eive-obsw/mission/devices/MGMHandlerLIS3MDL.cpp
2020-10-21 20:13:27 +02:00

372 lines
9.7 KiB
C++

#include "MGMHandlerLIS3MDL.h"
MGMHandlerLIS3MDL::MGMHandlerLIS3MDL(object_id_t objectId,
object_id_t deviceCommunication, CookieIF* comCookie):
DeviceHandlerBase(objectId, deviceCommunication, comCookie) {
registers[0] = 0x00;
registers[1] = 0x00;
registers[2] = 0x00;
registers[3] = 0x00;
registers[4] = 0x00;
}
MGMHandlerLIS3MDL::~MGMHandlerLIS3MDL() {
}
void MGMHandlerLIS3MDL::doStartUp() {
switch (internalState) {
case STATE_NONE:
internalState = STATE_FIRST_CONTACT;
break;
case STATE_FIRST_CONTACT:
internalState = STATE_SETUP;
break;
case STATE_SETUP:
internalState = STATE_CHECK_REGISTERS;
break;
case STATE_CHECK_REGISTERS:
if (setupMGM() == RETURN_OK) {
for (size_t i = 1; i <= MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) {
if (registers[i - 1] != commandBuffer[i]) {
break;
}
}
setMode(_MODE_TO_ON);
}
break;
default:
break;
}
}
void MGMHandlerLIS3MDL::doShutDown() {
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MGMHandlerLIS3MDL::buildTransitionDeviceCommand(
DeviceCommandId_t *id) {
switch (internalState) {
case STATE_FIRST_CONTACT:
*id = MGMLIS3MDL::IDENTIFY_DEVICE;
break;
case STATE_SETUP:
*id = MGMLIS3MDL::SETUP_MGM;
break;
case STATE_CHECK_REGISTERS:
*id = MGMLIS3MDL::READALL_MGM;
break;
default:
break;
}
return buildCommandFromCommand(*id, NULL, 0);
}
uint8_t MGMHandlerLIS3MDL::readCommand(uint8_t command, bool continuousCom) {
command |= (1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT);
}
return command;
}
uint8_t MGMHandlerLIS3MDL::writeCommand(uint8_t command, bool continuousCom) {
command &= ~(1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT);
}
return command;
}
ReturnValue_t MGMHandlerLIS3MDL::setupMGM() {
registers[0] = (1 << MGMLIS3MDL::TEMP_EN) | (1 << MGMLIS3MDL::OM1)
| (1 << MGMLIS3MDL::DO0) | (1 << MGMLIS3MDL::DO1)
| (1 << MGMLIS3MDL::DO2);
registers[1] = 0;
registers[2] = 0;
registers[3] = (1 << MGMLIS3MDL::OMZ1);
registers[4] = 0;
return prepareRegisterWrite();
}
ReturnValue_t MGMHandlerLIS3MDL::buildNormalDeviceCommand(
DeviceCommandId_t *id) {
//defines CommandID of MGM in normal operation and build command from command
*id = MGMLIS3MDL::READALL_MGM;
return buildCommandFromCommand(*id, NULL, 0);
}
ReturnValue_t MGMHandlerLIS3MDL::buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) {
lastSentCommand = deviceCommand;
switch(deviceCommand) {
case(MGMLIS3MDL::READALL_MGM): {
std::memset(commandBuffer, 0, sizeof(commandBuffer));
commandBuffer[0] = readCommand(0, true);
rawPacket = commandBuffer;
rawPacketLen = sizeof(commandBuffer);
return RETURN_OK;
case(MGMLIS3MDL::IDENTIFY_DEVICE): {
return identifyDevice();
}
case(MGMLIS3MDL::TEMP_SENSOR_ENABLE): {
return enableTemperatureSensor(commandData, commandDataLen);
}
case(MGMLIS3MDL::SETUP_MGM): {
return setupMGM();
}
case(MGMLIS3MDL::ACCURACY_OP_MODE_SET): {
return setOperatingMode(commandData, commandDataLen);
}
default:
lastSentCommand = DeviceHandlerIF::NO_COMMAND;
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
}
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t MGMHandlerLIS3MDL::identifyDevice() {
uint32_t size = 2;
commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR);
commandBuffer[1] = 0x00;
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
ReturnValue_t MGMHandlerLIS3MDL::scanForReply(const uint8_t *start,
size_t len, DeviceCommandId_t *foundId, size_t *foundLen) {
*foundLen = len;
if (len == MGMLIS3MDL::TOTAL_NR_OF_ADRESSES + 1) {
*foundLen = len;
*foundId = MGMLIS3MDL::READALL_MGM;
//WHO AM I test
if (*(start + 16) != MGMLIS3MDL::DEVICE_ID) {
return DeviceHandlerIF::INVALID_DATA;
}
} else if (len == MGMLIS3MDL::SETUP_REPLY) {
*foundLen = len;
*foundId = MGMLIS3MDL::SETUP_MGM;
} else if (len == SINGLE_COMMAND_ANSWER_LEN) {
*foundLen = len;
*foundId = lastSentCommand;
} else {
return DeviceHandlerIF::INVALID_DATA;
}
// Data with SPI Interface has always this answer
if (start[0] == 0b11111111) {
return RETURN_OK;
}
else {
return DeviceHandlerIF::INVALID_DATA;
}
}
ReturnValue_t MGMHandlerLIS3MDL::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) {
switch (id) {
case MGMLIS3MDL::IDENTIFY_DEVICE: {
break;
}
case MGMLIS3MDL::SETUP_MGM: {
break;
}
case MGMLIS3MDL::READALL_MGM: {
// TODO: Store configuration and sensor values in new local datasets.
registers[0] = *(packet + 33);
registers[1] = *(packet + 34);
registers[2] = *(packet + 35);
registers[3] = *(packet + 36);
registers[4] = *(packet + 37);
uint8_t reg2_value = *(packet + 34);
uint8_t scale = getFullScale(&reg2_value);
float sensitivityFactor = getSensitivityFactor(scale);
int16_t x_value_raw;
int16_t y_value_raw;
int16_t z_value_raw;
int16_t temp_value_raw;
//size_t size = 2;
uint8_t *accessBuffer;
accessBuffer = const_cast<uint8_t*>(packet + 41);
x_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
y_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
z_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
accessBuffer += 2;
temp_value_raw = *(accessBuffer + 1) << 8 | *(accessBuffer);
float x_value = static_cast<float>(x_value_raw) * sensitivityFactor;
float y_value = static_cast<float>(y_value_raw) * sensitivityFactor;
float z_value = static_cast<float>(z_value_raw) * sensitivityFactor;
float temp_value = 25.0 + ((static_cast<float>(temp_value_raw)) / 8.0);
break;
}
default: {
return DeviceHandlerIF::UNKNOW_DEVICE_REPLY;
}
}
return RETURN_OK;
}
uint8_t MGMHandlerLIS3MDL::getFullScale(uint8_t *reg2) {
bool FS0 = false;
bool FS1 = false;
if ((*reg2 >> 5) == 1)
FS0 = true;
if ((*reg2 >> 6) == 1)
FS1 = true;
if ((FS0 == true) && (FS1 == true))
return 16;
else if ((FS0 == false) && (FS1 == true))
return 12;
else if ((FS0 == true) && (FS1 == false))
return 8;
else
return 4;
}
float MGMHandlerLIS3MDL::getSensitivityFactor(uint8_t scale) {
return (float) scale / (INT16_MAX);
}
ReturnValue_t MGMHandlerLIS3MDL::enableTemperatureSensor(
const uint8_t *commandData, size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
uint32_t size = 2;
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1);
if (commandDataLen > 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (*commandData) {
case (MGMLIS3MDL::ON):
commandBuffer[1] = registers[0] | (1 << 7);
break;
case (MGMLIS3MDL::OFF):
commandBuffer[1] = registers[0] & ~(1 << 7);
break;
default:
return INVALID_COMMAND_PARAMETER;
break;
}
registers[0] = commandBuffer[1];
rawPacket = commandBuffer;
rawPacketLen = size;
return RETURN_OK;
}
ReturnValue_t MGMHandlerLIS3MDL::setOperatingMode(const uint8_t *commandData,
size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER);
if (commandDataLen != 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
}
switch (commandData[0]) {
case MGMLIS3MDL::LOW:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0));
break;
case MGMLIS3MDL::MEDIUM:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0);
break;
case MGMLIS3MDL::HIGH:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0));
break;
case MGMLIS3MDL::ULTRA:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0);
break;
default:
break;
}
return prepareRegisterWrite();
}
void MGMHandlerLIS3MDL::fillCommandAndReplyMap() {
/*
* Regarding ArduinoBoard:
* Actually SPI answers directly, but as commanding ArduinoBoard the
* communication could be delayed
* SPI always has to be triggered, so there could be no periodic answer of
* the device, the device has to asked with a command, so periodic is zero.
*
* We dont read single registers, we just expect special
* reply from he Readall_MGM
*/
insertInCommandAndReplyMap(MGMLIS3MDL::READALL_MGM, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1);
}
ReturnValue_t MGMHandlerLIS3MDL::prepareRegisterWrite() {
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true);
for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) {
commandBuffer[i + 1] = registers[i];
}
rawPacket = commandBuffer;
rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS;
// We dont have to check if this is working because we just did it
return RETURN_OK;
}
void MGMHandlerLIS3MDL::setNormalDatapoolEntriesInvalid() {
// TODO: use new distributed datapools here.
}
void MGMHandlerLIS3MDL::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
}
uint32_t MGMHandlerLIS3MDL::getTransitionDelayMs(Mode_t from, Mode_t to) {
return 5000;
}
void MGMHandlerLIS3MDL::modeChanged(void) {
internalState = STATE_NONE;
}