eive-obsw/linux/boardtest/SpiTestClass.cpp

507 lines
18 KiB
C++

#include "SpiTestClass.h"
#include "OBSWConfig.h"
#include "devices/gpioIds.h"
#include <fsfw/serviceinterface/ServiceInterface.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/timemanager/Stopwatch.h>
#include <fsfw/hal/linux/utility.h>
#include <fsfw/hal/linux/UnixFileGuard.h>
#include <fsfw/hal/common/gpio/gpioDefinitions.h>
#include <fsfw/hal/common/gpio/GpioCookie.h>
#include <linux/spi/spidev.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <bitset>
SpiTestClass::SpiTestClass(object_id_t objectId, GpioIF* gpioIF): TestTask(objectId),
gpioIF(gpioIF) {
if(gpioIF == nullptr) {
sif::error << "SpiTestClass::SpiTestClass: Invalid GPIO ComIF!" << std::endl;
}
testMode = TestModes::GYRO_L3GD20H;
spiTransferStruct.rx_buf = reinterpret_cast<__u64>(recvBuffer.data());
spiTransferStruct.tx_buf = reinterpret_cast<__u64>(sendBuffer.data());
}
ReturnValue_t SpiTestClass::performOneShotAction() {
switch(testMode) {
case(TestModes::NONE): {
break;
}
case(TestModes::MGM_LIS3MDL): {
performLis3MdlTest(mgm2Lis3mdlChipSelect);
break;
}
case(TestModes::MGM_RM3100): {
performRm3100Test(mgm3Rm3100ChipSelect);
break;
}
case(TestModes::GYRO_L3GD20H): {
performL3gTest(gyro1L3gd20ChipSelect);
break;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiTestClass::performPeriodicAction() {
return HasReturnvaluesIF::RETURN_OK;
}
void SpiTestClass::performRm3100Test(uint8_t mgmId) {
/* Configure all SPI chip selects and pull them high */
acsInit();
/* Adapt accordingly */
if(mgmId != mgm1Rm3100ChipSelect and mgmId != mgm3Rm3100ChipSelect) {
sif::warning << "SpiTestClass::performRm3100Test: Invalid MGM ID!" << std::endl;
}
gpioId_t currentGpioId = 0;
uint8_t chipSelectPin = mgmId;
if(chipSelectPin == mgm1Rm3100ChipSelect) {
currentGpioId = gpioIds::MGM_1_RM3100_CS;
}
else {
currentGpioId = gpioIds::MGM_3_RM3100_CS;
}
uint32_t rm3100speed = 976'000;
uint8_t rm3100revidReg = 0x36;
spi::SpiModes rm3100mode = spi::SpiModes::MODE_3;
#ifdef RASPBERRY_PI
std::string deviceName = "/dev/spidev0.0";
#else
std::string deviceName = "/dev/spidev2.0";
#endif
int fileDescriptor = 0;
UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult()) {
sif::error << "SpiTestClass::performRm3100Test: File descriptor could not be opened!"
<< std::endl;
return;
}
setSpiSpeedAndMode(fileDescriptor, rm3100mode, rm3100speed);
uint8_t revId = readRegister(fileDescriptor, currentGpioId, rm3100revidReg);
sif::info << "SpiTestClass::performRm3100Test: Revision ID 0b" << std::bitset<8>(revId) <<
std::endl;
/* Write configuration to CMM register */
writeRegister(fileDescriptor, currentGpioId, 0x01, 0x75);
uint8_t cmmRegister = readRm3100Register(fileDescriptor , currentGpioId, 0x01);
sif::info << "SpiTestClass::performRm3100Test: CMM register value: " <<
std::hex << "0x" << static_cast<int>(cmmRegister) << std::dec << std::endl;
/* Read the cycle count registers */
uint8_t cycleCountsRaw[6];
readMultipleRegisters(fileDescriptor, currentGpioId, 0x04, cycleCountsRaw, 6);
uint16_t cycleCountX = cycleCountsRaw[0] << 8 | cycleCountsRaw[1];
uint16_t cycleCountY = cycleCountsRaw[2] << 8 | cycleCountsRaw[3];
uint16_t cycleCountZ = cycleCountsRaw[4] << 8 | cycleCountsRaw[5];
sif::info << "Cycle count X: " << cycleCountX << std::endl;
sif::info << "Cycle count Y: " << cycleCountY << std::endl;
sif::info << "Cycle count z: " << cycleCountZ << std::endl;
writeRegister(fileDescriptor, currentGpioId, 0x0B, 0x95);
uint8_t tmrcReg = readRm3100Register(fileDescriptor, currentGpioId, 0x0B);
sif::info << "SpiTestClass::performRm3100Test: TMRC register value: " <<
std::hex << "0x" << static_cast<int>(tmrcReg) << std::dec << std::endl;
TaskFactory::delayTask(10);
uint8_t statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34);
sif::info << "SpiTestClass::performRm3100Test: Status Register 0b" <<
std::bitset<8>(statusReg) << std::endl;
/* This means that data is not ready */
if((statusReg & 0b1000'0000) == 0) {
sif::warning << "SpiTestClass::performRm3100Test: Data not ready!" << std::endl;
TaskFactory::delayTask(10);
uint8_t statusReg = readRm3100Register(fileDescriptor, currentGpioId, 0x34);
if((statusReg & 0b1000'0000) == 0) {
return;
}
}
uint32_t rm3100DefaultCycleCout = 0xC8;
/* Gain scales lineary with cycle count and is 38 for cycle count 100 */
float rm3100Gain = rm3100DefaultCycleCout / 100.0 * 38.0;
float scaleFactor = 1 / rm3100Gain;
uint8_t rawValues[9];
readMultipleRegisters(fileDescriptor, currentGpioId, 0x24, rawValues, 9);
/* The sensor generates 24 bit signed values */
int32_t rawX = ((rawValues[0] << 24) | (rawValues[1] << 16) | (rawValues[2] << 8)) >> 8;
int32_t rawY = ((rawValues[3] << 24) | (rawValues[4] << 16) | (rawValues[5] << 8)) >> 8;
int32_t rawZ = ((rawValues[6] << 24) | (rawValues[7] << 16) | (rawValues[8] << 8)) >> 8;
float fieldStrengthX = rawX * scaleFactor;
float fieldStrengthY = rawY * scaleFactor;
float fieldStrengthZ = rawZ * scaleFactor;
sif::info << "RM3100 measured field strenghts in microtesla:" << std::endl;
sif::info << "Field Strength X: " << fieldStrengthX << " \xC2\xB5T" << std::endl;
sif::info << "Field Strength Y: " << fieldStrengthY << " \xC2\xB5T" << std::endl;
sif::info << "Field Strength Z: " << fieldStrengthZ << " \xC2\xB5T" << std::endl;
}
void SpiTestClass::performLis3MdlTest(uint8_t lis3Id) {
/* Configure all SPI chip selects and pull them high */
acsInit();
/* Adapt accordingly */
if(lis3Id != mgm0Lis3mdlChipSelect and lis3Id != mgm2Lis3mdlChipSelect) {
sif::warning << "SpiTestClass::performLis3MdlTest: Invalid MGM ID!" << std::endl;
}
gpioId_t currentGpioId = 0;
uint8_t chipSelectPin = lis3Id;
uint8_t whoAmIReg = 0b0000'1111;
uint8_t whoAmIRegExpectedVal = 0b0011'1101;
if(chipSelectPin == mgm0Lis3mdlChipSelect) {
currentGpioId = gpioIds::MGM_0_LIS3_CS;
}
else {
currentGpioId = gpioIds::MGM_2_LIS3_CS;
}
uint32_t spiSpeed = 3'900'000;
spi::SpiModes spiMode = spi::SpiModes::MODE_3;
#ifdef RASPBERRY_PI
std::string deviceName = "/dev/spidev0.0";
#else
std::string deviceName = "/dev/spidev2.0";
#endif
int fileDescriptor = 0;
UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult()) {
sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!"
<< std::endl;
return;
}
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
spiTransferStruct.delay_usecs = 0;
uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false);
sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" <<
std::bitset<8>(whoAmIRegVal) << std::endl;
if(whoAmIRegVal != whoAmIRegExpectedVal) {
sif::warning << "SpiTestClass::performLis3MdlTest: WHO AM I register invalid!"
<< std::endl;
}
}
void SpiTestClass::performL3gTest(uint8_t l3gId) {
/* Configure all SPI chip selects and pull them high */
acsInit();
l3gId = gyro2L3gd20ChipSelect;
/* Adapt accordingly */
if(l3gId != gyro1L3gd20ChipSelect and l3gId != gyro2L3gd20ChipSelect) {
sif::warning << "SpiTestClass::performLis3MdlTest: Invalid MGM ID!" << std::endl;
}
gpioId_t currentGpioId = 0;
uint8_t chipSelectPin = l3gId;
uint8_t whoAmIReg = 0b0000'1111;
uint8_t whoAmIRegExpectedVal = 0b1101'0111;
if(chipSelectPin == gyro1L3gd20ChipSelect) {
currentGpioId = gpioIds::GYRO_1_L3G_CS;
}
else {
currentGpioId = gpioIds::GYRO_2_L3G_CS;
}
uint32_t spiSpeed = 3'900'000;
spi::SpiModes spiMode = spi::SpiModes::MODE_3;
#ifdef RASPBERRY_PI
std::string deviceName = "/dev/spidev0.0";
#else
std::string deviceName = "/dev/spidev2.0";
#endif
int fileDescriptor = 0;
UnixFileGuard fileHelper(deviceName, &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface: ");
if(fileHelper.getOpenResult()) {
sif::error << "SpiTestClass::performLis3Mdl3100Test: File descriptor could not be opened!"
<< std::endl;
return;
}
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
uint8_t whoAmIRegVal = readStmRegister(fileDescriptor, currentGpioId, whoAmIReg, false);
sif::info << "SpiTestClass::performLis3MdlTest: WHO AM I register 0b" <<
std::bitset<8>(whoAmIRegVal) << std::endl;
if(whoAmIRegVal != whoAmIRegExpectedVal) {
sif::warning << "SpiTestClass::performL3gTest: Read WHO AM I register invalid!" <<
std::endl;
}
uint8_t ctrlReg1Addr = 0b0010'0000;
{
uint8_t commandRegs[5];
commandRegs[0] = 0b0000'1111;
commandRegs[1] = 0x0;
commandRegs[2] = 0x0;
/* Configure big endian data format */
commandRegs[3] = 0b0100'0000;
commandRegs[4] = 0x0;
writeMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, commandRegs,
sizeof(commandRegs));
uint8_t readRegs[5];
readMultipleRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readRegs,
sizeof(readRegs));
for(uint8_t idx = 0; idx < sizeof(readRegs); idx++) {
if(readRegs[idx] != commandRegs[0]) {
sif::warning << "SpiTestClass::performL3gTest: Read control register " <<
static_cast<int>(idx + 1) << " not equal to configured value" << std::endl;
}
}
}
uint8_t readOutBuffer[14];
readMultipleStmRegisters(fileDescriptor, currentGpioId, ctrlReg1Addr, readOutBuffer,
sizeof(readOutBuffer));
uint8_t statusReg = readOutBuffer[7];
sif::info << "SpiTestClass::performL3gTest: Status Register 0b" <<
std::bitset<8>(statusReg) << std::endl;
uint16_t l3gRange = 245;
float scaleFactor = static_cast<float>(l3gRange) / INT16_MAX;
/* The sensor spits out little endian */
int16_t angVelocRawX = (readOutBuffer[8] << 8) | readOutBuffer[9];
int16_t angVelocRawY = (readOutBuffer[10] << 8) | readOutBuffer[11];
int16_t angVelocRawZ = (readOutBuffer[12] << 8) | readOutBuffer[13];
float angVelocX = scaleFactor * angVelocRawX;
float angVelocY = scaleFactor * angVelocRawY;
float angVelocZ = scaleFactor * angVelocRawZ;
sif::info << "Angular velocities for the L3GD20H in degrees per second:" << std::endl;
sif::info << "X: " << angVelocX << std::endl;
sif::info << "Y: " << angVelocY << std::endl;
sif::info << "Z: " << angVelocZ << std::endl;
}
void SpiTestClass::acsInit() {
GpioCookie* gpioCookie = new GpioCookie();
GpiodRegular* gpio = nullptr;
#ifdef RASPBERRY_PI
std::string rpiGpioName = "gpiochip0";
gpio = new GpiodRegular(rpiGpioName, mgm0Lis3mdlChipSelect, "MGM_0_LIS3",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, mgm1Rm3100ChipSelect, "MGM_1_RM3100",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, gyro0AdisChipSelect, "GYRO_0_ADIS",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, gyro1L3gd20ChipSelect, "GYRO_1_L3G",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, gyro2L3gd20ChipSelect, "GYRO_2_L3G",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::GYRO_2_L3G_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, mgm2Lis3mdlChipSelect, "MGM_2_LIS3",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio);
gpio = new GpiodRegular(rpiGpioName, mgm3Rm3100ChipSelect, "MGM_3_RM3100",
gpio::Direction::OUT, 1);
gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio);
#elif defined(XIPHOS_Q7S)
std::string q7sGpioName5 = "gpiochip5";
std::string q7sGpioName6 = "gpiochip6";
gpio = new GpiodRegular(q7sGpioName5, mgm0Lis3mdlChipSelect, "MGM_0_LIS3",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::MGM_0_LIS3_CS, gpio);
gpio = new GpiodRegular(q7sGpioName5, mgm1Rm3100ChipSelect, "MGM_1_RM3100",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::MGM_1_RM3100_CS, gpio);
gpio = new GpiodRegular(q7sGpioName5, gyro0AdisChipSelect, "GYRO_0_ADIS",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::GYRO_0_ADIS_CS, gpio);
gpio = new GpiodRegular(q7sGpioName5, gyro1L3gd20ChipSelect, "GYRO_1_L3G",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::GYRO_1_L3G_CS, gpio);
gpio = new GpiodRegular(q7sGpioName5, gyro2L3gd20ChipSelect, "GYRO_2_L3G",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::GYRO_2_L3G_CS, gpio);
gpio = new GpiodRegular(q7sGpioName6, mgm2Lis3mdlChipSelect, "MGM_2_LIS3",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::MGM_2_LIS3_CS, gpio);
gpio = new GpiodRegular(q7sGpioName5, mgm3Rm3100ChipSelect, "MGM_3_RM3100",
gpio::Direction::OUT, gpio::HIGH);
gpioCookie->addGpio(gpioIds::MGM_3_RM3100_CS, gpio);
#endif
if(gpioIF != nullptr) {
gpioIF->addGpios(gpioCookie);
}
}
void SpiTestClass::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) {
int mode_test = SPI_MODE_3;
int retval = ioctl(spiFd, SPI_IOC_WR_MODE, &mode_test);//reinterpret_cast<uint8_t*>(&mode));
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI mode failed!");
}
retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if(retval != 0) {
utility::handleIoctlError("SpiTestClass::performRm3100Test: Setting SPI speed failed!");
}
}
void SpiTestClass::writeRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value) {
spiTransferStruct.len = 2;
sendBuffer[0] = reg;
sendBuffer[1] = value;
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullLow(chipSelect);
}
int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct);
if(retval < 0) {
utility::handleIoctlError("SpiTestClass::writeRegister: Write failed");
}
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullHigh(chipSelect);
}
}
void SpiTestClass::writeStmRegister(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t value,
bool autoIncrement) {
if(autoIncrement) {
reg |= STM_AUTO_INCR_MASK;
}
writeRegister(fd, chipSelect, reg, value);
}
void SpiTestClass::writeMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg,
uint8_t *values, size_t len) {
if(values == nullptr) {
return;
}
reg |= STM_AUTO_INCR_MASK;
/* Clear read mask */
reg &= ~STM_READ_MASK;
writeMultipleRegisters(fd, chipSelect, reg, values, len);
}
void SpiTestClass::writeMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg,
uint8_t *values, size_t len) {
if(values == nullptr) {
return;
}
sendBuffer[0] = reg;
std::memcpy(sendBuffer.data() + 1, values, len);
spiTransferStruct.len = len + 1;
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullLow(chipSelect);
}
int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct);
if(retval < 0) {
utility::handleIoctlError("SpiTestClass::readRegister: Read failed");
}
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullHigh(chipSelect);
}
}
uint8_t SpiTestClass::readRm3100Register(int fd, gpioId_t chipSelect, uint8_t reg) {
return readStmRegister(fd, chipSelect, reg, false);
}
void SpiTestClass::readMultipleStmRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply,
size_t len) {
reg |= STM_AUTO_INCR_MASK;
readMultipleRegisters(fd, chipSelect, reg, reply, len);
}
void SpiTestClass::readMultipleRegisters(int fd, gpioId_t chipSelect, uint8_t reg, uint8_t *reply,
size_t len) {
if(reply == nullptr) {
return;
}
spiTransferStruct.len = len + 1;
sendBuffer[0] = reg | STM_READ_MASK;
for(uint8_t idx = 0; idx < len ; idx ++) {
sendBuffer[idx + 1] = 0;
}
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullLow(chipSelect);
}
int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct);
if(retval < 0) {
utility::handleIoctlError("SpiTestClass::readRegister: Read failed");
}
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullHigh(chipSelect);
}
std::memcpy(reply, recvBuffer.data() + 1, len);
}
uint8_t SpiTestClass::readStmRegister(int fd, gpioId_t chipSelect, uint8_t reg,
bool autoIncrement) {
reg |= STM_READ_MASK;
if(autoIncrement) {
reg |= STM_AUTO_INCR_MASK;
}
return readRegister(fd, chipSelect, reg);
}
uint8_t SpiTestClass::readRegister(int fd, gpioId_t chipSelect, uint8_t reg) {
spiTransferStruct.len = 2;
sendBuffer[0] = reg;
sendBuffer[1] = 0;
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullLow(chipSelect);
}
int retval = ioctl(fd, SPI_IOC_MESSAGE(1), &spiTransferStruct);
if(retval < 0) {
utility::handleIoctlError("SpiTestClass::readRegister: Read failed");
}
if(gpioIF != nullptr and chipSelect != gpio::NO_GPIO) {
gpioIF->pullHigh(chipSelect);
}
return recvBuffer[1];
}