eive-obsw/mission/com/SyrlinksHandler.cpp
Robin Mueller fca6834d17
Some checks are pending
EIVE/eive-obsw/pipeline/head This commit looks good
EIVE/eive-obsw/pipeline/pr-main Build queued...
higher rx set rate during pass
2023-06-26 15:32:52 +02:00

836 lines
33 KiB
C++

#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/globalfunctions/CRC.h>
#include <mission/com/SyrlinksHandler.h>
#include "OBSWConfig.h"
#include "mission/config/comCfg.h"
SyrlinksHandler::SyrlinksHandler(object_id_t objectId, object_id_t comIF, CookieIF* comCookie,
power::Switch_t powerSwitch, FailureIsolationBase* customFdir)
: DeviceHandlerBase(objectId, comIF, comCookie, customFdir),
rxDataset(this),
txDataset(this),
temperatureSet(this),
powerSwitch(powerSwitch) {
if (comCookie == nullptr) {
sif::warning << "SyrlinksHkHandler: Invalid com cookie" << std::endl;
}
}
SyrlinksHandler::~SyrlinksHandler() = default;
void SyrlinksHandler::doStartUp() {
if (internalState == InternalState::OFF) {
internalState = InternalState::ENABLE_TEMPERATURE_PROTECTION;
commandExecuted = false;
}
if (internalState == InternalState::ENABLE_TEMPERATURE_PROTECTION) {
if (commandExecuted) {
// Go to normal mode immediately and disable transmitter on startup.
setMode(_MODE_TO_ON);
internalState = InternalState::IDLE;
transState = TransitionState::IDLE;
commandExecuted = false;
}
}
}
void SyrlinksHandler::doShutDown() {
// In any case, always disable TX first.
if (internalState != InternalState::TX_TRANSITION) {
internalState = InternalState::TX_TRANSITION;
transState = TransitionState::SET_TX_STANDBY;
commandExecuted = false;
}
if (internalState == InternalState::TX_TRANSITION) {
if (commandExecuted) {
temperatureSet.setValidity(false, true);
internalState = InternalState::OFF;
transState = TransitionState::IDLE;
commandExecuted = false;
setMode(_MODE_POWER_DOWN);
}
}
}
ReturnValue_t SyrlinksHandler::buildNormalDeviceCommand(DeviceCommandId_t* id) {
switch (nextCommand) {
case (syrlinks::READ_RX_STATUS_REGISTERS):
*id = syrlinks::READ_RX_STATUS_REGISTERS;
nextCommand = syrlinks::READ_TX_STATUS;
break;
case (syrlinks::READ_TX_STATUS):
*id = syrlinks::READ_TX_STATUS;
nextCommand = syrlinks::READ_TX_WAVEFORM;
break;
case (syrlinks::READ_TX_WAVEFORM):
*id = syrlinks::READ_TX_WAVEFORM;
nextCommand = syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE;
break;
case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE):
*id = syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE;
nextCommand = syrlinks::READ_TX_AGC_VALUE_LOW_BYTE;
break;
case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE):
*id = syrlinks::READ_TX_AGC_VALUE_LOW_BYTE;
nextCommand = syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE;
break;
case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE):
*id = syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE;
nextCommand = syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE;
break;
case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE):
*id = syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE;
nextCommand = syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE;
break;
case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE):
*id = syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE;
nextCommand = syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE;
break;
case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE):
*id = syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE;
nextCommand = syrlinks::READ_RX_STATUS_REGISTERS;
break;
default:
sif::debug << "SyrlinksHkHandler::buildNormalDeviceCommand: rememberCommandId has invalid"
<< "command id" << std::endl;
break;
}
return buildCommandFromCommand(*id, nullptr, 0);
}
ReturnValue_t SyrlinksHandler::buildTransitionDeviceCommand(DeviceCommandId_t* id) {
if (transState == TransitionState::CMD_PENDING or transState == TransitionState::DONE) {
return NOTHING_TO_SEND;
}
switch (internalState) {
case InternalState::ENABLE_TEMPERATURE_PROTECTION: {
*id = syrlinks::WRITE_LCL_CONFIG;
transState = TransitionState::CMD_PENDING;
return buildCommandFromCommand(*id, nullptr, 0);
}
case InternalState::TX_TRANSITION: {
switch (transState) {
case TransitionState::SET_TX_MODULATION: {
*id = syrlinks::SET_TX_MODE_MODULATION;
return buildCommandFromCommand(*id, nullptr, 0);
}
case TransitionState::SELECT_MODULATION_BPSK: {
*id = syrlinks::SET_WAVEFORM_BPSK;
return buildCommandFromCommand(*id, nullptr, 0);
}
case TransitionState::SELECT_MODULATION_0QPSK: {
*id = syrlinks::SET_WAVEFORM_0QPSK;
return buildCommandFromCommand(*id, nullptr, 0);
}
case TransitionState::SET_TX_CW: {
*id = syrlinks::SET_TX_MODE_CW;
return buildCommandFromCommand(*id, nullptr, 0);
}
case TransitionState::SET_TX_STANDBY: {
*id = syrlinks::SET_TX_MODE_STANDBY;
return buildCommandFromCommand(*id, nullptr, 0);
}
default: {
return NOTHING_TO_SEND;
}
}
transState = TransitionState::CMD_PENDING;
break;
}
default: {
break;
}
}
return NOTHING_TO_SEND;
}
ReturnValue_t SyrlinksHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData,
size_t commandDataLen) {
switch (deviceCommand) {
case (syrlinks::RESET_UNIT): {
prepareCommand(resetCommand, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::SET_TX_MODE_STANDBY): {
prepareCommand(setTxModeStandby, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::SET_TX_MODE_MODULATION): {
prepareCommand(setTxModeModulation, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::SET_TX_MODE_CW): {
prepareCommand(setTxModeCw, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::WRITE_LCL_CONFIG): {
prepareCommand(writeLclConfig, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_RX_STATUS_REGISTERS): {
prepareCommand(readRxStatusRegCommand, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_LCL_CONFIG): {
prepareCommand(readLclConfig, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_TX_STATUS): {
prepareCommand(readTxStatus, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_TX_WAVEFORM): {
prepareCommand(readTxWaveform, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE): {
prepareCommand(readTxAgcValueHighByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE): {
prepareCommand(readTxAgcValueLowByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE): {
prepareCommand(tempPowerAmpBoardHighByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE): {
prepareCommand(tempPowerAmpBoardLowByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE): {
prepareCommand(tempBasebandBoardHighByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE): {
prepareCommand(tempBasebandBoardLowByte, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::SET_WAVEFORM_BPSK): {
prepareCommand(configBPSK, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::SET_WAVEFORM_0QPSK): {
prepareCommand(configOQPSK, deviceCommand);
return returnvalue::OK;
}
case (syrlinks::ENABLE_DEBUG): {
debugMode = true;
rawPacketLen = 0;
return returnvalue::OK;
}
case (syrlinks::DISABLE_DEBUG): {
debugMode = false;
rawPacketLen = 0;
return returnvalue::OK;
}
default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
}
return returnvalue::FAILED;
}
void SyrlinksHandler::fillCommandAndReplyMap() {
this->insertInCommandAndReplyMap(syrlinks::RESET_UNIT, 1, nullptr, syrlinks::ACK_SIZE, false,
true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_STANDBY, 1, nullptr, syrlinks::ACK_SIZE,
false, true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_MODULATION, 1, nullptr, syrlinks::ACK_SIZE,
false, true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::SET_TX_MODE_CW, 1, nullptr, syrlinks::ACK_SIZE, false,
true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::WRITE_LCL_CONFIG, 1, nullptr, syrlinks::ACK_SIZE,
false, true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::SET_WAVEFORM_BPSK, 1, nullptr, syrlinks::ACK_SIZE,
false, true, syrlinks::ACK_REPLY);
this->insertInCommandAndReplyMap(syrlinks::SET_WAVEFORM_0QPSK, 1, nullptr, syrlinks::ACK_SIZE,
false, true, syrlinks::ACK_REPLY);
this->insertInCommandMap(syrlinks::ENABLE_DEBUG);
this->insertInCommandMap(syrlinks::DISABLE_DEBUG);
this->insertInCommandAndReplyMap(syrlinks::READ_LCL_CONFIG, 1, nullptr,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::READ_TX_STATUS, 1, &txDataset,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::READ_TX_WAVEFORM, 1, &txDataset,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE, 1, &txDataset,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::READ_TX_AGC_VALUE_LOW_BYTE, 1, &txDataset,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE, 1, nullptr,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE, 1, nullptr,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE, 1, nullptr,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE, 1, nullptr,
syrlinks::READ_ONE_REGISTER_REPLY_SIE);
this->insertInCommandAndReplyMap(syrlinks::READ_RX_STATUS_REGISTERS, 1, &rxDataset,
syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE);
}
ReturnValue_t SyrlinksHandler::scanForReply(const uint8_t* start, size_t remainingSize,
DeviceCommandId_t* foundId, size_t* foundLen) {
ReturnValue_t result = returnvalue::OK;
if (*start != '<') {
sif::warning << "SyrlinksHkHandler::scanForReply: Missing start frame character" << std::endl;
return MISSING_START_FRAME_CHARACTER;
}
switch (*(start + 1)) {
case ('A'):
*foundLen = syrlinks::ACK_SIZE;
*foundId = syrlinks::ACK_REPLY;
break;
case ('E'):
*foundLen = syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE;
*foundId = syrlinks::READ_RX_STATUS_REGISTERS;
break;
case ('R'):
*foundId = rememberCommandId;
*foundLen = syrlinks::READ_ONE_REGISTER_REPLY_SIE;
break;
default:
sif::warning << "SyrlinksHkHandler::scanForReply: Unknown reply identifier" << std::endl;
result = IGNORE_FULL_PACKET;
break;
}
return result;
}
ReturnValue_t SyrlinksHandler::getSwitches(const uint8_t** switches, uint8_t* numberOfSwitches) {
if (powerSwitch == power::NO_SWITCH) {
return DeviceHandlerBase::NO_SWITCH;
}
*numberOfSwitches = 1;
*switches = &powerSwitch;
return returnvalue::OK;
}
ReturnValue_t SyrlinksHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t* packet) {
ReturnValue_t result;
switch (id) {
case (syrlinks::ACK_REPLY): {
result = verifyReply(packet, syrlinks::ACK_SIZE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Acknowledgment reply has "
"invalid crc"
<< std::endl;
return CRC_FAILURE;
}
result = handleAckReply(packet);
if (result != returnvalue::OK) {
return result;
}
break;
}
case (syrlinks::READ_RX_STATUS_REGISTERS): {
result = verifyReply(packet, syrlinks::RX_STATUS_REGISTERS_REPLY_SIZE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read rx status registers reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseRxStatusRegistersReply(packet);
break;
}
case (syrlinks::READ_LCL_CONFIG): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read config lcl reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseLclConfigReply(packet);
break;
}
case (syrlinks::READ_TX_STATUS): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx status reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseTxStatusReply(packet);
break;
}
case (syrlinks::READ_TX_WAVEFORM): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx waveform reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseTxWaveformReply(packet);
break;
}
case (syrlinks::READ_TX_AGC_VALUE_HIGH_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx AGC high byte reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseAgcHighByte(packet);
break;
}
case (syrlinks::READ_TX_AGC_VALUE_LOW_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read tx AGC low byte reply "
<< "has invalid crc" << std::endl;
return CRC_FAILURE;
}
parseAgcLowByte(packet);
break;
}
case (syrlinks::TEMP_BASEBAND_BOARD_HIGH_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature baseband board "
<< "high byte reply has invalid crc" << std::endl;
return CRC_FAILURE;
}
rawTempBasebandBoard = convertHexStringToUint8(reinterpret_cast<const char*>(
packet + syrlinks::MESSAGE_HEADER_SIZE))
<< 8;
break;
}
case (syrlinks::TEMP_BASEBAND_BOARD_LOW_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature baseband board"
" low byte reply has invalid crc"
<< std::endl;
return CRC_FAILURE;
}
rawTempBasebandBoard |= convertHexStringToUint8(
reinterpret_cast<const char*>(packet + syrlinks::MESSAGE_HEADER_SIZE));
tempBasebandBoard = calcTempVal(rawTempBasebandBoard);
PoolReadGuard rg(&temperatureSet);
temperatureSet.temperatureBasebandBoard = tempBasebandBoard;
temperatureSet.temperatureBasebandBoard.setValid(true);
if (debugMode) {
sif::info << "Syrlinks temperature baseband board: " << tempBasebandBoard << " °C"
<< std::endl;
}
break;
}
case (syrlinks::TEMP_POWER_AMPLIFIER_HIGH_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature power amplifier "
<< "board high byte reply has invalid crc" << std::endl;
return CRC_FAILURE;
}
rawTempPowerAmplifier = 0;
rawTempPowerAmplifier = convertHexStringToUint8(reinterpret_cast<const char*>(
packet + syrlinks::MESSAGE_HEADER_SIZE))
<< 8;
break;
}
case (syrlinks::TEMP_POWER_AMPLIFIER_LOW_BYTE): {
result = verifyReply(packet, syrlinks::READ_ONE_REGISTER_REPLY_SIE);
if (result != returnvalue::OK) {
sif::warning << "SyrlinksHkHandler::interpretDeviceReply: Read temperature power amplifier"
<< " board low byte reply has invalid crc" << std::endl;
return CRC_FAILURE;
}
rawTempPowerAmplifier |= convertHexStringToUint8(
reinterpret_cast<const char*>(packet + syrlinks::MESSAGE_HEADER_SIZE));
tempPowerAmplifier = calcTempVal(rawTempPowerAmplifier);
PoolReadGuard rg(&temperatureSet);
temperatureSet.temperaturePowerAmplifier = tempPowerAmplifier;
temperatureSet.temperaturePowerAmplifier.setValid(true);
if (debugMode) {
sif::info << "Syrlinks temperature power amplifier board: " << tempPowerAmplifier << " °C"
<< std::endl;
}
break;
}
default: {
sif::debug << "SyrlinksHkHandler::interpretDeviceReply: Unknown device reply id" << std::endl;
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
}
}
return returnvalue::OK;
}
LocalPoolDataSetBase* SyrlinksHandler::getDataSetHandle(sid_t sid) {
if (sid == rxDataset.getSid()) {
return &rxDataset;
} else if (sid == txDataset.getSid()) {
return &txDataset;
} else if (sid == temperatureSet.getSid()) {
return &temperatureSet;
} else {
sif::warning << "SyrlinksHkHandler::getDataSetHandle: Invalid sid" << std::endl;
return nullptr;
}
}
std::string SyrlinksHandler::convertUint16ToHexString(uint16_t intValue) {
std::stringstream stream;
stream << std::setfill('0') << std::setw(4) << std::hex << std::uppercase << intValue;
return stream.str();
}
uint8_t SyrlinksHandler::convertHexStringToUint8(const char* twoChars) {
uint32_t value;
std::string hexString(twoChars, 2);
std::stringstream stream;
stream << std::hex << hexString;
stream >> value;
return static_cast<uint8_t>(value);
}
uint16_t SyrlinksHandler::convertHexStringToUint16(const char* fourChars) {
uint16_t value = 0;
value = convertHexStringToUint8(fourChars) << 8 | convertHexStringToUint8(fourChars + 2);
return value;
}
ReturnValue_t SyrlinksHandler::parseReplyStatus(const char* status) {
switch (*status) {
case '0':
return returnvalue::OK;
case '1':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Uart framing or parity error"
<< std::endl;
return UART_FRAMIN_OR_PARITY_ERROR_ACK;
case '2':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad character detected" << std::endl;
return BAD_CHARACTER_ACK;
case '3':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad parameter value (unexpected value "
<< "detected" << std::endl;
return BAD_PARAMETER_VALUE_ACK;
case '4':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad end of frame" << std::endl;
return BAD_END_OF_FRAME_ACK;
case '5':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Unknown command id or attempt to access"
<< " a protected register" << std::endl;
return UNKNOWN_COMMAND_ID_ACK;
case '6':
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Bad CRC" << std::endl;
return BAD_CRC_ACK;
default:
sif::debug << "SyrlinksHkHandler::parseReplyStatus: Status reply contains an invalid "
<< "status id" << std::endl;
return returnvalue::FAILED;
}
}
ReturnValue_t SyrlinksHandler::verifyReply(const uint8_t* packet, uint8_t size) {
int result = 0;
/* Calculate crc from received packet */
uint16_t crc =
CRC::crc16ccitt(packet, size - syrlinks::SIZE_CRC_AND_TERMINATION, CRC_INITIAL_VALUE);
std::string recalculatedCrc = convertUint16ToHexString(crc);
const char* startOfCrc =
reinterpret_cast<const char*>(packet + size - syrlinks::SIZE_CRC_AND_TERMINATION);
const char* endOfCrc = reinterpret_cast<const char*>(packet + size - 1);
std::string replyCrc(startOfCrc, endOfCrc);
result = recalculatedCrc.compare(replyCrc);
if (result != 0) {
return returnvalue::FAILED;
}
return returnvalue::OK;
}
void SyrlinksHandler::parseRxStatusRegistersReply(const uint8_t* packet) {
PoolReadGuard readHelper(&rxDataset);
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
rxDataset.rxStatus = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
offset += 2;
rxDataset.rxSensitivity =
convertHexStringTo32bit<uint32_t>(reinterpret_cast<const char*>(packet + offset), 6);
offset += 6;
rxDataset.rxFrequencyShift =
convertHexStringTo32bit<int32_t>(reinterpret_cast<const char*>(packet + offset), 6);
offset += 6;
rxDataset.rxIqPower = convertHexStringToUint16(reinterpret_cast<const char*>(packet + offset));
offset += 4;
rxDataset.rxAgcValue = convertHexStringToUint16(reinterpret_cast<const char*>(packet + offset));
offset += 4;
offset += 2; // reserved register
rxDataset.rxDemodEb =
convertHexStringTo32bit<uint32_t>(reinterpret_cast<const char*>(packet + offset), 6);
offset += 6;
rxDataset.rxDemodN0 =
convertHexStringTo32bit<uint32_t>(reinterpret_cast<const char*>(packet + offset), 6);
offset += 6;
rxDataset.rxDataRate = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
rxDataset.setValidity(true, true);
if (debugMode) {
#if OBSW_VERBOSE_LEVEL >= 1
sif::info << "Syrlinks RX Status: 0x" << std::hex << (unsigned int)rxDataset.rxStatus.value
<< std::endl;
sif::info << "Syrlinks RX Sensitivity: " << std::dec << rxDataset.rxSensitivity << std::endl;
sif::info << "Syrlinks RX Frequency Shift: " << rxDataset.rxFrequencyShift << std::endl;
sif::info << "Syrlinks RX IQ Power: " << rxDataset.rxIqPower << std::endl;
sif::info << "Syrlinks RX AGC Value: " << rxDataset.rxAgcValue << std::endl;
sif::info << "Syrlinks RX Demod Eb: " << rxDataset.rxDemodEb << std::endl;
sif::info << "Syrlinks RX Demod N0: " << rxDataset.rxDemodN0 << std::endl;
sif::info << "Syrlinks RX Datarate: " << (unsigned int)rxDataset.rxDataRate.value << std::endl;
#endif
}
}
void SyrlinksHandler::parseLclConfigReply(const uint8_t* packet) {
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
uint8_t lclConfig = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
if (debugMode) {
sif::info << "SyrlinksHkHandler::parseRxStatusRegistersReply: Lcl config: "
<< static_cast<unsigned int>(lclConfig) << std::endl;
}
}
void SyrlinksHandler::parseTxStatusReply(const uint8_t* packet) {
PoolReadGuard readHelper(&txDataset);
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
txDataset.txStatus = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
txDataset.txStatus.setValid(true);
if (debugMode) {
sif::info << "Syrlinks TX Status: 0x" << std::hex << (unsigned int)txDataset.txStatus.value
<< std::endl;
}
}
void SyrlinksHandler::parseTxWaveformReply(const uint8_t* packet) {
PoolReadGuard readHelper(&txDataset);
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
txDataset.txWaveform = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
txDataset.txWaveform.setValid(true);
if (debugMode) {
sif::info << "Syrlinks TX Waveform: 0x" << std::hex << (unsigned int)txDataset.txWaveform.value
<< std::endl;
}
}
void SyrlinksHandler::parseAgcLowByte(const uint8_t* packet) {
PoolReadGuard readHelper(&txDataset);
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
txDataset.txAgcValue = agcValueHighByte << 8 |
convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
txDataset.txAgcValue.setValid(true);
if (debugMode) {
sif::info << "Syrlinks TX AGC Value: " << txDataset.txAgcValue << std::endl;
}
}
void SyrlinksHandler::parseAgcHighByte(const uint8_t* packet) {
PoolReadGuard readHelper(&txDataset);
uint16_t offset = syrlinks::MESSAGE_HEADER_SIZE;
agcValueHighByte = convertHexStringToUint8(reinterpret_cast<const char*>(packet + offset));
}
uint32_t SyrlinksHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) { return 2500; }
ReturnValue_t SyrlinksHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) {
localDataPoolMap.emplace(syrlinks::RX_STATUS, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_SENSITIVITY, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_FREQUENCY_SHIFT, new PoolEntry<int32_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_IQ_POWER, new PoolEntry<uint16_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_AGC_VALUE, new PoolEntry<uint16_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_DEMOD_EB, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_DEMOD_N0, new PoolEntry<uint32_t>({0}));
localDataPoolMap.emplace(syrlinks::RX_DATA_RATE, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(syrlinks::TX_STATUS, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(syrlinks::TX_WAVEFORM, new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(syrlinks::TX_AGC_VALUE, new PoolEntry<uint16_t>({0}));
localDataPoolMap.emplace(syrlinks::TEMP_BASEBAND_BOARD, new PoolEntry<float>({0}));
localDataPoolMap.emplace(syrlinks::TEMP_POWER_AMPLIFIER, new PoolEntry<float>({0}));
bool enableHkSets = false;
#if OBSW_ENABLE_PERIODIC_HK == 1
enableHkSets = true;
#endif
poolManager.subscribeForDiagPeriodicPacket(
subdp::DiagnosticsHkPeriodicParams(txDataset.getSid(), enableHkSets, 60.0));
poolManager.subscribeForDiagPeriodicPacket(
subdp::DiagnosticsHkPeriodicParams(rxDataset.getSid(), enableHkSets, 60.0));
poolManager.subscribeForRegularPeriodicPacket(
subdp::RegularHkPeriodicParams(temperatureSet.getSid(), enableHkSets, 120.0));
return returnvalue::OK;
}
void SyrlinksHandler::setModeNormal() { setMode(_MODE_TO_NORMAL); }
float SyrlinksHandler::calcTempVal(uint16_t raw) { return 0.126984 * raw - 67.87; }
ReturnValue_t SyrlinksHandler::handleAckReply(const uint8_t* packet) {
ReturnValue_t result =
parseReplyStatus(reinterpret_cast<const char*>(packet + syrlinks::MESSAGE_HEADER_SIZE));
switch (rememberCommandId) {
case (syrlinks::WRITE_LCL_CONFIG): {
if (isTransitionalMode()) {
if (result != returnvalue::OK) {
internalState = InternalState::OFF;
} else if (result == returnvalue::OK) {
commandExecuted = true;
}
}
break;
}
case (syrlinks::SET_WAVEFORM_BPSK):
case (syrlinks::SET_WAVEFORM_0QPSK): {
if (result == returnvalue::OK and isTransitionalMode()) {
transState = TransitionState::SET_TX_MODULATION;
commandExecuted = true;
}
break;
}
case (syrlinks::SET_TX_MODE_STANDBY): {
if (result == returnvalue::OK and isTransitionalMode()) {
transState = TransitionState::DONE;
commandExecuted = true;
}
break;
}
case (syrlinks::SET_TX_MODE_MODULATION): {
if (result == returnvalue::OK and isTransitionalMode()) {
transState = TransitionState::DONE;
commandExecuted = true;
}
break;
}
case (syrlinks::SET_TX_MODE_CW): {
if (result == returnvalue::OK and isTransitionalMode()) {
commandExecuted = true;
transState = TransitionState::DONE;
}
break;
}
default: {
sif::error << "Syrlinks: Unexpected ACK reply" << std::endl;
}
}
switch (rememberCommandId) {
case (syrlinks::SET_TX_MODE_STANDBY): {
triggerEvent(syrlinks::TX_OFF, 0, 0);
break;
}
case (syrlinks::SET_TX_MODE_MODULATION):
case (syrlinks::SET_TX_MODE_CW): {
triggerEvent(syrlinks::TX_ON, getSubmode(), static_cast<uint8_t>(com::getCurrentDatarate()));
break;
}
}
return result;
}
ReturnValue_t SyrlinksHandler::isModeCombinationValid(Mode_t mode, Submode_t submode) {
if (mode == HasModesIF::MODE_ON or mode == DeviceHandlerIF::MODE_NORMAL) {
if (submode >= com::Submode::NUM_SUBMODES or submode < com::Submode::RX_ONLY) {
return HasModesIF::INVALID_SUBMODE;
}
return returnvalue::OK;
}
return DeviceHandlerBase::isModeCombinationValid(mode, submode);
}
ReturnValue_t SyrlinksHandler::getParameter(uint8_t domainId, uint8_t uniqueId,
ParameterWrapper* parameterWrapper,
const ParameterWrapper* newValues,
uint16_t startAtIndex) {
return DeviceHandlerBase::getParameter(domainId, uniqueId, parameterWrapper, newValues,
startAtIndex);
}
void SyrlinksHandler::prepareCommand(std::string command, DeviceCommandId_t commandId) {
command.copy(reinterpret_cast<char*>(commandBuffer), command.size(), 0);
rawPacketLen = command.size();
rememberCommandId = commandId;
rawPacket = commandBuffer;
}
void SyrlinksHandler::setDebugMode(bool enable) { this->debugMode = enable; }
void SyrlinksHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
Mode_t tgtMode = getBaseMode(getMode());
auto doneHandler = [&]() {
internalState = InternalState::IDLE;
transState = TransitionState::IDLE;
DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
};
if (transState == TransitionState::DONE) {
return doneHandler();
}
auto txStandbyHandler = [&]() {
txDataset.setReportingEnabled(false);
poolManager.changeCollectionInterval(temperatureSet.getSid(), 60.0);
poolManager.changeCollectionInterval(rxDataset.getSid(), 60.0);
transState = TransitionState::SET_TX_STANDBY;
internalState = InternalState::TX_TRANSITION;
};
auto txOnHandler = [&](TransitionState tgtTransitionState) {
txDataset.setReportingEnabled(true);
poolManager.changeCollectionInterval(rxDataset.getSid(), 5.0);
poolManager.changeCollectionInterval(txDataset.getSid(), 10.0);
poolManager.changeCollectionInterval(temperatureSet.getSid(), 5.0);
transState = tgtTransitionState;
internalState = InternalState::TX_TRANSITION;
};
if (tgtMode == HasModesIF::MODE_ON or tgtMode == DeviceHandlerIF::MODE_NORMAL) {
// If submode has not changed, no special transition handling necessary.
if (getSubmode() == subModeFrom) {
return doneHandler();
}
// Transition is on-going, wait for it to finish.
if (transState != TransitionState::IDLE) {
return;
}
// Transition start logic.
switch (getSubmode()) {
case (com::Submode::RX_AND_TX_DEFAULT_DATARATE): {
auto currentDatarate = com::getCurrentDatarate();
if (currentDatarate == com::Datarate::LOW_RATE_MODULATION_BPSK) {
txOnHandler(TransitionState::SELECT_MODULATION_BPSK);
} else if (currentDatarate == com::Datarate::HIGH_RATE_MODULATION_0QPSK) {
txOnHandler(TransitionState::SELECT_MODULATION_0QPSK);
}
break;
}
case (com::Submode::RX_AND_TX_LOW_DATARATE): {
txOnHandler(TransitionState::SELECT_MODULATION_BPSK);
break;
}
case (com::Submode::RX_AND_TX_HIGH_DATARATE): {
txOnHandler(TransitionState::SELECT_MODULATION_0QPSK);
break;
}
case (com::Submode::RX_ONLY): {
txStandbyHandler();
return;
}
case (com::Submode::RX_AND_TX_CW): {
txOnHandler(TransitionState::SET_TX_CW);
break;
}
default: {
sif::error << "SyrlinksHandler: Unexpected submode " << getSubmode() << std::endl;
DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
}
}
} else if (tgtMode == HasModesIF::MODE_OFF) {
txStandbyHandler();
} else {
return doneHandler();
}
}