eive-obsw/mission/controller/acs/Guidance.cpp
Marius Eggert a13ccb43d2 removed OutputValues
amended sumbode list
inserted writes to output DataPools
2022-11-03 10:43:27 +01:00

318 lines
15 KiB
C++

/*
* Guidance.cpp
*
* Created on: 6 Jun 2022
* Author: Robin Marquardt
*/
#include "Guidance.h"
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>
#include "string.h"
#include "util/CholeskyDecomposition.h"
#include "util/MathOperations.h"
Guidance::Guidance(AcsParameters *acsParameters_) { acsParameters = *acsParameters_; }
Guidance::~Guidance() {}
void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3]) {
for (int i = 0; i < 3; i++) {
sunTargetSafe[i] = acsParameters.safeModeControllerParameters.sunTargetDir[i];
satRateSafe[i] = acsParameters.safeModeControllerParameters.satRateRef[i];
}
// memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir, 24);
}
void Guidance::targetQuatPtg(ACS::SensorValues *sensorValues, acsctrl::MekfData *mekfData,
acsctrl::SusDataProcessed *susDataProcessed, timeval now,
double targetQuat[4], double refSatRate[3]) {
//-------------------------------------------------------------------------------------
// Calculation of target quaternion to groundstation
//-------------------------------------------------------------------------------------
// Transform longitude, latitude and altitude of groundstation to cartesian coordiantes (earth
// fixed/centered frame)
double groundStationCart[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
acsParameters.groundStationParameters.longitudeGs,
acsParameters.groundStationParameters.altitudeGs,
groundStationCart);
// Position of the satellite in the earth/fixed frame via GPS
double posSatE[3] = {0, 0, 0};
MathOperations<double>::cartesianFromLatLongAlt(sensorValues->gpsSet.latitude.value,
sensorValues->gpsSet.longitude.value,
sensorValues->gpsSet.altitude.value, posSatE);
// Target direction in the ECEF frame
double targetDirE[3] = {0, 0, 0};
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
// Transformation between ECEF and IJK frame
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::dcmEJ(now, *dcmEJ);
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
// Derivative of dmcEJ WITHOUT PRECISSION AND NUTATION
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmDot[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}};
double omegaEarth = acsParameters.targetModeControllerParameters.omegaEarth;
// TEST SECTION !
// double dcmTEST[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// MatrixOperations<double>::multiply(&acsParameters.magnetorquesParameter.mtq0orientationMatrix,
// dcmTEST, dcmTEST, 3, 3, 3);
MatrixOperations<double>::multiply(*dcmDot, *dcmEJ, *dcmEJDot, 3, 3, 3);
MatrixOperations<double>::multiplyScalar(*dcmEJDot, omegaEarth, *dcmEJDot, 3, 3);
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
// Transformation between ECEF and Body frame
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double quatBJ[4] = {0, 0, 0, 0};
std::memcpy(quatBJ, mekfData->quatMekf.value, 4 * sizeof(double));
QuaternionOperations::toDcm(quatBJ, dcmBJ);
MatrixOperations<double>::multiply(*dcmBJ, *dcmJE, *dcmBE, 3, 3, 3);
// Target Direction in the body frame
double targetDirB[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
// rotation quaternion from two vectors
double refDir[3] = {0, 0, 0};
refDir[0] = acsParameters.targetModeControllerParameters.refDirection[0];
refDir[1] = acsParameters.targetModeControllerParameters.refDirection[1];
refDir[2] = acsParameters.targetModeControllerParameters.refDirection[2];
double noramlizedTargetDirB[3] = {0, 0, 0};
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
VectorOperations<double>::normalize(refDir, refDir, 3);
double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
double normRefDir = VectorOperations<double>::norm(refDir, 3);
double crossDir[3] = {0, 0, 0};
double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
targetQuat[0] = crossDir[0];
targetQuat[1] = crossDir[1];
targetQuat[2] = crossDir[2];
targetQuat[3] = sqrt(pow(normTargetDirB, 2) * pow(normRefDir, 2) + dotDirections);
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate
//-------------------------------------------------------------------------------------
double velSatE[3] = {0, 0, 0};
velSatE[0] = 0.0; // sensorValues->gps0Velocity[0];
velSatE[1] = 0.0; // sensorValues->gps0Velocity[1];
velSatE[2] = 0.0; // sensorValues->gps0Velocity[2];
double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0}, velSatBPart2[3] = {0, 0, 0};
// Velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1);
double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*dcmBJ, *dcmJEDot, *dcmBEDot, 3, 3, 3);
MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1);
VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3);
double normVelSatB = VectorOperations<double>::norm(velSatB, 3);
double normRefSatRate = normVelSatB / normTargetDirB;
double satRateDir[3] = {0, 0, 0};
VectorOperations<double>::cross(velSatB, targetDirB, satRateDir);
VectorOperations<double>::normalize(satRateDir, satRateDir, 3);
VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, refSatRate, 3);
//-------------------------------------------------------------------------------------
// Calculation of reference rotation rate in case of star tracker blinding
//-------------------------------------------------------------------------------------
if (acsParameters.targetModeControllerParameters.avoidBlindStr) {
double sunDirJ[3] = {0, 0, 0};
double sunDirB[3] = {0, 0, 0};
if (susDataProcessed->sunIjkModel.isValid()) {
std::memcpy(sunDirJ, susDataProcessed->sunIjkModel.value, 3 * sizeof(double));
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
} else {
std::memcpy(sunDirB, susDataProcessed->susVecTot.value, 3 * sizeof(double));
}
double exclAngle = acsParameters.strParameters.exclusionAngle,
blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart,
blindEnd = acsParameters.targetModeControllerParameters.blindAvoidStop;
double sightAngleSun =
VectorOperations<double>::dot(acsParameters.strParameters.boresightAxis, sunDirB);
if (!(strBlindAvoidFlag)) {
double critSightAngle = blindStart * exclAngle;
if (sightAngleSun < critSightAngle) {
strBlindAvoidFlag = true;
}
}
else {
if (sightAngleSun < blindEnd * exclAngle) {
double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate;
double blindRefRate[3] = {0, 0, 0};
if (sunDirB[1] < 0) {
blindRefRate[0] = normBlindRefRate;
blindRefRate[1] = 0;
blindRefRate[2] = 0;
} else {
blindRefRate[0] = -normBlindRefRate;
blindRefRate[1] = 0;
blindRefRate[2] = 0;
}
VectorOperations<double>::add(blindRefRate, refSatRate, refSatRate, 3);
} else {
strBlindAvoidFlag = false;
}
}
}
}
void Guidance::comparePtg(double targetQuat[4], acsctrl::MekfData *mekfData, double refSatRate[3],
double quatErrorComplete[4], double quatError[3], double deltaRate[3]) {
double quatRef[4] = {0, 0, 0, 0};
quatRef[0] = acsParameters.targetModeControllerParameters.quatRef[0];
quatRef[1] = acsParameters.targetModeControllerParameters.quatRef[1];
quatRef[2] = acsParameters.targetModeControllerParameters.quatRef[2];
quatRef[3] = acsParameters.targetModeControllerParameters.quatRef[3];
double satRate[3] = {0, 0, 0};
std::memcpy(satRate, mekfData->satRotRateMekf.value, 3 * sizeof(double));
VectorOperations<double>::subtract(satRate, refSatRate, deltaRate, 3);
// valid checks ?
double quatErrorMtx[4][4] = {{quatRef[3], quatRef[2], -quatRef[1], -quatRef[0]},
{-quatRef[2], quatRef[3], quatRef[0], -quatRef[1]},
{quatRef[1], -quatRef[0], quatRef[3], -quatRef[2]},
{quatRef[0], -quatRef[1], quatRef[2], quatRef[3]}};
MatrixOperations<double>::multiply(*quatErrorMtx, targetQuat, quatErrorComplete, 4, 4, 1);
if (quatErrorComplete[3] < 0) {
quatErrorComplete[3] *= -1;
}
quatError[0] = quatErrorComplete[0];
quatError[1] = quatErrorComplete[1];
quatError[2] = quatErrorComplete[2];
// target flag in matlab, importance, does look like it only gives
// feedback if pointing control is under 150 arcsec ??
}
void Guidance::getDistributionMatrixRw(ACS::SensorValues *sensorValues, double *rwPseudoInv) {
if (sensorValues->rw1Set.isValid() && sensorValues->rw2Set.isValid() &&
sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];
}
else if (!(sensorValues->rw1Set.isValid()) && sensorValues->rw2Set.isValid() &&
sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
rwPseudoInv[0] = acsParameters.rwMatrices.without0[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.without0[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.without0[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.without0[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.without0[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.without0[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.without0[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.without0[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.without0[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.without0[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.without0[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.without0[3][2];
}
else if ((sensorValues->rw1Set.isValid()) && !(sensorValues->rw2Set.isValid()) &&
sensorValues->rw3Set.isValid() && sensorValues->rw4Set.isValid()) {
rwPseudoInv[0] = acsParameters.rwMatrices.without1[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.without1[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.without1[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.without1[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.without1[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.without1[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.without1[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.without1[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.without1[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.without1[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.without1[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.without1[3][2];
}
else if ((sensorValues->rw1Set.isValid()) && (sensorValues->rw2Set.isValid()) &&
!(sensorValues->rw3Set.isValid()) && sensorValues->rw4Set.isValid()) {
rwPseudoInv[0] = acsParameters.rwMatrices.without2[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.without2[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.without2[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.without2[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.without2[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.without2[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.without2[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.without2[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.without2[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.without2[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.without2[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.without2[3][2];
}
else if ((sensorValues->rw1Set.isValid()) && (sensorValues->rw2Set.isValid()) &&
(sensorValues->rw3Set.isValid()) && !(sensorValues->rw4Set.isValid())) {
rwPseudoInv[0] = acsParameters.rwMatrices.without3[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.without3[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.without3[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.without3[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.without3[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.without3[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.without3[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.without3[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.without3[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.without3[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.without3[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.without3[3][2];
}
else {
// @note: This one takes the normal pseudoInverse of all four raction wheels valid.
// Does not make sense, but is implemented that way in MATLAB ?!
// Thought: It does not really play a role, because in case there are more then one
// reaction wheel the pointing control is destined to fail.
rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];
}
}