCtrl" << std::endl;
break;
}
actuatorCmd.cmdSpeedToRws(
sensorValues.rw1Set.currSpeed.value, sensorValues.rw2Set.currSpeed.value,
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value, torqueRws,
cmdSpeedRws, acsParameters.onBoardParams.sampleTime,
acsParameters.rwHandlingParameters.maxRwSpeed,
acsParameters.rwHandlingParameters.inertiaWheel);
sensorValues.rw3Set.currSpeed.value, sensorValues.rw4Set.currSpeed.value,
acsParameters.onBoardParams.sampleTime, acsParameters.rwHandlingParameters.inertiaWheel,
acsParameters.rwHandlingParameters.maxRwSpeed, torqueRws, cmdSpeedRws);
if (enableAntiStiction) {
ptgCtrl.rwAntistiction(&sensorValues, cmdSpeedRws);
}
actuatorCmd.cmdDipolMtq(mgtDpDes, cmdDipolMtqs,
*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipolMax);
actuatorCmd.cmdDipoleMtq(*acsParameters.magnetorquerParameter.inverseAlignment,
acsParameters.magnetorquerParameter.dipoleMax, mgtDpDes, cmdDipoleMtqs);
updateCtrlValData(targetQuat, errorQuat, errorAngle, targetSatRotRate);
updateActuatorCmdData(torqueRws, cmdSpeedRws, cmdDipolMtqs);
commandActuators(cmdDipolMtqs[0], cmdDipolMtqs[1], cmdDipolMtqs[2],
updateActuatorCmdData(torqueRws, cmdSpeedRws, cmdDipoleMtqs);
commandActuators(cmdDipoleMtqs[0], cmdDipoleMtqs[1], cmdDipoleMtqs[2],
acsParameters.magnetorquerParameter.torqueDuration, cmdSpeedRws[0],
cmdSpeedRws[1], cmdSpeedRws[2], cmdSpeedRws[3],
acsParameters.rwHandlingParameters.rampTime);

View File

@ -69,7 +69,7 @@ class AcsController : public ExtendedControllerBase, public ReceivesParameterMes
bool mekfLost = false;
int32_t cmdSpeedRws[4] = {0, 0, 0, 0};
int16_t cmdDipolMtqs[3] = {0, 0, 0};
int16_t cmdDipoleMtqs[3] = {0, 0, 0};
#if OBSW_THREAD_TRACING == 1
uint32_t opCounter = 0;

View File

@ -290,6 +290,9 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
case 0x6:
parameterWrapper->set(rwHandlingParameters.rampTime);
break;
case 0x7:
parameterWrapper->set(rwHandlingParameters.multipleRwInvalidTimeout);
break;
default:
return INVALID_IDENTIFIER_ID;
}
@ -315,7 +318,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->setMatrix(rwMatrices.without4);
break;
case 0x6:
parameterWrapper->setVector(rwMatrices.nullspace);
parameterWrapper->setVector(rwMatrices.nullspaceVector);
break;
default:
return INVALID_IDENTIFIER_ID;
@ -375,15 +378,18 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->set(idleModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->setVector(idleModeControllerParameters.desatMomentumRef);
parameterWrapper->set(idleModeControllerParameters.nullspaceSpeed);
break;
case 0x6:
parameterWrapper->set(idleModeControllerParameters.deSatGainFactor);
parameterWrapper->setVector(idleModeControllerParameters.desatMomentumRef);
break;
case 0x7:
parameterWrapper->set(idleModeControllerParameters.desatOn);
parameterWrapper->set(idleModeControllerParameters.deSatGainFactor);
break;
case 0x8:
parameterWrapper->set(idleModeControllerParameters.desatOn);
break;
case 0x9:
parameterWrapper->set(idleModeControllerParameters.enableAntiStiction);
break;
default:
@ -408,48 +414,51 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->set(targetModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->setVector(targetModeControllerParameters.desatMomentumRef);
parameterWrapper->set(targetModeControllerParameters.nullspaceSpeed);
break;
case 0x6:
parameterWrapper->set(targetModeControllerParameters.deSatGainFactor);
parameterWrapper->setVector(targetModeControllerParameters.desatMomentumRef);
break;
case 0x7:
parameterWrapper->set(targetModeControllerParameters.desatOn);
parameterWrapper->set(targetModeControllerParameters.deSatGainFactor);
break;
case 0x8:
parameterWrapper->set(targetModeControllerParameters.enableAntiStiction);
parameterWrapper->set(targetModeControllerParameters.desatOn);
break;
case 0x9:
parameterWrapper->setVector(targetModeControllerParameters.refDirection);
parameterWrapper->set(targetModeControllerParameters.enableAntiStiction);
break;
case 0xA:
parameterWrapper->setVector(targetModeControllerParameters.refRotRate);
parameterWrapper->setVector(targetModeControllerParameters.refDirection);
break;
case 0xB:
parameterWrapper->setVector(targetModeControllerParameters.quatRef);
parameterWrapper->setVector(targetModeControllerParameters.refRotRate);
break;
case 0xC:
parameterWrapper->set(targetModeControllerParameters.timeElapsedMax);
parameterWrapper->setVector(targetModeControllerParameters.quatRef);
break;
case 0xD:
parameterWrapper->set(targetModeControllerParameters.latitudeTgt);
parameterWrapper->set(targetModeControllerParameters.timeElapsedMax);
break;
case 0xE:
parameterWrapper->set(targetModeControllerParameters.longitudeTgt);
parameterWrapper->set(targetModeControllerParameters.latitudeTgt);
break;
case 0xF:
parameterWrapper->set(targetModeControllerParameters.altitudeTgt);
parameterWrapper->set(targetModeControllerParameters.longitudeTgt);
break;
case 0x10:
parameterWrapper->set(targetModeControllerParameters.avoidBlindStr);
parameterWrapper->set(targetModeControllerParameters.altitudeTgt);
break;
case 0x11:
parameterWrapper->set(targetModeControllerParameters.blindAvoidStart);
parameterWrapper->set(targetModeControllerParameters.avoidBlindStr);
break;
case 0x12:
parameterWrapper->set(targetModeControllerParameters.blindAvoidStop);
parameterWrapper->set(targetModeControllerParameters.blindAvoidStart);
break;
case 0x13:
parameterWrapper->set(targetModeControllerParameters.blindAvoidStop);
break;
case 0x14:
parameterWrapper->set(targetModeControllerParameters.blindRotRate);
break;
default:
@ -474,30 +483,33 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->set(gsTargetModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->setVector(gsTargetModeControllerParameters.desatMomentumRef);
parameterWrapper->set(gsTargetModeControllerParameters.nullspaceSpeed);
break;
case 0x6:
parameterWrapper->set(gsTargetModeControllerParameters.deSatGainFactor);
parameterWrapper->setVector(gsTargetModeControllerParameters.desatMomentumRef);
break;
case 0x7:
parameterWrapper->set(gsTargetModeControllerParameters.desatOn);
parameterWrapper->set(gsTargetModeControllerParameters.deSatGainFactor);
break;
case 0x8:
parameterWrapper->set(gsTargetModeControllerParameters.enableAntiStiction);
parameterWrapper->set(gsTargetModeControllerParameters.desatOn);
break;
case 0x9:
parameterWrapper->setVector(gsTargetModeControllerParameters.refDirection);
parameterWrapper->set(gsTargetModeControllerParameters.enableAntiStiction);
break;
case 0xA:
parameterWrapper->set(gsTargetModeControllerParameters.timeElapsedMax);
parameterWrapper->setVector(gsTargetModeControllerParameters.refDirection);
break;
case 0xB:
parameterWrapper->set(gsTargetModeControllerParameters.latitudeTgt);
parameterWrapper->set(gsTargetModeControllerParameters.timeElapsedMax);
break;
case 0xC:
parameterWrapper->set(gsTargetModeControllerParameters.longitudeTgt);
parameterWrapper->set(gsTargetModeControllerParameters.latitudeTgt);
break;
case 0xD:
parameterWrapper->set(gsTargetModeControllerParameters.longitudeTgt);
break;
case 0xE:
parameterWrapper->set(gsTargetModeControllerParameters.altitudeTgt);
break;
default:
@ -522,27 +534,30 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->set(nadirModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->setVector(nadirModeControllerParameters.desatMomentumRef);
parameterWrapper->set(nadirModeControllerParameters.nullspaceSpeed);
break;
case 0x6:
parameterWrapper->set(nadirModeControllerParameters.deSatGainFactor);
parameterWrapper->setVector(nadirModeControllerParameters.desatMomentumRef);
break;
case 0x7:
parameterWrapper->set(nadirModeControllerParameters.desatOn);
parameterWrapper->set(nadirModeControllerParameters.deSatGainFactor);
break;
case 0x8:
parameterWrapper->set(nadirModeControllerParameters.enableAntiStiction);
parameterWrapper->set(nadirModeControllerParameters.desatOn);
break;
case 0x9:
parameterWrapper->setVector(nadirModeControllerParameters.refDirection);
parameterWrapper->set(nadirModeControllerParameters.enableAntiStiction);
break;
case 0xA:
parameterWrapper->setVector(nadirModeControllerParameters.quatRef);
parameterWrapper->setVector(nadirModeControllerParameters.refDirection);
break;
case 0xB:
parameterWrapper->setVector(nadirModeControllerParameters.refRotRate);
parameterWrapper->setVector(nadirModeControllerParameters.quatRef);
break;
case 0xC:
parameterWrapper->setVector(nadirModeControllerParameters.refRotRate);
break;
case 0xD:
parameterWrapper->set(nadirModeControllerParameters.timeElapsedMax);
break;
default:
@ -567,21 +582,24 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->set(inertialModeControllerParameters.gainNullspace);
break;
case 0x5:
parameterWrapper->setVector(inertialModeControllerParameters.desatMomentumRef);
parameterWrapper->set(inertialModeControllerParameters.nullspaceSpeed);
break;
case 0x6:
parameterWrapper->set(inertialModeControllerParameters.deSatGainFactor);
parameterWrapper->setVector(inertialModeControllerParameters.desatMomentumRef);
break;
case 0x7:
parameterWrapper->set(inertialModeControllerParameters.desatOn);
parameterWrapper->set(inertialModeControllerParameters.deSatGainFactor);
break;
case 0x8:
parameterWrapper->set(inertialModeControllerParameters.enableAntiStiction);
parameterWrapper->set(inertialModeControllerParameters.desatOn);
break;
case 0x9:
parameterWrapper->setVector(inertialModeControllerParameters.tgtQuat);
parameterWrapper->set(inertialModeControllerParameters.enableAntiStiction);
break;
case 0xA:
parameterWrapper->setVector(inertialModeControllerParameters.tgtQuat);
break;
case 0xB:
parameterWrapper->setVector(inertialModeControllerParameters.refRotRate);
break;
case 0xC:
@ -693,7 +711,7 @@ ReturnValue_t AcsParameters::getParameter(uint8_t domainId, uint8_t parameterId,
parameterWrapper->setMatrix(magnetorquerParameter.inverseAlignment);
break;
case 0x5:
parameterWrapper->set(magnetorquerParameter.dipolMax);
parameterWrapper->set(magnetorquerParameter.dipoleMax);
break;
case 0x6:
parameterWrapper->set(magnetorquerParameter.torqueDuration);

View File

@ -798,6 +798,8 @@ class AcsParameters : public HasParametersIF {
double stictionTorque = 0.0006;
uint16_t rampTime = 10;
uint32_t multipleRwInvalidTimeout = 25;
} rwHandlingParameters;
struct RwMatrices {
@ -814,7 +816,7 @@ class AcsParameters : public HasParametersIF {
{1.0864, 0, 0}, {-0.5432, -0.5432, 1.2797}, {0, 0, 0}, {-0.5432, 0.5432, 1.2797}};
double without4[4][3] = {
{0.5432, 0.5432, 1.2797}, {0, -1.0864, 0}, {-0.5432, 0.5432, 1.2797}, {0, 0, 0}};
double nullspace[4] = {-0.5000, 0.5000, -0.5000, 0.5000};
double nullspaceVector[4] = {-1, 1, -1, 1};
} rwMatrices;
struct SafeModeControllerParameters {
@ -838,7 +840,9 @@ class AcsParameters : public HasParametersIF {
double om = 0.3;
double omMax = 1 * M_PI / 180;
double qiMin = 0.1;
double gainNullspace = 0.01;
double nullspaceSpeed = 32500; // 0.1 RPM
double desatMomentumRef[3] = {0, 0, 0};
double deSatGainFactor = 1000;
@ -931,7 +935,7 @@ class AcsParameters : public HasParametersIF {
double mtq2orientationMatrix[3][3] = {{0, 0, 1}, {0, 1, 0}, {-1, 0, 0}};
double alignmentMatrixMtq[3][3] = {{0, 0, -1}, {-1, 0, 0}, {0, 1, 0}};
double inverseAlignment[3][3] = {{0, -1, 0}, {0, 0, 1}, {-1, 0, 0}};
double dipolMax = 0.2; // [Am^2]
double dipoleMax = 0.2; // [Am^2]
uint16_t torqueDuration = 300; // [ms]
} magnetorquerParameter;

View File

@ -5,11 +5,6 @@
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <cmath>
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
ActuatorCmd::ActuatorCmd() {}
ActuatorCmd::~ActuatorCmd() {}
@ -25,24 +20,30 @@ void ActuatorCmd::scalingTorqueRws(double *rwTrq, double maxTorque) {
}
}
void ActuatorCmd::cmdSpeedToRws(int32_t speedRw0, int32_t speedRw1, int32_t speedRw2,
int32_t speedRw3, const double *rwTorque, int32_t *rwCmdSpeed,
double sampleTime, int32_t maxRwSpeed, double inertiaWheel) {
using namespace Math;
// Calculating the commanded speed in RPM for every reaction wheel
void ActuatorCmd::cmdSpeedToRws(const int32_t speedRw0, const int32_t speedRw1,
const int32_t speedRw2, const int32_t speedRw3,
const double sampleTime, const double inertiaWheel,
const int32_t maxRwSpeed, const double *rwTorque,
int32_t *rwCmdSpeed) {
// group RW speed values (in 0.1 [RPM]) in vector
int32_t speedRws[4] = {speedRw0, speedRw1, speedRw2, speedRw3};
// calculate required RW speed as sum of current RW speed and RW speed delta
// delta w_rw = delta t / I_RW * torque_RW [rad/s]
double deltaSpeed[4] = {0, 0, 0, 0};
double radToRpm = 60 / (2 * PI); // factor for conversion to RPM
// W_RW = Torque_RW / I_RW * delta t [rad/s]
double factor = sampleTime / inertiaWheel * radToRpm;
int32_t deltaSpeedInt[4] = {0, 0, 0, 0};
const double factor = sampleTime / inertiaWheel * RAD_PER_SEC_TO_RPM * 10;
VectorOperations<double>::mulScalar(rwTorque, factor, deltaSpeed, 4);
// convert double to int32
int32_t deltaSpeedInt[4] = {0, 0, 0, 0};
for (int i = 0; i < 4; i++) {
deltaSpeedInt[i] = std::round(deltaSpeed[i]);
}
// sum of current RW speed and RW speed delta
VectorOperations<int32_t>::add(speedRws, deltaSpeedInt, rwCmdSpeed, 4);
VectorOperations<int32_t>::mulScalar(rwCmdSpeed, 10, rwCmdSpeed, 4);
// crop values which would exceed the maximum possible RPM
for (uint8_t i = 0; i < 4; i++) {
if (rwCmdSpeed[i] > maxRwSpeed) {
rwCmdSpeed[i] = maxRwSpeed;
@ -52,24 +53,25 @@ void ActuatorCmd::cmdSpeedToRws(int32_t speedRw0, int32_t speedRw1, int32_t spee
}
}
void ActuatorCmd::cmdDipolMtq(const double *dipolMoment, int16_t *dipolMomentActuator,
const double *inverseAlignment, double maxDipol) {
// Convert to actuator frame
double dipolMomentActuatorDouble[3] = {0, 0, 0};
MatrixOperations<double>::multiply(inverseAlignment, dipolMoment, dipolMomentActuatorDouble, 3, 3,
1);
// Scaling along largest element if dipol exceeds maximum
void ActuatorCmd::cmdDipoleMtq(const double *inverseAlignment, const double maxDipole,
const double *dipoleMoment, int16_t *dipoleMomentActuator) {
// convert to actuator frame
double dipoleMomentActuatorDouble[3] = {0, 0, 0};
MatrixOperations<double>::multiply(inverseAlignment, dipoleMoment, dipoleMomentActuatorDouble, 3,
3, 1);
// scaling along largest element if dipole exceeds maximum
uint8_t maxIdx = 0;
VectorOperations<double>::maxAbsValue(dipolMomentActuatorDouble, 3, &maxIdx);
double maxAbsValue = std::abs(dipolMomentActuatorDouble[maxIdx]);
if (maxAbsValue > maxDipol) {
double scalingFactor = maxDipol / maxAbsValue;
VectorOperations<double>::mulScalar(dipolMomentActuatorDouble, scalingFactor,
dipolMomentActuatorDouble, 3);
VectorOperations<double>::maxAbsValue(dipoleMomentActuatorDouble, 3, &maxIdx);
double maxAbsValue = std::abs(dipoleMomentActuatorDouble[maxIdx]);
if (maxAbsValue > maxDipole) {
double scalingFactor = maxDipole / maxAbsValue;
VectorOperations<double>::mulScalar(dipoleMomentActuatorDouble, scalingFactor,
dipoleMomentActuatorDouble, 3);
}
// scale dipole from 1 Am^2 to 1e^-4 Am^2
VectorOperations<double>::mulScalar(dipolMomentActuatorDouble, 1e4, dipolMomentActuatorDouble, 3);
VectorOperations<double>::mulScalar(dipoleMomentActuatorDouble, 1e4, dipoleMomentActuatorDouble,
3);
for (int i = 0; i < 3; i++) {
dipolMomentActuator[i] = std::round(dipolMomentActuatorDouble[i]);
dipoleMomentActuator[i] = std::round(dipoleMomentActuatorDouble[i]);
}
}

View File

@ -1,9 +1,8 @@
#ifndef ACTUATORCMD_H_
#define ACTUATORCMD_H_
#include "MultiplicativeKalmanFilter.h"
#include "SensorProcessing.h"
#include "SensorValues.h"
#include <cmath>
class ActuatorCmd {
public:
@ -19,29 +18,30 @@ class ActuatorCmd {
void scalingTorqueRws(double *rwTrq, double maxTorque);
/*
* @brief: cmdSpeedToRws() will set the maximum possible torque for the reaction
* wheels, also will calculate the needed revolutions per minute for the RWs, which will be given
* as Input to the RWs
* @param: rwTrqIn given torque from pointing controller
* rwTrqNS Nullspace torque
* @brief: cmdSpeedToRws() Calculates the RPM for the reaction wheel configuration,
* given the required torque calculated by the controller. Will also scale down the RPM of the
* wheels if they exceed the maximum possible RPM
* @param: rwTrq given torque from pointing controller
* rwCmdSpeed output revolutions per minute for every
* reaction wheel
*/
void cmdSpeedToRws(int32_t speedRw0, int32_t speedRw1, int32_t speedRw2, int32_t speedRw3,
const double *rwTorque, int32_t *rwCmdSpeed, double sampleTime,
int32_t maxRwSpeed, double inertiaWheel);
void cmdSpeedToRws(const int32_t speedRw0, const int32_t speedRw1, const int32_t speedRw2,
const int32_t speedRw3, const double sampleTime, const double inertiaWheel,
const int32_t maxRwSpeed, const double *rwTorque, int32_t *rwCmdSpeed);
/*
* @brief: cmdDipolMtq() gives the commanded dipol moment for the magnetorques
* @brief: cmdDipoleMtq() gives the commanded dipole moment for the
* magnetorquer
*
* @param: dipolMoment given dipol moment in spacecraft frame
* dipolMomentActuator resulting dipol moment in actuator reference frame
* @param: dipoleMoment given dipole moment in spacecraft frame
* dipoleMomentActuator resulting dipole moment in actuator reference frame
*/
void cmdDipolMtq(const double *dipolMoment, int16_t *dipolMomentActuator,
const double *inverseAlignment, double maxDipol);
void cmdDipoleMtq(const double *inverseAlignment, const double maxDipole,
const double *dipoleMoment, int16_t *dipoleMomentActuator);
protected:
private:
static constexpr double RAD_PER_SEC_TO_RPM = 60 / (2 * M_PI);
};
#endif /* ACTUATORCMD_H_ */

View File

@ -266,7 +266,8 @@ void Guidance::targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3]
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
}
void Guidance::targetQuatPtgSun(double sunDirI[3], double targetQuat[4], double refSatRate[3]) {
void Guidance::targetQuatPtgSun(timeval now, double sunDirI[3], double targetQuat[4],
double targetSatRotRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion to sun
//-------------------------------------------------------------------------------------
@ -296,9 +297,8 @@ void Guidance::targetQuatPtgSun(double sunDirI[3], double targetQuat[4], double
//----------------------------------------------------------------------------
// Calculation of reference rotation rate
//----------------------------------------------------------------------------
refSatRate[0] = 0;
refSatRate[1] = 0;
refSatRate[2] = 0;
int8_t timeElapsedMax = acsParameters->gsTargetModeControllerParameters.timeElapsedMax;
targetRotationRate(timeElapsedMax, now, targetQuat, targetSatRotRate);
}
void Guidance::targetQuatPtgNadirSingleAxis(timeval now, double posSatE[3], double quatBI[4],
@ -412,7 +412,7 @@ void Guidance::targetQuatPtgNadirThreeAxes(timeval now, double posSatE[3], doubl
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double errorAngle) {
double errorQuat[4], double errorSatRotRate[3], double &errorAngle) {
// First calculate error quaternion between current and target orientation
QuaternionOperations::multiply(currentQuat, targetQuat, errorQuat);
// Last calculate add rotation from reference quaternion
@ -424,26 +424,17 @@ void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], do
// Calculate error angle
errorAngle = QuaternionOperations::getAngle(errorQuat, true);
// Only give back error satellite rotational rate if orientation has already been aquired
if (errorAngle < 2. / 180. * M_PI) {
// Calculate error satellite rotational rate
// First combine the target and reference satellite rotational rates
double combinedRefSatRotRate[3] = {0, 0, 0};
VectorOperations<double>::add(targetSatRotRate, refSatRotRate, combinedRefSatRotRate, 3);
// Then substract the combined required satellite rotational rates from the actual rate
VectorOperations<double>::subtract(currentSatRotRate, combinedRefSatRotRate, errorSatRotRate,
3);
} else {
// If orientation has not been aquired yet set satellite rotational rate to zero
errorSatRotRate = 0;
}
// target flag in matlab, importance, does look like it only gives feedback if pointing control is
// under 150 arcsec ??
// Then subtract the combined required satellite rotational rates from the actual rate
VectorOperations<double>::subtract(currentSatRotRate, combinedRefSatRotRate, errorSatRotRate, 3);
}
void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double errorQuat[4],
double errorSatRotRate[3], double errorAngle) {
double errorSatRotRate[3], double &errorAngle) {
// First calculate error quaternion between current and target orientation
QuaternionOperations::multiply(currentQuat, targetQuat, errorQuat);
// Keep scalar part of quaternion positive
@ -453,17 +444,8 @@ void Guidance::comparePtg(double currentQuat[4], double currentSatRotRate[3], do
// Calculate error angle
errorAngle = QuaternionOperations::getAngle(errorQuat, true);
// Only give back error satellite rotational rate if orientation has already been aquired
if (errorAngle < 2. / 180. * M_PI) {
// Then substract the combined required satellite rotational rates from the actual rate
// Calculate error satellite rotational rate
VectorOperations<double>::subtract(currentSatRotRate, targetSatRotRate, errorSatRotRate, 3);
} else {
// If orientation has not been aquired yet set satellite rotational rate to zero
errorSatRotRate = 0;
}
// target flag in matlab, importance, does look like it only gives feedback if pointing control is
// under 150 arcsec ??
}
void Guidance::targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
@ -471,20 +453,25 @@ void Guidance::targetRotationRate(int8_t timeElapsedMax, timeval now, double qua
//-------------------------------------------------------------------------------------
// Calculation of target rotation rate
//-------------------------------------------------------------------------------------
double timeElapsed = now.tv_sec + now.tv_usec * pow(10, -6) -
(timeSavedQuaternion.tv_sec +
timeSavedQuaternion.tv_usec * pow((double)timeSavedQuaternion.tv_usec, -6));
double timeElapsed = now.tv_sec + now.tv_usec * 1e-6 -
(timeSavedQuaternion.tv_sec + timeSavedQuaternion.tv_usec * 1e-6);
if (VectorOperations<double>::norm(savedQuaternion, 4) == 0) {
std::memcpy(savedQuaternion, quatInertialTarget, sizeof(savedQuaternion));
}
if (timeElapsed < timeElapsedMax) {
double q[4] = {0, 0, 0, 0}, qS[4] = {0, 0, 0, 0};
QuaternionOperations::inverse(quatInertialTarget, q);
QuaternionOperations::inverse(savedQuaternion, qS);
double qDiff[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(quatInertialTarget, savedQuaternion, qDiff, 4);
VectorOperations<double>::subtract(q, qS, qDiff, 4);
VectorOperations<double>::mulScalar(qDiff, 1 / timeElapsed, qDiff, 4);
double tgtQuatVec[3] = {quatInertialTarget[0], quatInertialTarget[1], quatInertialTarget[2]},
qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double tgtQuatVec[3] = {q[0], q[1], q[2]};
double qDiffVec[3] = {qDiff[0], qDiff[1], qDiff[2]};
double sum1[3] = {0, 0, 0}, sum2[3] = {0, 0, 0}, sum3[3] = {0, 0, 0}, sum[3] = {0, 0, 0};
VectorOperations<double>::cross(quatInertialTarget, qDiff, sum1);
VectorOperations<double>::cross(tgtQuatVec, qDiffVec, sum1);
VectorOperations<double>::mulScalar(tgtQuatVec, qDiff[3], sum2, 3);
VectorOperations<double>::mulScalar(qDiffVec, quatInertialTarget[3], sum3, 3);
VectorOperations<double>::mulScalar(qDiffVec, q[3], sum3, 3);
VectorOperations<double>::add(sum1, sum2, sum, 3);
VectorOperations<double>::subtract(sum, sum3, sum, 3);
double omegaRefNew[3] = {0, 0, 0};
@ -531,10 +518,6 @@ ReturnValue_t Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues,
std::memcpy(rwPseudoInv, acsParameters->rwMatrices.without4, 12 * sizeof(double));
return returnvalue::OK;
} else {
// @note: This one takes the normal pseudoInverse of all four raction wheels valid.
// Does not make sense, but is implemented that way in MATLAB ?!
// Thought: It does not really play a role, because in case there are more then one
// reaction wheel invalid the pointing control is destined to fail.
return returnvalue::FAILED;
}
}

View File

@ -15,7 +15,7 @@ class Guidance {
void getTargetParamsSafe(double sunTargetSafe[3]);
ReturnValue_t solarArrayDeploymentComplete();
// Function to get the target quaternion and refence rotation rate from gps position and
// Function to get the target quaternion and reference rotation rate from gps position and
// position of the ground station
void targetQuatPtgSingleAxis(timeval now, double posSatE[3], double velSatE[3], double sunDirI[3],
double refDirB[3], double quatBI[4], double targetQuat[4],
@ -25,9 +25,10 @@ class Guidance {
void targetQuatPtgGs(timeval now, double posSatE[3], double sunDirI[3], double quatIX[4],
double targetSatRotRate[3]);
// Function to get the target quaternion and refence rotation rate for sun pointing after ground
// Function to get the target quaternion and reference rotation rate for sun pointing after ground
// station
void targetQuatPtgSun(double sunDirI[3], double targetQuat[4], double refSatRate[3]);
void targetQuatPtgSun(timeval now, double sunDirI[3], double targetQuat[4],
double targetSatRotRate[3]);
// Function to get the target quaternion and refence rotation rate from gps position for Nadir
// pointing
@ -42,10 +43,10 @@ class Guidance {
// rate. Lastly gives back the error angle of the error quaternion.
void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double refQuat[4], double refSatRotRate[3],
double errorQuat[4], double errorSatRotRate[3], double errorAngle);
double errorQuat[4], double errorSatRotRate[3], double &errorAngle);
void comparePtg(double currentQuat[4], double currentSatRotRate[3], double targetQuat[4],
double targetSatRotRate[3], double errorQuat[4], double errorSatRotRate[3],
double errorAngle);
double &errorAngle);
void targetRotationRate(int8_t timeElapsedMax, timeval now, double quatInertialTarget[4],
double *targetSatRotRate);

View File

@ -19,9 +19,7 @@ ReturnValue_t Navigation::useMekf(ACS::SensorValues *sensorValues,
acsctrl::MekfData *mekfData, AcsParameters *acsParameters) {
double quatIB[4] = {sensorValues->strSet.caliQx.value, sensorValues->strSet.caliQy.value,
sensorValues->strSet.caliQz.value, sensorValues->strSet.caliQw.value};
bool quatIBValid = sensorValues->strSet.caliQx.isValid() &&
sensorValues->strSet.caliQy.isValid() &&
sensorValues->strSet.caliQz.isValid() && sensorValues->strSet.caliQw.isValid();
bool quatIBValid = sensorValues->strSet.isTrustWorthy.value;
if (mekfStatus == MultiplicativeKalmanFilter::MEKF_UNINITIALIZED) {
mekfStatus = multiplicativeKalmanFilter.init(

View File

@ -7,8 +7,10 @@ Detumble::Detumble() {}
Detumble::~Detumble() {}
uint8_t Detumble::detumbleStrategy(const bool magFieldValid, const bool satRotRateValid,
const bool magFieldRateValid, const bool useFullDetumbleLaw) {
acs::SafeModeStrategy Detumble::detumbleStrategy(const bool magFieldValid,
const bool satRotRateValid,
const bool magFieldRateValid,
const bool useFullDetumbleLaw) {
if (not magFieldValid) {
return acs::SafeModeStrategy::SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (satRotRateValid and useFullDetumbleLaw) {

View File

@ -11,8 +11,9 @@ class Detumble {
Detumble();
virtual ~Detumble();
uint8_t detumbleStrategy(const bool magFieldValid, const bool satRotRateValid,
const bool magFieldRateValid, const bool useFullDetumbleLaw);
acs::SafeModeStrategy detumbleStrategy(const bool magFieldValid, const bool satRotRateValid,
const bool magFieldRateValid,
const bool useFullDetumbleLaw);
void bDotLawFull(const double *satRotRateB, const double *magFieldB, double *magMomB,
double gain);

View File

@ -5,9 +5,6 @@
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/sign.h>
#include <math.h>
#include "../util/MathOperations.h"
PtgCtrl::PtgCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
@ -32,12 +29,13 @@ void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters
double qErrorLaw[3] = {0, 0, 0};
for (int i = 0; i < 3; i++) {
if (abs(qError[i]) < qErrorMin) {
if (std::abs(qError[i]) < qErrorMin) {
qErrorLaw[i] = qErrorMin;
} else {
qErrorLaw[i] = abs(qError[i]);
qErrorLaw[i] = std::abs(qError[i]);
}
}
double qErrorLawNorm = VectorOperations<double>::norm(qErrorLaw, 3);
double gain1 = cInt * omMax / qErrorLawNorm;
@ -73,7 +71,7 @@ void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters
double pErrorSign[3] = {0, 0, 0};
for (int i = 0; i < 3; i++) {
if (abs(pError[i]) > 1) {
if (std::abs(pError[i]) > 1) {
pErrorSign[i] = sign(pError[i]);
} else {
pErrorSign[i] = pError[i];
@ -98,61 +96,92 @@ void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters
VectorOperations<double>::mulScalar(torqueRws, -1, torqueRws, 4);
}
void PtgCtrl::ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters,
const int32_t speedRw0, const int32_t speedRw1, const int32_t speedRw2,
const int32_t speedRw3, double *rwTrqNs) {
// concentrate RW speeds as vector and convert to double
double speedRws[4] = {static_cast<double>(speedRw0), static_cast<double>(speedRw1),
static_cast<double>(speedRw2), static_cast<double>(speedRw3)};
VectorOperations<double>::mulScalar(speedRws, 1e-1, speedRws, 4);
VectorOperations<double>::mulScalar(speedRws, RPM_TO_RAD_PER_SEC, speedRws, 4);
// calculate RPM offset utilizing the nullspace
double rpmOffset[4] = {0, 0, 0, 0};
double rpmOffsetSpeed = pointingLawParameters->nullspaceSpeed / 10 * RPM_TO_RAD_PER_SEC;
VectorOperations<double>::mulScalar(acsParameters->rwMatrices.nullspaceVector, rpmOffsetSpeed,
rpmOffset, 4);
// calculate resulting angular momentum
double rwAngMomentum[4] = {0, 0, 0, 0}, diffRwSpeed[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(speedRws, rpmOffset, diffRwSpeed, 4);
VectorOperations<double>::mulScalar(diffRwSpeed, acsParameters->rwHandlingParameters.inertiaWheel,
rwAngMomentum, 4);
// calculate resulting torque
double nullspaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(acsParameters->rwMatrices.nullspaceVector,
acsParameters->rwMatrices.nullspaceVector, *nullspaceMatrix, 4,
1, 4);
MatrixOperations<double>::multiply(*nullspaceMatrix, rwAngMomentum, rwTrqNs, 4, 4, 1);
VectorOperations<double>::mulScalar(rwTrqNs, -1 * pointingLawParameters->gainNullspace, rwTrqNs,
4);
}
void PtgCtrl::ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters,
double *magFieldEst, bool magFieldEstValid, double *satRate,
int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2,
int32_t *speedRw3, double *mgtDpDes) {
if (!(magFieldEstValid) || !(pointingLawParameters->desatOn)) {
mgtDpDes[0] = 0;
mgtDpDes[1] = 0;
mgtDpDes[2] = 0;
const double *magFieldB, const bool magFieldBValid,
const double *satRate, const int32_t speedRw0, const int32_t speedRw1,
const int32_t speedRw2, const int32_t speedRw3, double *mgtDpDes) {
if (not magFieldBValid or not pointingLawParameters->desatOn) {
return;
}
// calculating momentum of satellite and momentum of reaction wheels
double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
double momentumRwU[4] = {0, 0, 0, 0}, momentumRw[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(speedRws, acsParameters->rwHandlingParameters.inertiaWheel,
momentumRwU, 4);
MatrixOperations<double>::multiply(*(acsParameters->rwMatrices.alignmentMatrix), momentumRwU,
momentumRw, 3, 4, 1);
double momentumSat[3] = {0, 0, 0}, momentumTotal[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(acsParameters->inertiaEIVE.inertiaMatrixDeployed), satRate,
momentumSat, 3, 3, 1);
VectorOperations<double>::add(momentumSat, momentumRw, momentumTotal, 3);
// calculating momentum error
double deltaMomentum[3] = {0, 0, 0};
VectorOperations<double>::subtract(momentumTotal, pointingLawParameters->desatMomentumRef,
deltaMomentum, 3);
// resulting magnetic dipole command
double crossMomentumMagField[3] = {0, 0, 0};
VectorOperations<double>::cross(deltaMomentum, magFieldEst, crossMomentumMagField);
double normMag = VectorOperations<double>::norm(magFieldEst, 3), factor = 0;
factor = (pointingLawParameters->deSatGainFactor) / normMag;
VectorOperations<double>::mulScalar(crossMomentumMagField, factor, mgtDpDes, 3);
}
// concentrate RW speeds as vector and convert to double
double speedRws[4] = {static_cast<double>(speedRw0), static_cast<double>(speedRw1),
static_cast<double>(speedRw2), static_cast<double>(speedRw3)};
void PtgCtrl::ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters,
const int32_t *speedRw0, const int32_t *speedRw1,
const int32_t *speedRw2, const int32_t *speedRw3, double *rwTrqNs) {
double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
double wheelMomentum[4] = {0, 0, 0, 0};
double rpmOffset[4] = {1, 1, 1, -1}, factor = 350 * 2 * Math::PI / 60;
// conversion to [rad/s] for further calculations
VectorOperations<double>::mulScalar(rpmOffset, factor, rpmOffset, 4);
VectorOperations<double>::mulScalar(speedRws, 2 * Math::PI / 60, speedRws, 4);
double diffRwSpeed[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(speedRws, rpmOffset, diffRwSpeed, 4);
VectorOperations<double>::mulScalar(diffRwSpeed, acsParameters->rwHandlingParameters.inertiaWheel,
wheelMomentum, 4);
double gainNs = pointingLawParameters->gainNullspace;
double nullSpaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::vecTransposeVecMatrix(acsParameters->rwMatrices.nullspace,
acsParameters->rwMatrices.nullspace,
*nullSpaceMatrix, 4);
MatrixOperations<double>::multiply(*nullSpaceMatrix, wheelMomentum, rwTrqNs, 4, 4, 1);
VectorOperations<double>::mulScalar(rwTrqNs, gainNs, rwTrqNs, 4);
VectorOperations<double>::mulScalar(rwTrqNs, -1, rwTrqNs, 4);
// convert magFieldB from uT to T
double magFieldBT[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// calculate angular momentum of the satellite
double angMomentumSat[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(acsParameters->inertiaEIVE.inertiaMatrixDeployed), satRate,
angMomentumSat, 3, 3, 1);
// calculate angular momentum of the reaction wheels with respect to the nullspace RW speed
// relocate RW speed zero to nullspace RW speed
double refSpeedRws[4] = {0, 0, 0, 0};
VectorOperations<double>::mulScalar(acsParameters->rwMatrices.nullspaceVector,
pointingLawParameters->nullspaceSpeed, refSpeedRws, 4);
VectorOperations<double>::subtract(speedRws, refSpeedRws, speedRws, 4);
// convert speed from 10 RPM to 1 RPM
VectorOperations<double>::mulScalar(speedRws, 1e-1, speedRws, 4);
// convert to rad/s
VectorOperations<double>::mulScalar(speedRws, RPM_TO_RAD_PER_SEC, speedRws, 4);
// calculate angular momentum of each RW
double angMomentumRwU[4] = {0, 0, 0, 0};
VectorOperations<double>::mulScalar(speedRws, acsParameters->rwHandlingParameters.inertiaWheel,
angMomentumRwU, 4);
// convert RW angular momentum to body RF
double angMomentumRw[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(acsParameters->rwMatrices.alignmentMatrix), angMomentumRwU,
angMomentumRw, 3, 4, 1);
// calculate total angular momentum
double angMomentumTotal[3] = {0, 0, 0};
VectorOperations<double>::add(angMomentumSat, angMomentumRw, angMomentumTotal, 3);
// calculating momentum error
double deltaAngMomentum[3] = {0, 0, 0};
VectorOperations<double>::subtract(angMomentumTotal, pointingLawParameters->desatMomentumRef,
deltaAngMomentum, 3);
// resulting magnetic dipole command
double crossAngMomentumMagField[3] = {0, 0, 0};
VectorOperations<double>::cross(deltaAngMomentum, magFieldBT, crossAngMomentumMagField);
double factor =
pointingLawParameters->deSatGainFactor / VectorOperations<double>::norm(magFieldBT, 3);
VectorOperations<double>::mulScalar(crossAngMomentumMagField, factor, mgtDpDes, 3);
}
void PtgCtrl::rwAntistiction(ACS::SensorValues *sensorValues, int32_t *rwCmdSpeeds) {
@ -169,15 +198,9 @@ void PtgCtrl::rwAntistiction(ACS::SensorValues *sensorValues, int32_t *rwCmdSpee
if (rwCmdSpeeds[i] != 0) {
if (rwCmdSpeeds[i] > -acsParameters->rwHandlingParameters.stictionSpeed &&
rwCmdSpeeds[i] < acsParameters->rwHandlingParameters.stictionSpeed) {
if (currRwSpeed[i] == 0) {
if (rwCmdSpeeds[i] > 0) {
if (rwCmdSpeeds[i] > currRwSpeed[i]) {
rwCmdSpeeds[i] = acsParameters->rwHandlingParameters.stictionSpeed;
} else if (rwCmdSpeeds[i] < 0) {
rwCmdSpeeds[i] = -acsParameters->rwHandlingParameters.stictionSpeed;
}
} else if (currRwSpeed[i] < -acsParameters->rwHandlingParameters.stictionSpeed) {
rwCmdSpeeds[i] = acsParameters->rwHandlingParameters.stictionSpeed;
} else if (currRwSpeed[i] > acsParameters->rwHandlingParameters.stictionSpeed) {
} else if (rwCmdSpeeds[i] < currRwSpeed[i]) {
rwCmdSpeeds[i] = -acsParameters->rwHandlingParameters.stictionSpeed;
}
}

View File

@ -1,13 +1,10 @@
#ifndef PTGCTRL_H_
#define PTGCTRL_H_
#include <math.h>
#include <mission/controller/acs/AcsParameters.h>
#include <mission/controller/acs/SensorValues.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "../AcsParameters.h"
#include "../SensorValues.h"
#include "eive/resultClassIds.h"
class PtgCtrl {
/*
@ -29,14 +26,14 @@ class PtgCtrl {
void ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters, const double *qError,
const double *deltaRate, const double *rwPseudoInv, double *torqueRws);
void ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters,
double *magFieldEst, bool magFieldEstValid, double *satRate,
int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2, int32_t *speedRw3,
double *mgtDpDes);
void ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters,
const int32_t *speedRw0, const int32_t *speedRw1, const int32_t *speedRw2,
const int32_t *speedRw3, double *rwTrqNs);
const int32_t speedRw0, const int32_t speedRw1, const int32_t speedRw2,
const int32_t speedRw3, double *rwTrqNs);
void ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters,
const double *magFieldB, const bool magFieldBValid, const double *satRate,
const int32_t speedRw0, const int32_t speedRw1, const int32_t speedRw2,
const int32_t speedRw3, double *mgtDpDes);
/* @brief: Commands the stiction torque in case wheel speed is to low
* torqueCommand modified torque after antistiction
@ -45,6 +42,7 @@ class PtgCtrl {
private:
const AcsParameters *acsParameters;
static constexpr double RPM_TO_RAD_PER_SEC = (2 * M_PI) / 60;
};
#endif /* ACS_CONTROL_PTGCTRL_H_ */

View File

@ -9,9 +9,10 @@ SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameter
SafeCtrl::~SafeCtrl() {}
uint8_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
acs::SafeModeStrategy SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
const bool satRotRateValid, const bool sunDirValid,
const uint8_t mekfEnabled, const uint8_t dampingEnabled) {
const uint8_t mekfEnabled,
const uint8_t dampingEnabled) {
if (not magFieldValid) {
return acs::SafeModeStrategy::SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (mekfEnabled and mekfValid) {

View File

@ -12,7 +12,7 @@ class SafeCtrl {
SafeCtrl(AcsParameters *acsParameters_);
virtual ~SafeCtrl();
uint8_t safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
acs::SafeModeStrategy safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
const bool satRotRateValid, const bool sunDirValid,
const uint8_t mekfEnabled, const uint8_t dampingEnabled);

2
tmtc

@ -1 +1 @@
Subproject commit 6ec0ce20fa98877c9f88acb5fe9129254291344b
Subproject commit 8804a4e8e9fce1d45fcf62314affb791114d1517