eive-obsw/mission/devices/devicedefinitions/IMTQHandlerDefinitions.h
Jakob Meier 63c669bc27
Some checks failed
EIVE/eive-obsw/pipeline/head There was a failure building this commit
fixed type of imtq self test temperatures
2022-06-10 11:06:05 +02:00

938 lines
42 KiB
C++
Raw Blame History

#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
namespace IMTQ {
static const DeviceCommandId_t NONE = 0x0;
static const DeviceCommandId_t GET_ENG_HK_DATA = 0x1;
static const DeviceCommandId_t START_ACTUATION_DIPOLE = 0x2;
static const DeviceCommandId_t GET_COMMANDED_DIPOLE = 0x3;
/** Generates new measurement of the magnetic field */
static const DeviceCommandId_t START_MTM_MEASUREMENT = 0x4;
/** Requests the calibrated magnetometer measurement */
static const DeviceCommandId_t GET_CAL_MTM_MEASUREMENT = 0x5;
/** Requests the raw values measured by the built-in MTM XEN1210 */
static const DeviceCommandId_t GET_RAW_MTM_MEASUREMENT = 0x6;
static const DeviceCommandId_t POS_X_SELF_TEST = 0x7;
static const DeviceCommandId_t NEG_X_SELF_TEST = 0x8;
static const DeviceCommandId_t POS_Y_SELF_TEST = 0x9;
static const DeviceCommandId_t NEG_Y_SELF_TEST = 0xA;
static const DeviceCommandId_t POS_Z_SELF_TEST = 0xB;
static const DeviceCommandId_t NEG_Z_SELF_TEST = 0xC;
static const DeviceCommandId_t GET_SELF_TEST_RESULT = 0xD;
static const uint8_t GET_TEMP_REPLY_SIZE = 2;
static const uint8_t CFGR_CMD_SIZE = 3;
static const uint8_t POINTER_REG_SIZE = 1;
static const uint32_t ENG_HK_DATA_SET_ID = 1;
static const uint32_t CAL_MTM_SET = 2;
static const uint32_t RAW_MTM_SET = 3;
static const uint32_t POS_X_TEST_DATASET = 4;
static const uint32_t NEG_X_TEST_DATASET = 5;
static const uint32_t POS_Y_TEST_DATASET = 6;
static const uint32_t NEG_Y_TEST_DATASET = 7;
static const uint32_t POS_Z_TEST_DATASET = 8;
static const uint32_t NEG_Z_TEST_DATASET = 9;
static const uint8_t SIZE_ENG_HK_COMMAND = 1;
static const uint8_t SIZE_STATUS_REPLY = 2;
static const uint8_t SIZE_ENG_HK_DATA_REPLY = 24;
static const uint8_t SIZE_GET_COMMANDED_DIPOLE_REPLY = 8;
static const uint8_t SIZE_GET_CAL_MTM_MEASUREMENT = 15;
static const uint8_t SIZE_GET_RAW_MTM_MEASUREMENT = 15;
static const uint16_t SIZE_SELF_TEST_RESULTS = 120;
static const uint16_t MAX_REPLY_SIZE = SIZE_SELF_TEST_RESULTS;
static const uint8_t MAX_COMMAND_SIZE = 9;
/** Define entries in IMTQ specific dataset */
static const uint8_t ENG_HK_SET_POOL_ENTRIES = 11;
static const uint8_t CAL_MTM_POOL_ENTRIES = 4;
static const uint8_t SELF_TEST_DATASET_ENTRIES = 104;
/** Error codes for interpreting the self test error byte */
static const uint8_t I2C_FAILURE_MASK = 0x1;
static const uint8_t SPI_FAILURE_MASK = 0x2; // MTM connectivity
static const uint8_t ADC_FAILURE_MASK = 0x4; // Current/Temp measurement
static const uint8_t PWM_FAILURE_MASK = 0x8; // Coil actuation
static const uint8_t TC_FAILURE_MASK = 0x10; // System failure
static const uint8_t MTM_RANGE_FAILURE_MASK = 0x20; // MTM values outside of expected range
static const uint8_t COIL_CURRENT_FAILURE_MASK = 0x40; // Coil currents outside of expected range
static const uint8_t INVALID_ERROR_BYTE =
0x80; // This is an invalid error byte and should be never replied by the IMTQ
static const uint8_t MAIN_STEP_OFFSET = 43;
/**
* Command code definitions. Each command or reply of an IMTQ request will begin with one of
* the following command codes.
*/
namespace CC {
static const uint8_t START_MTM_MEASUREMENT = 0x4;
static const uint8_t START_ACTUATION_DIPOLE = 0x6;
static const uint8_t SELF_TEST_CMD = 0x8;
static const uint8_t SOFTWARE_RESET = 0xAA;
static const uint8_t GET_ENG_HK_DATA = 0x4A;
static const uint8_t GET_COMMANDED_DIPOLE = 0x46;
static const uint8_t GET_RAW_MTM_MEASUREMENT = 0x42;
static const uint8_t GET_CAL_MTM_MEASUREMENT = 0x43;
static const uint8_t GET_SELF_TEST_RESULT = 0x47;
}; // namespace CC
namespace SELF_TEST_AXIS {
static const uint8_t ALL = 0x0;
static const uint8_t X_POSITIVE = 0x1;
static const uint8_t X_NEGATIVE = 0x2;
static const uint8_t Y_POSITIVE = 0x3;
static const uint8_t Y_NEGATIVE = 0x4;
static const uint8_t Z_POSITIVE = 0x5;
static const uint8_t Z_NEGATIVE = 0x6;
} // namespace SELF_TEST_AXIS
namespace SELF_TEST_STEPS {
static const uint8_t INIT = 0x0;
static const uint8_t X_POSITIVE = 0x1;
static const uint8_t X_NEGATIVE = 0x2;
static const uint8_t Y_POSITIVE = 0x3;
static const uint8_t Y_NEGATIVE = 0x4;
static const uint8_t Z_POSITIVE = 0x5;
static const uint8_t Z_NEGATIVE = 0x6;
static const uint8_t FINA = 0x7;
} // namespace SELF_TEST_STEPS
enum IMTQPoolIds : lp_id_t {
DIGITAL_VOLTAGE_MV,
ANALOG_VOLTAGE_MV,
DIGITAL_CURRENT,
ANALOG_CURRENT,
COIL_X_CURRENT,
COIL_Y_CURRENT,
COIL_Z_CURRENT,
COIL_X_TEMPERATURE,
COIL_Y_TEMPERATURE,
COIL_Z_TEMPERATURE,
MCU_TEMPERATURE,
MTM_CAL_X,
MTM_CAL_Y,
MTM_CAL_Z,
ACTUATION_CAL_STATUS,
MTM_RAW_X,
MTM_RAW_Y,
MTM_RAW_Z,
ACTUATION_RAW_STATUS,
INIT_POS_X_ERR,
INIT_POS_X_RAW_MAG_X,
INIT_POS_X_RAW_MAG_Y,
INIT_POS_X_RAW_MAG_Z,
INIT_POS_X_CAL_MAG_X,
INIT_POS_X_CAL_MAG_Y,
INIT_POS_X_CAL_MAG_Z,
INIT_POS_X_COIL_X_CURRENT,
INIT_POS_X_COIL_Y_CURRENT,
INIT_POS_X_COIL_Z_CURRENT,
INIT_POS_X_COIL_X_TEMPERATURE,
INIT_POS_X_COIL_Y_TEMPERATURE,
INIT_POS_X_COIL_Z_TEMPERATURE,
INIT_NEG_X_ERR,
INIT_NEG_X_RAW_MAG_X,
INIT_NEG_X_RAW_MAG_Y,
INIT_NEG_X_RAW_MAG_Z,
INIT_NEG_X_CAL_MAG_X,
INIT_NEG_X_CAL_MAG_Y,
INIT_NEG_X_CAL_MAG_Z,
INIT_NEG_X_COIL_X_CURRENT,
INIT_NEG_X_COIL_Y_CURRENT,
INIT_NEG_X_COIL_Z_CURRENT,
INIT_NEG_X_COIL_X_TEMPERATURE,
INIT_NEG_X_COIL_Y_TEMPERATURE,
INIT_NEG_X_COIL_Z_TEMPERATURE,
INIT_POS_Y_ERR,
INIT_POS_Y_RAW_MAG_X,
INIT_POS_Y_RAW_MAG_Y,
INIT_POS_Y_RAW_MAG_Z,
INIT_POS_Y_CAL_MAG_X,
INIT_POS_Y_CAL_MAG_Y,
INIT_POS_Y_CAL_MAG_Z,
INIT_POS_Y_COIL_X_CURRENT,
INIT_POS_Y_COIL_Y_CURRENT,
INIT_POS_Y_COIL_Z_CURRENT,
INIT_POS_Y_COIL_X_TEMPERATURE,
INIT_POS_Y_COIL_Y_TEMPERATURE,
INIT_POS_Y_COIL_Z_TEMPERATURE,
INIT_NEG_Y_ERR,
INIT_NEG_Y_RAW_MAG_X,
INIT_NEG_Y_RAW_MAG_Y,
INIT_NEG_Y_RAW_MAG_Z,
INIT_NEG_Y_CAL_MAG_X,
INIT_NEG_Y_CAL_MAG_Y,
INIT_NEG_Y_CAL_MAG_Z,
INIT_NEG_Y_COIL_X_CURRENT,
INIT_NEG_Y_COIL_Y_CURRENT,
INIT_NEG_Y_COIL_Z_CURRENT,
INIT_NEG_Y_COIL_X_TEMPERATURE,
INIT_NEG_Y_COIL_Y_TEMPERATURE,
INIT_NEG_Y_COIL_Z_TEMPERATURE,
INIT_POS_Z_ERR,
INIT_POS_Z_RAW_MAG_X,
INIT_POS_Z_RAW_MAG_Y,
INIT_POS_Z_RAW_MAG_Z,
INIT_POS_Z_CAL_MAG_X,
INIT_POS_Z_CAL_MAG_Y,
INIT_POS_Z_CAL_MAG_Z,
INIT_POS_Z_COIL_X_CURRENT,
INIT_POS_Z_COIL_Y_CURRENT,
INIT_POS_Z_COIL_Z_CURRENT,
INIT_POS_Z_COIL_X_TEMPERATURE,
INIT_POS_Z_COIL_Y_TEMPERATURE,
INIT_POS_Z_COIL_Z_TEMPERATURE,
INIT_NEG_Z_ERR,
INIT_NEG_Z_RAW_MAG_X,
INIT_NEG_Z_RAW_MAG_Y,
INIT_NEG_Z_RAW_MAG_Z,
INIT_NEG_Z_CAL_MAG_X,
INIT_NEG_Z_CAL_MAG_Y,
INIT_NEG_Z_CAL_MAG_Z,
INIT_NEG_Z_COIL_X_CURRENT,
INIT_NEG_Z_COIL_Y_CURRENT,
INIT_NEG_Z_COIL_Z_CURRENT,
INIT_NEG_Z_COIL_X_TEMPERATURE,
INIT_NEG_Z_COIL_Y_TEMPERATURE,
INIT_NEG_Z_COIL_Z_TEMPERATURE,
POS_X_ERR,
POS_X_RAW_MAG_X,
POS_X_RAW_MAG_Y,
POS_X_RAW_MAG_Z,
POS_X_CAL_MAG_X,
POS_X_CAL_MAG_Y,
POS_X_CAL_MAG_Z,
POS_X_COIL_X_CURRENT,
POS_X_COIL_Y_CURRENT,
POS_X_COIL_Z_CURRENT,
POS_X_COIL_X_TEMPERATURE,
POS_X_COIL_Y_TEMPERATURE,
POS_X_COIL_Z_TEMPERATURE,
NEG_X_ERR,
NEG_X_RAW_MAG_X,
NEG_X_RAW_MAG_Y,
NEG_X_RAW_MAG_Z,
NEG_X_CAL_MAG_X,
NEG_X_CAL_MAG_Y,
NEG_X_CAL_MAG_Z,
NEG_X_COIL_X_CURRENT,
NEG_X_COIL_Y_CURRENT,
NEG_X_COIL_Z_CURRENT,
NEG_X_COIL_X_TEMPERATURE,
NEG_X_COIL_Y_TEMPERATURE,
NEG_X_COIL_Z_TEMPERATURE,
POS_Y_ERR,
POS_Y_RAW_MAG_X,
POS_Y_RAW_MAG_Y,
POS_Y_RAW_MAG_Z,
POS_Y_CAL_MAG_X,
POS_Y_CAL_MAG_Y,
POS_Y_CAL_MAG_Z,
POS_Y_COIL_X_CURRENT,
POS_Y_COIL_Y_CURRENT,
POS_Y_COIL_Z_CURRENT,
POS_Y_COIL_X_TEMPERATURE,
POS_Y_COIL_Y_TEMPERATURE,
POS_Y_COIL_Z_TEMPERATURE,
NEG_Y_ERR,
NEG_Y_RAW_MAG_X,
NEG_Y_RAW_MAG_Y,
NEG_Y_RAW_MAG_Z,
NEG_Y_CAL_MAG_X,
NEG_Y_CAL_MAG_Y,
NEG_Y_CAL_MAG_Z,
NEG_Y_COIL_X_CURRENT,
NEG_Y_COIL_Y_CURRENT,
NEG_Y_COIL_Z_CURRENT,
NEG_Y_COIL_X_TEMPERATURE,
NEG_Y_COIL_Y_TEMPERATURE,
NEG_Y_COIL_Z_TEMPERATURE,
POS_Z_ERR,
POS_Z_RAW_MAG_X,
POS_Z_RAW_MAG_Y,
POS_Z_RAW_MAG_Z,
POS_Z_CAL_MAG_X,
POS_Z_CAL_MAG_Y,
POS_Z_CAL_MAG_Z,
POS_Z_COIL_X_CURRENT,
POS_Z_COIL_Y_CURRENT,
POS_Z_COIL_Z_CURRENT,
POS_Z_COIL_X_TEMPERATURE,
POS_Z_COIL_Y_TEMPERATURE,
POS_Z_COIL_Z_TEMPERATURE,
NEG_Z_ERR,
NEG_Z_RAW_MAG_X,
NEG_Z_RAW_MAG_Y,
NEG_Z_RAW_MAG_Z,
NEG_Z_CAL_MAG_X,
NEG_Z_CAL_MAG_Y,
NEG_Z_CAL_MAG_Z,
NEG_Z_COIL_X_CURRENT,
NEG_Z_COIL_Y_CURRENT,
NEG_Z_COIL_Z_CURRENT,
NEG_Z_COIL_X_TEMPERATURE,
NEG_Z_COIL_Y_TEMPERATURE,
NEG_Z_COIL_Z_TEMPERATURE,
FINA_POS_X_ERR,
FINA_POS_X_RAW_MAG_X,
FINA_POS_X_RAW_MAG_Y,
FINA_POS_X_RAW_MAG_Z,
FINA_POS_X_CAL_MAG_X,
FINA_POS_X_CAL_MAG_Y,
FINA_POS_X_CAL_MAG_Z,
FINA_POS_X_COIL_X_CURRENT,
FINA_POS_X_COIL_Y_CURRENT,
FINA_POS_X_COIL_Z_CURRENT,
FINA_POS_X_COIL_X_TEMPERATURE,
FINA_POS_X_COIL_Y_TEMPERATURE,
FINA_POS_X_COIL_Z_TEMPERATURE,
FINA_NEG_X_ERR,
FINA_NEG_X_RAW_MAG_X,
FINA_NEG_X_RAW_MAG_Y,
FINA_NEG_X_RAW_MAG_Z,
FINA_NEG_X_CAL_MAG_X,
FINA_NEG_X_CAL_MAG_Y,
FINA_NEG_X_CAL_MAG_Z,
FINA_NEG_X_COIL_X_CURRENT,
FINA_NEG_X_COIL_Y_CURRENT,
FINA_NEG_X_COIL_Z_CURRENT,
FINA_NEG_X_COIL_X_TEMPERATURE,
FINA_NEG_X_COIL_Y_TEMPERATURE,
FINA_NEG_X_COIL_Z_TEMPERATURE,
FINA_POS_Y_ERR,
FINA_POS_Y_RAW_MAG_X,
FINA_POS_Y_RAW_MAG_Y,
FINA_POS_Y_RAW_MAG_Z,
FINA_POS_Y_CAL_MAG_X,
FINA_POS_Y_CAL_MAG_Y,
FINA_POS_Y_CAL_MAG_Z,
FINA_POS_Y_COIL_X_CURRENT,
FINA_POS_Y_COIL_Y_CURRENT,
FINA_POS_Y_COIL_Z_CURRENT,
FINA_POS_Y_COIL_X_TEMPERATURE,
FINA_POS_Y_COIL_Y_TEMPERATURE,
FINA_POS_Y_COIL_Z_TEMPERATURE,
FINA_NEG_Y_ERR,
FINA_NEG_Y_RAW_MAG_X,
FINA_NEG_Y_RAW_MAG_Y,
FINA_NEG_Y_RAW_MAG_Z,
FINA_NEG_Y_CAL_MAG_X,
FINA_NEG_Y_CAL_MAG_Y,
FINA_NEG_Y_CAL_MAG_Z,
FINA_NEG_Y_COIL_X_CURRENT,
FINA_NEG_Y_COIL_Y_CURRENT,
FINA_NEG_Y_COIL_Z_CURRENT,
FINA_NEG_Y_COIL_X_TEMPERATURE,
FINA_NEG_Y_COIL_Y_TEMPERATURE,
FINA_NEG_Y_COIL_Z_TEMPERATURE,
FINA_POS_Z_ERR,
FINA_POS_Z_RAW_MAG_X,
FINA_POS_Z_RAW_MAG_Y,
FINA_POS_Z_RAW_MAG_Z,
FINA_POS_Z_CAL_MAG_X,
FINA_POS_Z_CAL_MAG_Y,
FINA_POS_Z_CAL_MAG_Z,
FINA_POS_Z_COIL_X_CURRENT,
FINA_POS_Z_COIL_Y_CURRENT,
FINA_POS_Z_COIL_Z_CURRENT,
FINA_POS_Z_COIL_X_TEMPERATURE,
FINA_POS_Z_COIL_Y_TEMPERATURE,
FINA_POS_Z_COIL_Z_TEMPERATURE,
FINA_NEG_Z_ERR,
FINA_NEG_Z_RAW_MAG_X,
FINA_NEG_Z_RAW_MAG_Y,
FINA_NEG_Z_RAW_MAG_Z,
FINA_NEG_Z_CAL_MAG_X,
FINA_NEG_Z_CAL_MAG_Y,
FINA_NEG_Z_CAL_MAG_Z,
FINA_NEG_Z_COIL_X_CURRENT,
FINA_NEG_Z_COIL_Y_CURRENT,
FINA_NEG_Z_COIL_Z_CURRENT,
FINA_NEG_Z_COIL_X_TEMPERATURE,
FINA_NEG_Z_COIL_Y_TEMPERATURE,
FINA_NEG_Z_COIL_Z_TEMPERATURE,
};
class EngHkDataset : public StaticLocalDataSet<ENG_HK_SET_POOL_ENTRIES> {
public:
EngHkDataset(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, ENG_HK_DATA_SET_ID) {}
EngHkDataset(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, ENG_HK_DATA_SET_ID)) {}
lp_var_t<uint16_t> digitalVoltageMv = lp_var_t<uint16_t>(sid.objectId, DIGITAL_VOLTAGE_MV, this);
lp_var_t<uint16_t> analogVoltageMv = lp_var_t<uint16_t>(sid.objectId, ANALOG_VOLTAGE_MV, this);
lp_var_t<float> digitalCurrentmA = lp_var_t<float>(sid.objectId, DIGITAL_CURRENT, this);
lp_var_t<float> analogCurrentmA = lp_var_t<float>(sid.objectId, ANALOG_CURRENT, this);
lp_var_t<float> coilXCurrentmA = lp_var_t<float>(sid.objectId, COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrentmA = lp_var_t<float>(sid.objectId, COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrentmA = lp_var_t<float>(sid.objectId, COIL_Z_CURRENT, this);
/** All temperatures in [<5B>C] */
lp_var_t<int16_t> coilXTemperature = lp_var_t<int16_t>(sid.objectId, COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature = lp_var_t<int16_t>(sid.objectId, COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature = lp_var_t<int16_t>(sid.objectId, COIL_Z_TEMPERATURE, this);
lp_var_t<int16_t> mcuTemperature = lp_var_t<int16_t>(sid.objectId, MCU_TEMPERATURE, this);
};
/**
* @brief This dataset holds the last calibrated MTM measurement.
*/
class CalibratedMtmMeasurementSet : public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
CalibratedMtmMeasurementSet(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, CAL_MTM_SET) {}
CalibratedMtmMeasurementSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, CAL_MTM_SET)) {}
/** The unit of all measurements is nT */
lp_var_t<int32_t> mtmXnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_X, this);
lp_var_t<int32_t> mtmYnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_Y, this);
lp_var_t<int32_t> mtmZnT = lp_var_t<int32_t>(sid.objectId, MTM_CAL_Z, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus =
lp_var_t<uint8_t>(sid.objectId, ACTUATION_CAL_STATUS, this);
};
/**
* @brief This dataset holds the raw MTM measurements.
*/
class RawMtmMeasurementSet : public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
RawMtmMeasurementSet(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, RAW_MTM_SET) {}
RawMtmMeasurementSet(object_id_t objectId) : StaticLocalDataSet(sid_t(objectId, RAW_MTM_SET)) {}
/** The unit of all measurements is nT */
lp_var_t<float> mtmXnT = lp_var_t<float>(sid.objectId, MTM_RAW_X, this);
lp_var_t<float> mtmYnT = lp_var_t<float>(sid.objectId, MTM_RAW_Y, this);
lp_var_t<float> mtmZnT = lp_var_t<float>(sid.objectId, MTM_RAW_Z, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus =
lp_var_t<uint8_t>(sid.objectId, ACTUATION_RAW_STATUS, this);
};
/**
* @brief This class can be used to ease the generation of an action message commanding the
* IMTQHandler to configure the magnettorquer with the desired dipoles.
*
* @details Deserialize the packet, write the deserialized data to the ipc store and store the
* the ipc store address in the action message.
*/
class CommandDipolePacket : public SerialLinkedListAdapter<SerializeIF> {
public:
CommandDipolePacket() { setLinks(); }
private:
/**
* @brief Constructor
*
* @param xDipole The dipole of the x coil in 10 ^ -4 * Am^2
* @param yDipole The dipole of the y coil in 10 ^ -4 * Am^2
* @param zDipole The dipole of the z coil in 10 ^ -4 * Am^2
* @param duration The duration in milliseconds the dipole will be generated by the coils.
* When set to 0, the dipole will be generated until a new dipole actuation
* command is sent.
*/
CommandDipolePacket(uint16_t xDipole, uint16_t yDipole, uint16_t zDipole, uint16_t duration)
: xDipole(xDipole), yDipole(yDipole), zDipole(zDipole), duration(duration) {}
void setLinks() {
setStart(&xDipole);
xDipole.setNext(&yDipole);
yDipole.setNext(&zDipole);
zDipole.setNext(&duration);
}
SerializeElement<uint16_t> xDipole;
SerializeElement<uint16_t> yDipole;
SerializeElement<uint16_t> zDipole;
SerializeElement<uint16_t> duration;
};
/**
* @brief This dataset can be used to store the self test results of the +X self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +X self test generates a positive dipole in X direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +X actuation
* 3. All coils off (FINA step)
*/
class PosXSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosXSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::POS_X_TEST_DATASET) {}
PosXSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::POS_X_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_X_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_Z_CURRENT, this);
lp_var_t<uint16_t> initCoilXTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_Z_TEMPERATURE, this);
/** +X block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_X_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_X_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -X self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -X self test generates a negative dipole in X direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -X actuation
* 3. All coils off (FINA step)
*/
class NegXSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegXSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::NEG_X_TEST_DATASET) {}
NegXSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_X_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_X_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_Z_TEMPERATURE, this);
/** -X block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_X_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_X_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the +Y self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +Y self test generates a positive dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Y actuation
* 3. All coils off (FINA step)
*/
class PosYSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosYSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::POS_Y_TEST_DATASET) {}
PosYSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::POS_Y_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Y_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_Z_TEMPERATURE, this);
/** +Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -Y self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -Y self test generates a negative dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Y actuation
* 3. All coils off (FINA step)
*/
class NegYSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegYSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::NEG_Y_TEST_DATASET) {}
NegYSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_Y_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Y_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_Z_TEMPERATURE, this);
/** -Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the +Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +Z self test generates a positive dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Z actuation
* 3. All coils off (FINA step)
*/
class PosZSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosZSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::POS_Z_TEST_DATASET) {}
PosZSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::POS_Z_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Z_CURRENT, this);
lp_var_t<uint16_t> initCoilXTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -Z self test generates a negative dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Z actuation
* 3. All coils off (FINA step)
*/
class NegZSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegZSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, IMTQ::NEG_Z_TEST_DATASET) {}
NegZSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, IMTQ::NEG_Z_TEST_DATASET)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_Z_TEMPERATURE, this);
};
} // namespace IMTQ
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_ */