eive-obsw/mission/controller/acs/SusConverter.cpp
Marius Eggert cd11e08193
All checks were successful
EIVE/eive-obsw/pipeline/head This commit looks good
removed redundant loop
2022-09-23 14:37:48 +02:00

378 lines
16 KiB
C++

/*
* SusConverter.cpp
*
* Created on: 17.01.2022
* Author: Timon Schwarz
*/
#include <math.h> //for atan2
#include <iostream>
#include <SusConverter.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
void SunSensor::setSunSensorData() {
// Creates dummy sensordata, replace with SUS devicehandler / channel readout
susChannelValues[0] = {3913, 3912, 3799, 4056};
susChannelValues[1] = {3913, 3912, 3799, 4056};
susChannelValues[2] = {3913, 3912, 3799, 4056};
susChannelValues[3] = {3913, 3912, 3799, 4056};
susChannelValues[4] = {3913, 3912, 3799, 4056};
susChannelValues[5] = {3913, 3912, 3799, 4056};
susChannelValues[6] = {3913, 3912, 3799, 4056};
susChannelValues[7] = {3913, 3912, 3799, 4056};
susChannelValues[8] = {3913, 3912, 3799, 4056};
susChannelValues[9] = {3913, 3912, 3799, 4056};
susChannelValues[10] = {3913, 3912, 3799, 4056};
susChannelValues[11] = {3913, 3912, 3799, 4056};
}
void SunSensor::checkSunSensorData(uint8_t Sensornumber) {
uint16_t ChannelValueSum;
// Check individual channel values
for (int k = 0; k < 4; k++) { // iteration above all photodiode quarters
if (susChannelValues[Sensornumber][k] <= ChannelValueCheckLow ||
susChannelValues[Sensornumber][k] > ChannelValueCheckHigh) { // Channel values out of range for 12 bit SUS
// channel measurement range?
ValidityNumber[Sensornumber] = false; // false --> Data not valid
/*printf(
"The value of channel %i from sun sensor %i is not inside the borders of valid data with "
"a value of %i \n",
k, Sensornumber, ChannelValue[k]);*/
} else if (susChannelValues[Sensornumber][k] >
susChannelValues[Sensornumber][4]) { // Channel values higher than zero current threshold GNDREF?
ValidityNumber[Sensornumber] = false;
/*printf(
"The value of channel %i from sun sensor %i is higher than the zero current threshold "
"GNDREF\n",
k, Sensornumber);*/
};
};
// check sum of all channel values to check if sun sensor is illuminated by the sun (sum is
// smaller than a treshold --> sun sensor is not illuminated by the sun, but by the moon
// reflection or earth albedo)
ChannelValueSum =
4 * susChannelValues[Sensornumber][4] - (susChannelValues[Sensornumber][0] +
susChannelValues[Sensornumber][1] + susChannelValues[Sensornumber][2] +
susChannelValues[Sensornumber][3]);
if ((ChannelValueSum < ChannelValueSumHigh) && (ChannelValueSum > ChannelValueSumLow)) {
ValidityNumber[Sensornumber] = false;
//printf("Sun sensor %i is not illuminated by the sun\n", Sensornumber);
};
}
void SunSensor::AngleCalculation(uint8_t Sensornumber) {
float xout, yout, s = 0.03; // s=[mm]
uint8_t d = 5, h = 1; // d=[mm] h=[mm]
int ch0, ch1, ch2, ch3;
// Substract measurement values from GNDREF zero current threshold
ch0 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][0];
ch1 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][1];
ch2 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][2];
ch3 = susChannelValues[Sensornumber][4] - susChannelValues[Sensornumber][3];
// Calculation of x and y
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles
AlphaBetaRaw[Sensornumber][0] = atan2(xout, h) * (180 / M_PI); //[°]
AlphaBetaRaw[Sensornumber][1] = atan2(yout, h) * (180 / M_PI); //[°]
}
void SunSensor::setCalibrationCoefficients(uint8_t Sensornumber) {
switch (Sensornumber) { // search for the correct calibration coefficients for each SUS
case 0:
for (uint8_t row = 0; row < 9;
row++) { // save the correct coefficients in the right SUS class
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus0coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus0coeffBeta[row][column];
}
}
break;
case 1:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus1coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus1coeffBeta[row][column];
}
}
break;
case 2:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus2coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus2coeffBeta[row][column];
}
}
break;
case 3:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus3coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus3coeffBeta[row][column];
}
}
break;
case 4:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus4coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus4coeffBeta[row][column];
}
}
break;
case 5:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus5coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus5coeffBeta[row][column];
}
}
break;
case 6:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus6coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus6coeffBeta[row][column];
}
}
break;
case 7:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus7coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus7coeffBeta[row][column];
}
}
break;
case 8:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus8coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus8coeffBeta[row][column];
}
}
break;
case 9:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus9coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus9coeffBeta[row][column];
}
}
break;
case 10:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus10coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus10coeffBeta[row][column];
}
}
break;
case 11:
for (uint8_t row = 0; row < 9; row++) {
for (uint8_t column = 0; column < 10; column++) {
CoeffAlpha[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus11coeffAlpha[row][column];
CoeffBeta[Sensornumber][row][column] = acsParameters.susHandlingParameters.sus11coeffBeta[row][column];
}
}
break;
}
}
void SunSensor::Calibration(uint8_t Sensornumber) {
float alpha_m, beta_m, alpha_calibrated, beta_calibrated, k, l;
uint8_t index;
alpha_m = AlphaBetaRaw[Sensornumber][0]; //[°]
beta_m = AlphaBetaRaw[Sensornumber][1]; //[°]
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k = k + 1;
l = 0;
while (l < 3) {
l = l + 1;
// if-condition to check in which cell the data point has to be
if ((alpha_m > ((CompleteCellWidth * ((k - 1) / 3)) - HalfCellWidth) &&
alpha_m < ((CompleteCellWidth * (k / 3)) - HalfCellWidth)) &&
(beta_m > ((CompleteCellWidth * ((l - 1) / 3)) - HalfCellWidth) &&
beta_m < ((CompleteCellWidth * (l / 3)) - HalfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
// -> first cell has number 0
AlphaBetaCalibrated[Sensornumber][0] =
CoeffAlpha[Sensornumber][index][0] + CoeffAlpha[Sensornumber][index][1] * alpha_m + CoeffAlpha[Sensornumber][index][2] * beta_m +
CoeffAlpha[Sensornumber][index][3] * alpha_m * alpha_m + CoeffAlpha[Sensornumber][index][4] * alpha_m * beta_m +
CoeffAlpha[Sensornumber][index][5] * beta_m * beta_m +
CoeffAlpha[Sensornumber][index][6] * alpha_m * alpha_m * alpha_m +
CoeffAlpha[Sensornumber][index][7] * alpha_m * alpha_m * beta_m +
CoeffAlpha[Sensornumber][index][8] * alpha_m * beta_m * beta_m +
CoeffAlpha[Sensornumber][index][9] * beta_m * beta_m * beta_m; //[°]
AlphaBetaCalibrated[Sensornumber][1] =
CoeffBeta[Sensornumber][index][0] + CoeffBeta[Sensornumber][index][1] * alpha_m +
CoeffBeta[Sensornumber][index][2] * beta_m + CoeffBeta[Sensornumber][index][3] * alpha_m * alpha_m +
CoeffBeta[Sensornumber][index][4] * alpha_m * beta_m +
CoeffBeta[Sensornumber][index][5] * beta_m * beta_m +
CoeffBeta[Sensornumber][index][6] * alpha_m * alpha_m * alpha_m +
CoeffBeta[Sensornumber][index][7] * alpha_m * alpha_m * beta_m +
CoeffBeta[Sensornumber][index][8] * alpha_m * beta_m * beta_m +
CoeffBeta[Sensornumber][index][9] * beta_m * beta_m * beta_m; //[°]
}
}
}
}
void SunSensor::CalculateSunVector(uint8_t Sensornumber) {
float alpha, beta;
alpha = AlphaBetaCalibrated[Sensornumber][0]; //[°]
beta = AlphaBetaCalibrated[Sensornumber][1]; //[°]
// Calculate the normalized Sun Vector
SunVectorBodyFrame[Sensornumber][0] =
(tan(alpha * (M_PI / 180)) /
(sqrt((powf(tan(alpha * (M_PI / 180)), 2)) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[Sensornumber][1] =
(tan(beta * (M_PI / 180)) /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf(tan((beta * (M_PI / 180))), 2) + (1))));
SunVectorBodyFrame[Sensornumber][2] =
(-1 /
(sqrt(powf((tan(alpha * (M_PI / 180))), 2) + powf((tan(beta * (M_PI / 180))), 2) + (1))));
}
float* SunSensor::getSunVectorBodyFrame() {
// return function for the sun vector in the body frame
float* SunVectorBodyFrameReturn = 0;
SunVectorBodyFrameReturn = new float[3];
SunVectorBodyFrameReturn[0] = SunVectorBodyFrame[0];
SunVectorBodyFrameReturn[1] = SunVectorBodyFrame[1];
SunVectorBodyFrameReturn[2] = SunVectorBodyFrame[2];
return SunVectorBodyFrameReturn;
}
bool SunSensor::getValidityNumber(uint8_t Sensornumber) {
return ValidityNumber[Sensornumber];
}
float* SunSensor::TransferSunVector() {
float* SunVectorEIVE = 0;
SunVectorEIVE = new float[3];
uint8_t counter = 0;
int8_t BasisMatrixUse[3][3];
float SunVectorMatrixEIVE[3][12] = {0}, sum;
float SunVectorMatrixBodyFrame[3][12];
for (uint8_t Sensornumber = 0; Sensornumber < 12;
Sensornumber++) { // save the sun vector of each SUS in their body frame into an array for
// further processing
float* SunVectorBodyFrame = SunVectorBodyFrame[Sensornumber];
SunVectorMatrixBodyFrame[0][Sensornumber] = SunVectorBodyFrame[0];
SunVectorMatrixBodyFrame[1][Sensornumber] = SunVectorBodyFrame[1];
SunVectorMatrixBodyFrame[2][Sensornumber] = SunVectorBodyFrame[2];
}
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) {
if (getValidityNumber(Sensornumber) == false) {
counter = counter + 1;
} // if the SUS data is not valid ->
for (uint8_t c1 = 0; c1 < 3; c1++) {
for (uint8_t c2 = 0; c2 < 3; c2++) {
switch (Sensornumber) { // find right basis matrix for each SUS
case 0:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus0orientationMatrix[c1][c2];
break;
case 1:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus1orientationMatrix[c1][c2];
break;
case 2:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus2orientationMatrix[c1][c2];
break;
case 3:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus3orientationMatrix[c1][c2];
break;
case 4:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus4orientationMatrix[c1][c2];
break;
case 5:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus5orientationMatrix[c1][c2];
break;
case 6:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus6orientationMatrix[c1][c2];
break;
case 7:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus7orientationMatrix[c1][c2];
break;
case 8:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus8orientationMatrix[c1][c2];
break;
case 9:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus9orientationMatrix[c1][c2];
break;
case 10:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus10orientationMatrix[c1][c2];
break;
case 11:
BasisMatrixUse[c1][c2] = acsParameters.susHandlingParameters.sus11orientationMatrix[c1][c2];
break;
}
}
}
// matrix multiplication for transition in EIVE coordinatesystem
for (uint8_t p = 0; p < 3; p++) {
for (uint8_t q = 0; q < 3; q++) {
// normal matrix multiplication
SunVectorMatrixEIVE[p][Sensornumber] +=
(BasisMatrixUse[p][q] * SunVectorMatrixBodyFrame[q][Sensornumber]);
}
}
}
if (counter < 12) { // Calculate one sun vector out of all sun vectors from the different SUS
for (uint8_t i = 0; i < 3; i++) {
sum = 0;
for (uint8_t Sensornumber = 0; Sensornumber < 12; Sensornumber++) {
if (getValidityNumber(Sensornumber)){
sum += SunVectorMatrixEIVE[i][Sensornumber];
//printf("%f\n", SunVectorMatrixEIVE[i][Sensornumber]);
}
}
// ToDo: decide on length on sun vector
SunVectorEIVE[i] =
sum/* / (12 - counter)*/; // FLAG Ergebnis ist falsch, kann an einem Fehler im Programm
// liegen, vermutlich aber an den falschen ChannelValues da die
// transformierten Sonnenvektoren jedes SUS plausibel sind
}
VectorOperations<float>::normalize(SunVectorEIVE, SunVectorEIVE, 3);
} else {
// No sus is valid
throw std::invalid_argument("No sun sensor is valid"); // throw error
}
return SunVectorEIVE;
}