eive-obsw/mission/devices/devicedefinitions/imtqHelpers.h
Robin Mueller 56cdd1173e
Some checks failed
EIVE/eive-obsw/pipeline/pr-develop There was a failure building this commit
some more bugfixes
2023-02-20 19:35:36 +01:00

1249 lines
52 KiB
C++
Raw Blame History

#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_
#include <eive/resultClassIds.h>
#include <fsfw/datapool/PoolReadGuard.h>
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h>
class ImtqHandler;
namespace imtq {
enum ComStep : uint8_t {
DHB_OP = 0,
START_MEASURE_SEND = 1,
START_MEASURE_GET = 2,
READ_MEASURE_SEND = 3,
READ_MEASURE_GET = 4,
START_ACTUATE_SEND = 5,
START_ACTUATE_GET = 6,
READ_ACTUATE_SEND = 7,
READ_ACTUATE_GET = 8,
};
enum class RequestType : uint8_t { MEASURE_NO_ACTUATION, ACTUATE };
enum class SpecialRequest : uint8_t {
NONE = 0,
DO_SELF_TEST_POS_X = 1,
DO_SELF_TEST_NEG_X = 2,
DO_SELF_TEST_POS_Y = 3,
DO_SELF_TEST_NEG_Y = 4,
DO_SELF_TEST_POS_Z = 5,
DO_SELF_TEST_NEG_Z = 6,
GET_SELF_TEST_RESULT = 7
};
static const uint8_t INTERFACE_ID = CLASS_ID::IMTQ_HANDLER;
static constexpr ReturnValue_t INVALID_COMMAND_CODE = MAKE_RETURN_CODE(0);
static constexpr ReturnValue_t MGM_MEASUREMENT_LOW_LEVEL_ERROR = MAKE_RETURN_CODE(1);
static constexpr ReturnValue_t ACTUATE_CMD_LOW_LEVEL_ERROR = MAKE_RETURN_CODE(2);
static const ReturnValue_t PARAMETER_MISSING = MAKE_RETURN_CODE(3);
static const ReturnValue_t PARAMETER_INVALID = MAKE_RETURN_CODE(4);
static const ReturnValue_t CC_UNAVAILABLE = MAKE_RETURN_CODE(5);
static const ReturnValue_t INTERNAL_PROCESSING_ERROR = MAKE_RETURN_CODE(6);
static const ReturnValue_t REJECTED_WITHOUT_REASON = MAKE_RETURN_CODE(7);
static const ReturnValue_t CMD_ERR_UNKNOWN = MAKE_RETURN_CODE(8);
//! [EXPORT] : [COMMENT] The status reply to a self test command was received but no self test
//! command has been sent. This should normally never happen.
static const ReturnValue_t UNEXPECTED_SELF_TEST_REPLY = MAKE_RETURN_CODE(0xA7);
namespace cmdIds {
static constexpr DeviceCommandId_t REQUEST = 0x70;
static constexpr DeviceCommandId_t REPLY = 0x71;
static const DeviceCommandId_t START_ACTUATION_DIPOLE = 0x2;
static const DeviceCommandId_t POS_X_SELF_TEST = 0x7;
static const DeviceCommandId_t NEG_X_SELF_TEST = 0x8;
static const DeviceCommandId_t POS_Y_SELF_TEST = 0x9;
static const DeviceCommandId_t NEG_Y_SELF_TEST = 0xA;
static const DeviceCommandId_t POS_Z_SELF_TEST = 0xB;
static const DeviceCommandId_t NEG_Z_SELF_TEST = 0xC;
static const DeviceCommandId_t GET_SELF_TEST_RESULT = 0xD;
} // namespace cmdIds
static const uint8_t POINTER_REG_SIZE = 1;
enum SetIds : uint32_t {
ENG_HK_NO_TORQUE = 1,
RAW_MTM_NO_TORQUE = 2,
ENG_HK_SET_WITH_TORQUE = 3,
RAW_MTM_WITH_TORQUE = 4,
STATUS_SET = 5,
DIPOLES = 6,
CAL_MTM_SET = 9,
POSITIVE_X_TEST = 10,
NEGATIVE_X_TEST = 11,
POSITIVE_Y_TEST = 12,
NEGATIVE_Y_TEST = 13,
POSITIVE_Z_TEST = 14,
NEGATIVE_Z_TEST = 15,
};
namespace replySize {
static constexpr uint8_t GET_TEMP_REPLY_SIZE = 2;
static constexpr uint8_t CFGR_CMD_SIZE = 3;
static constexpr size_t DEFAULT_MIN_LEN = 2;
static constexpr size_t STATUS_REPLY = DEFAULT_MIN_LEN;
static constexpr size_t ENG_HK_DATA_REPLY = 24;
static constexpr size_t GET_COMMANDED_DIPOLE_REPLY = 8;
static constexpr size_t MAX_SET_GET_PARAM_LEN = 12;
static constexpr size_t SYSTEM_STATE = 9;
static constexpr size_t CAL_MTM_MEASUREMENT = 15;
static constexpr size_t RAW_MTM_MEASUREMENT = 15;
static constexpr size_t SELF_TEST_RESULTS = 120;
static constexpr size_t SELF_TEST_RESULTS_ALL_AXES = 360;
} // namespace replySize
static const uint16_t MAX_REPLY_SIZE = replySize::SELF_TEST_RESULTS_ALL_AXES;
static const uint8_t MAX_COMMAND_SIZE = 16;
/** Define entries in IMTQ specific dataset */
static const uint8_t HK_SET_POOL_ENTRIES = 20;
static const uint8_t CAL_MTM_POOL_ENTRIES = 4;
static const uint8_t SELF_TEST_DATASET_ENTRIES = 104;
/** Error codes for interpreting the self test error byte */
static const uint8_t I2C_FAILURE_MASK = 0x1;
static const uint8_t SPI_FAILURE_MASK = 0x2; // MTM connectivity
static const uint8_t ADC_FAILURE_MASK = 0x4; // Current/Temp measurement
static const uint8_t PWM_FAILURE_MASK = 0x8; // Coil actuation
static const uint8_t TC_FAILURE_MASK = 0x10; // System failure
static const uint8_t MTM_RANGE_FAILURE_MASK = 0x20; // MTM values outside of expected range
static const uint8_t COIL_CURRENT_FAILURE_MASK = 0x40; // Coil currents outside of expected range
static const uint8_t INVALID_ERROR_BYTE =
0x80; // This is an invalid error byte and should be never replied by the IMTQ
static const uint8_t MAIN_STEP_OFFSET = 43;
// Command Code
namespace CC {
/**
* Command code definitions. Each command or reply of an IMTQ request will begin with one of
* the following command codes.
*/
enum CC : uint8_t {
START_MTM_MEASUREMENT = 0x4,
START_ACTUATION_DIPOLE = 0x6,
SELF_TEST_CMD = 0x8,
GET_SYSTEM_STATE = 0x41,
GET_RAW_MTM_MEASUREMENT = 0x42,
GET_CAL_MTM_MEASUREMENT = 0x43,
GET_COIL_CURRENT = 0x44,
GET_COIL_TEMPERATURES = 0x45,
GET_COMMANDED_DIPOLE = 0x46,
GET_SELF_TEST_RESULT = 0x47,
GET_RAW_HK_DATA = 0x49,
GET_ENG_HK_DATA = 0x4A,
GET_PARAM = 0x81,
SET_PARAM = 0x82,
SOFTWARE_RESET = 0xAA,
PAST_AVAILABLE_RESPONSE_BYTES = 0xff
};
} // namespace CC
size_t getReplySize(CC::CC cc, size_t* optSecondSize = nullptr);
namespace mode {
enum Mode : uint8_t { IDLE = 0, SELF_TEST = 1, DETUMBLE = 2 };
}
namespace selfTest {
enum Axis : uint8_t {
ALL = 0x0,
X_POSITIVE = 0x1,
X_NEGATIVE = 0x2,
Y_POSITIVE = 0x3,
Y_NEGATIVE = 0x4,
Z_POSITIVE = 0x5,
Z_NEGATIVE = 0x6,
};
namespace step {
enum Step : uint8_t {
INIT = 0x0,
X_POSITIVE = 0x1,
X_NEGATIVE = 0x2,
Y_POSITIVE = 0x3,
Y_NEGATIVE = 0x4,
Z_POSITIVE = 0x5,
Z_NEGATIVE = 0x6,
FINA = 0x7
};
}
} // namespace selfTest
enum PoolIds : lp_id_t {
STATUS_BYTE_MODE,
STATUS_BYTE_ERROR,
STATUS_BYTE_CONF,
STATUS_BYTE_UPTIME,
DIGITAL_VOLTAGE_MV,
ANALOG_VOLTAGE_MV,
DIGITAL_CURRENT,
ANALOG_CURRENT,
COIL_X_CURRENT,
COIL_Y_CURRENT,
COIL_Z_CURRENT,
COIL_X_TEMPERATURE,
COIL_Y_TEMPERATURE,
COIL_Z_TEMPERATURE,
MCU_TEMPERATURE,
MGM_CAL_NT,
ACTUATION_CAL_STATUS,
MTM_RAW,
ACTUATION_RAW_STATUS,
DIPOLES_X,
DIPOLES_Y,
DIPOLES_Z,
CURRENT_TORQUE_DURATION,
INIT_POS_X_ERR,
INIT_POS_X_RAW_MAG_X,
INIT_POS_X_RAW_MAG_Y,
INIT_POS_X_RAW_MAG_Z,
INIT_POS_X_CAL_MAG_X,
INIT_POS_X_CAL_MAG_Y,
INIT_POS_X_CAL_MAG_Z,
INIT_POS_X_COIL_X_CURRENT,
INIT_POS_X_COIL_Y_CURRENT,
INIT_POS_X_COIL_Z_CURRENT,
INIT_POS_X_COIL_X_TEMPERATURE,
INIT_POS_X_COIL_Y_TEMPERATURE,
INIT_POS_X_COIL_Z_TEMPERATURE,
INIT_NEG_X_ERR,
INIT_NEG_X_RAW_MAG_X,
INIT_NEG_X_RAW_MAG_Y,
INIT_NEG_X_RAW_MAG_Z,
INIT_NEG_X_CAL_MAG_X,
INIT_NEG_X_CAL_MAG_Y,
INIT_NEG_X_CAL_MAG_Z,
INIT_NEG_X_COIL_X_CURRENT,
INIT_NEG_X_COIL_Y_CURRENT,
INIT_NEG_X_COIL_Z_CURRENT,
INIT_NEG_X_COIL_X_TEMPERATURE,
INIT_NEG_X_COIL_Y_TEMPERATURE,
INIT_NEG_X_COIL_Z_TEMPERATURE,
INIT_POS_Y_ERR,
INIT_POS_Y_RAW_MAG_X,
INIT_POS_Y_RAW_MAG_Y,
INIT_POS_Y_RAW_MAG_Z,
INIT_POS_Y_CAL_MAG_X,
INIT_POS_Y_CAL_MAG_Y,
INIT_POS_Y_CAL_MAG_Z,
INIT_POS_Y_COIL_X_CURRENT,
INIT_POS_Y_COIL_Y_CURRENT,
INIT_POS_Y_COIL_Z_CURRENT,
INIT_POS_Y_COIL_X_TEMPERATURE,
INIT_POS_Y_COIL_Y_TEMPERATURE,
INIT_POS_Y_COIL_Z_TEMPERATURE,
INIT_NEG_Y_ERR,
INIT_NEG_Y_RAW_MAG_X,
INIT_NEG_Y_RAW_MAG_Y,
INIT_NEG_Y_RAW_MAG_Z,
INIT_NEG_Y_CAL_MAG_X,
INIT_NEG_Y_CAL_MAG_Y,
INIT_NEG_Y_CAL_MAG_Z,
INIT_NEG_Y_COIL_X_CURRENT,
INIT_NEG_Y_COIL_Y_CURRENT,
INIT_NEG_Y_COIL_Z_CURRENT,
INIT_NEG_Y_COIL_X_TEMPERATURE,
INIT_NEG_Y_COIL_Y_TEMPERATURE,
INIT_NEG_Y_COIL_Z_TEMPERATURE,
INIT_POS_Z_ERR,
INIT_POS_Z_RAW_MAG_X,
INIT_POS_Z_RAW_MAG_Y,
INIT_POS_Z_RAW_MAG_Z,
INIT_POS_Z_CAL_MAG_X,
INIT_POS_Z_CAL_MAG_Y,
INIT_POS_Z_CAL_MAG_Z,
INIT_POS_Z_COIL_X_CURRENT,
INIT_POS_Z_COIL_Y_CURRENT,
INIT_POS_Z_COIL_Z_CURRENT,
INIT_POS_Z_COIL_X_TEMPERATURE,
INIT_POS_Z_COIL_Y_TEMPERATURE,
INIT_POS_Z_COIL_Z_TEMPERATURE,
INIT_NEG_Z_ERR,
INIT_NEG_Z_RAW_MAG_X,
INIT_NEG_Z_RAW_MAG_Y,
INIT_NEG_Z_RAW_MAG_Z,
INIT_NEG_Z_CAL_MAG_X,
INIT_NEG_Z_CAL_MAG_Y,
INIT_NEG_Z_CAL_MAG_Z,
INIT_NEG_Z_COIL_X_CURRENT,
INIT_NEG_Z_COIL_Y_CURRENT,
INIT_NEG_Z_COIL_Z_CURRENT,
INIT_NEG_Z_COIL_X_TEMPERATURE,
INIT_NEG_Z_COIL_Y_TEMPERATURE,
INIT_NEG_Z_COIL_Z_TEMPERATURE,
POS_X_ERR,
POS_X_RAW_MAG_X,
POS_X_RAW_MAG_Y,
POS_X_RAW_MAG_Z,
POS_X_CAL_MAG_X,
POS_X_CAL_MAG_Y,
POS_X_CAL_MAG_Z,
POS_X_COIL_X_CURRENT,
POS_X_COIL_Y_CURRENT,
POS_X_COIL_Z_CURRENT,
POS_X_COIL_X_TEMPERATURE,
POS_X_COIL_Y_TEMPERATURE,
POS_X_COIL_Z_TEMPERATURE,
NEG_X_ERR,
NEG_X_RAW_MAG_X,
NEG_X_RAW_MAG_Y,
NEG_X_RAW_MAG_Z,
NEG_X_CAL_MAG_X,
NEG_X_CAL_MAG_Y,
NEG_X_CAL_MAG_Z,
NEG_X_COIL_X_CURRENT,
NEG_X_COIL_Y_CURRENT,
NEG_X_COIL_Z_CURRENT,
NEG_X_COIL_X_TEMPERATURE,
NEG_X_COIL_Y_TEMPERATURE,
NEG_X_COIL_Z_TEMPERATURE,
POS_Y_ERR,
POS_Y_RAW_MAG_X,
POS_Y_RAW_MAG_Y,
POS_Y_RAW_MAG_Z,
POS_Y_CAL_MAG_X,
POS_Y_CAL_MAG_Y,
POS_Y_CAL_MAG_Z,
POS_Y_COIL_X_CURRENT,
POS_Y_COIL_Y_CURRENT,
POS_Y_COIL_Z_CURRENT,
POS_Y_COIL_X_TEMPERATURE,
POS_Y_COIL_Y_TEMPERATURE,
POS_Y_COIL_Z_TEMPERATURE,
NEG_Y_ERR,
NEG_Y_RAW_MAG_X,
NEG_Y_RAW_MAG_Y,
NEG_Y_RAW_MAG_Z,
NEG_Y_CAL_MAG_X,
NEG_Y_CAL_MAG_Y,
NEG_Y_CAL_MAG_Z,
NEG_Y_COIL_X_CURRENT,
NEG_Y_COIL_Y_CURRENT,
NEG_Y_COIL_Z_CURRENT,
NEG_Y_COIL_X_TEMPERATURE,
NEG_Y_COIL_Y_TEMPERATURE,
NEG_Y_COIL_Z_TEMPERATURE,
POS_Z_ERR,
POS_Z_RAW_MAG_X,
POS_Z_RAW_MAG_Y,
POS_Z_RAW_MAG_Z,
POS_Z_CAL_MAG_X,
POS_Z_CAL_MAG_Y,
POS_Z_CAL_MAG_Z,
POS_Z_COIL_X_CURRENT,
POS_Z_COIL_Y_CURRENT,
POS_Z_COIL_Z_CURRENT,
POS_Z_COIL_X_TEMPERATURE,
POS_Z_COIL_Y_TEMPERATURE,
POS_Z_COIL_Z_TEMPERATURE,
NEG_Z_ERR,
NEG_Z_RAW_MAG_X,
NEG_Z_RAW_MAG_Y,
NEG_Z_RAW_MAG_Z,
NEG_Z_CAL_MAG_X,
NEG_Z_CAL_MAG_Y,
NEG_Z_CAL_MAG_Z,
NEG_Z_COIL_X_CURRENT,
NEG_Z_COIL_Y_CURRENT,
NEG_Z_COIL_Z_CURRENT,
NEG_Z_COIL_X_TEMPERATURE,
NEG_Z_COIL_Y_TEMPERATURE,
NEG_Z_COIL_Z_TEMPERATURE,
FINA_POS_X_ERR,
FINA_POS_X_RAW_MAG_X,
FINA_POS_X_RAW_MAG_Y,
FINA_POS_X_RAW_MAG_Z,
FINA_POS_X_CAL_MAG_X,
FINA_POS_X_CAL_MAG_Y,
FINA_POS_X_CAL_MAG_Z,
FINA_POS_X_COIL_X_CURRENT,
FINA_POS_X_COIL_Y_CURRENT,
FINA_POS_X_COIL_Z_CURRENT,
FINA_POS_X_COIL_X_TEMPERATURE,
FINA_POS_X_COIL_Y_TEMPERATURE,
FINA_POS_X_COIL_Z_TEMPERATURE,
FINA_NEG_X_ERR,
FINA_NEG_X_RAW_MAG_X,
FINA_NEG_X_RAW_MAG_Y,
FINA_NEG_X_RAW_MAG_Z,
FINA_NEG_X_CAL_MAG_X,
FINA_NEG_X_CAL_MAG_Y,
FINA_NEG_X_CAL_MAG_Z,
FINA_NEG_X_COIL_X_CURRENT,
FINA_NEG_X_COIL_Y_CURRENT,
FINA_NEG_X_COIL_Z_CURRENT,
FINA_NEG_X_COIL_X_TEMPERATURE,
FINA_NEG_X_COIL_Y_TEMPERATURE,
FINA_NEG_X_COIL_Z_TEMPERATURE,
FINA_POS_Y_ERR,
FINA_POS_Y_RAW_MAG_X,
FINA_POS_Y_RAW_MAG_Y,
FINA_POS_Y_RAW_MAG_Z,
FINA_POS_Y_CAL_MAG_X,
FINA_POS_Y_CAL_MAG_Y,
FINA_POS_Y_CAL_MAG_Z,
FINA_POS_Y_COIL_X_CURRENT,
FINA_POS_Y_COIL_Y_CURRENT,
FINA_POS_Y_COIL_Z_CURRENT,
FINA_POS_Y_COIL_X_TEMPERATURE,
FINA_POS_Y_COIL_Y_TEMPERATURE,
FINA_POS_Y_COIL_Z_TEMPERATURE,
FINA_NEG_Y_ERR,
FINA_NEG_Y_RAW_MAG_X,
FINA_NEG_Y_RAW_MAG_Y,
FINA_NEG_Y_RAW_MAG_Z,
FINA_NEG_Y_CAL_MAG_X,
FINA_NEG_Y_CAL_MAG_Y,
FINA_NEG_Y_CAL_MAG_Z,
FINA_NEG_Y_COIL_X_CURRENT,
FINA_NEG_Y_COIL_Y_CURRENT,
FINA_NEG_Y_COIL_Z_CURRENT,
FINA_NEG_Y_COIL_X_TEMPERATURE,
FINA_NEG_Y_COIL_Y_TEMPERATURE,
FINA_NEG_Y_COIL_Z_TEMPERATURE,
FINA_POS_Z_ERR,
FINA_POS_Z_RAW_MAG_X,
FINA_POS_Z_RAW_MAG_Y,
FINA_POS_Z_RAW_MAG_Z,
FINA_POS_Z_CAL_MAG_X,
FINA_POS_Z_CAL_MAG_Y,
FINA_POS_Z_CAL_MAG_Z,
FINA_POS_Z_COIL_X_CURRENT,
FINA_POS_Z_COIL_Y_CURRENT,
FINA_POS_Z_COIL_Z_CURRENT,
FINA_POS_Z_COIL_X_TEMPERATURE,
FINA_POS_Z_COIL_Y_TEMPERATURE,
FINA_POS_Z_COIL_Z_TEMPERATURE,
FINA_NEG_Z_ERR,
FINA_NEG_Z_RAW_MAG_X,
FINA_NEG_Z_RAW_MAG_Y,
FINA_NEG_Z_RAW_MAG_Z,
FINA_NEG_Z_CAL_MAG_X,
FINA_NEG_Z_CAL_MAG_Y,
FINA_NEG_Z_CAL_MAG_Z,
FINA_NEG_Z_COIL_X_CURRENT,
FINA_NEG_Z_COIL_Y_CURRENT,
FINA_NEG_Z_COIL_Z_CURRENT,
FINA_NEG_Z_COIL_X_TEMPERATURE,
FINA_NEG_Z_COIL_Y_TEMPERATURE,
FINA_NEG_Z_COIL_Z_TEMPERATURE,
};
class StatusDataset : public StaticLocalDataSet<4> {
public:
StatusDataset(HasLocalDataPoolIF* owner) : StaticLocalDataSet(owner, imtq::SetIds::STATUS_SET) {}
// Status byte variables
lp_var_t<uint8_t> statusByteMode = lp_var_t<uint8_t>(sid.objectId, STATUS_BYTE_MODE, this);
lp_var_t<uint8_t> statusByteError = lp_var_t<uint8_t>(sid.objectId, STATUS_BYTE_ERROR, this);
lp_var_t<uint8_t> statusByteConfig = lp_var_t<uint8_t>(sid.objectId, STATUS_BYTE_CONF, this);
lp_var_t<uint32_t> statusByteUptime = lp_var_t<uint32_t>(sid.objectId, STATUS_BYTE_UPTIME, this);
};
class HkDataset : public StaticLocalDataSet<HK_SET_POOL_ENTRIES> {
public:
HkDataset(HasLocalDataPoolIF* owner, uint32_t setId) : StaticLocalDataSet(owner, setId) {}
HkDataset(object_id_t objectId, uint32_t setId) : StaticLocalDataSet(sid_t(objectId, setId)) {}
// Engineering HK variables
lp_var_t<uint16_t> digitalVoltageMv = lp_var_t<uint16_t>(sid.objectId, DIGITAL_VOLTAGE_MV, this);
lp_var_t<uint16_t> analogVoltageMv = lp_var_t<uint16_t>(sid.objectId, ANALOG_VOLTAGE_MV, this);
lp_var_t<float> digitalCurrentmA = lp_var_t<float>(sid.objectId, DIGITAL_CURRENT, this);
lp_var_t<float> analogCurrentmA = lp_var_t<float>(sid.objectId, ANALOG_CURRENT, this);
lp_var_t<float> coilXCurrentmA = lp_var_t<float>(sid.objectId, COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrentmA = lp_var_t<float>(sid.objectId, COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrentmA = lp_var_t<float>(sid.objectId, COIL_Z_CURRENT, this);
/** All temperatures in [<5B>C] */
lp_var_t<int16_t> coilXTemperature = lp_var_t<int16_t>(sid.objectId, COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature = lp_var_t<int16_t>(sid.objectId, COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature = lp_var_t<int16_t>(sid.objectId, COIL_Z_TEMPERATURE, this);
lp_var_t<int16_t> mcuTemperature = lp_var_t<int16_t>(sid.objectId, MCU_TEMPERATURE, this);
};
class HkDatasetNoTorque : public HkDataset {
public:
HkDatasetNoTorque(HasLocalDataPoolIF* owner) : HkDataset(owner, imtq::SetIds::ENG_HK_NO_TORQUE) {}
};
class HkDatasetWithTorque : public HkDataset {
public:
HkDatasetWithTorque(HasLocalDataPoolIF* owner)
: HkDataset(owner, imtq::SetIds::ENG_HK_SET_WITH_TORQUE) {}
};
/**
*
* @brief This dataset holds the last calibrated MTM measurement.
*/
class CalibratedMtmMeasurementSet : public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
CalibratedMtmMeasurementSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::CAL_MTM_SET) {}
CalibratedMtmMeasurementSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::CAL_MTM_SET)) {}
/** The unit of all measurements is nT */
lp_vec_t<int32_t, 3> mgmXyz = lp_vec_t<int32_t, 3>(sid.objectId, MGM_CAL_NT, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus =
lp_var_t<uint8_t>(sid.objectId, ACTUATION_CAL_STATUS, this);
};
/**
* @brief This dataset holds the raw MTM measurements.
*/
class RawMtmMeasurementSet : public StaticLocalDataSet<CAL_MTM_POOL_ENTRIES> {
public:
RawMtmMeasurementSet(HasLocalDataPoolIF* owner, uint32_t setId)
: StaticLocalDataSet(owner, setId) {}
RawMtmMeasurementSet(object_id_t objectId, uint32_t setId)
: StaticLocalDataSet(sid_t(objectId, setId)) {}
/** The unit of all measurements is nT */
lp_vec_t<float, 3> mtmRawNt = lp_vec_t<float, 3>(sid.objectId, MTM_RAW, this);
/** 1 if coils were actuating during measurement otherwise 0 */
lp_var_t<uint8_t> coilActuationStatus =
lp_var_t<uint8_t>(sid.objectId, ACTUATION_RAW_STATUS, this);
};
class RawMtmMeasurementNoTorque : public RawMtmMeasurementSet {
public:
RawMtmMeasurementNoTorque(HasLocalDataPoolIF* owner)
: RawMtmMeasurementSet(owner, imtq::SetIds::RAW_MTM_NO_TORQUE) {}
RawMtmMeasurementNoTorque(object_id_t objectId)
: RawMtmMeasurementSet(objectId, imtq::SetIds::RAW_MTM_NO_TORQUE) {}
};
class RawMtmMeasurementWithTorque : public RawMtmMeasurementSet {
public:
RawMtmMeasurementWithTorque(HasLocalDataPoolIF* owner)
: RawMtmMeasurementSet(owner, imtq::SetIds::RAW_MTM_WITH_TORQUE) {}
RawMtmMeasurementWithTorque(object_id_t objectId)
: RawMtmMeasurementSet(objectId, imtq::SetIds::RAW_MTM_WITH_TORQUE) {}
};
/**
* @brief This class can be used to ease the generation of an action message commanding the
* IMTQHandler to configure the magnettorquer with the desired dipoles.
*
* @details Deserialize the packet, write the deserialized data to the ipc store and store the
* the ipc store address in the action message.
*/
class CommandDipolePacket : public SerialLinkedListAdapter<SerializeIF> {
public:
CommandDipolePacket() { setLinks(); }
SerializeElement<uint16_t> xDipole;
SerializeElement<uint16_t> yDipole;
SerializeElement<uint16_t> zDipole;
SerializeElement<uint16_t> duration;
private:
/**
* @brief Constructor
*
* @param xDipole The dipole of the x coil in 10 ^ -4 * Am^2
* @param yDipole The dipole of the y coil in 10 ^ -4 * Am^2
* @param zDipole The dipole of the z coil in 10 ^ -4 * Am^2
* @param duration The duration in milliseconds the dipole will be generated by the coils.
* When set to 0, the dipole will be generated until a new dipole actuation
* command is sent.
*/
CommandDipolePacket(uint16_t xDipole, uint16_t yDipole, uint16_t zDipole, uint16_t duration)
: xDipole(xDipole), yDipole(yDipole), zDipole(zDipole), duration(duration) {}
void setLinks() {
setStart(&xDipole);
xDipole.setNext(&yDipole);
yDipole.setNext(&zDipole);
zDipole.setNext(&duration);
}
};
class DipoleActuationSet : public StaticLocalDataSet<4> {
friend class ::ImtqHandler;
public:
DipoleActuationSet(HasLocalDataPoolIF& owner)
: StaticLocalDataSet(&owner, imtq::SetIds::DIPOLES) {}
DipoleActuationSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::DIPOLES)) {}
// Refresh torque command without changing any of the set dipoles.
void refreshTorqueing(uint16_t durationMs_) { currentTorqueDurationMs = durationMs_; }
void setDipoles(int16_t xDipole_, int16_t yDipole_, int16_t zDipole_,
uint16_t currentTorqueDurationMs_) {
if (xDipole.value != xDipole_) {
xDipole = xDipole_;
}
if (yDipole.value != yDipole_) {
yDipole = yDipole_;
}
if (zDipole.value != zDipole_) {
zDipole = zDipole_;
}
currentTorqueDurationMs = currentTorqueDurationMs_;
}
void getDipoles(int16_t& xDipole_, int16_t& yDipole_, int16_t& zDipole_) {
xDipole_ = xDipole.value;
yDipole_ = yDipole.value;
zDipole_ = zDipole.value;
}
private:
lp_var_t<int16_t> xDipole = lp_var_t<int16_t>(sid.objectId, DIPOLES_X, this);
lp_var_t<int16_t> yDipole = lp_var_t<int16_t>(sid.objectId, DIPOLES_Y, this);
lp_var_t<int16_t> zDipole = lp_var_t<int16_t>(sid.objectId, DIPOLES_Z, this);
lp_var_t<uint16_t> currentTorqueDurationMs =
lp_var_t<uint16_t>(sid.objectId, CURRENT_TORQUE_DURATION, this);
};
/**
* @brief This dataset can be used to store the self test results of the +X self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +X self test generates a positive dipole in X direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +X actuation
* 3. All coils off (FINA step)
*/
class PosXSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosXSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::POSITIVE_X_TEST) {}
PosXSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::POSITIVE_X_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_X_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_X_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_X_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_X_COIL_Z_CURRENT, this);
lp_var_t<uint16_t> initCoilXTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_X_COIL_Z_TEMPERATURE, this);
/** +X block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_X_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_X_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_X_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_X_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_X_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_X_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_X_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_X_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -X self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -X self test generates a negative dipole in X direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -X actuation
* 3. All coils off (FINA step)
*/
class NegXSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegXSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::NEGATIVE_X_TEST) {}
NegXSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::NEGATIVE_X_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_X_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_X_COIL_Z_TEMPERATURE, this);
/** -X block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_X_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_X_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_X_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_X_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_X_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_X_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_X_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_X_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the +Y self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +Y self test generates a positive dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Y actuation
* 3. All coils off (FINA step)
*/
class PosYSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosYSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::POSITIVE_Y_TEST) {}
PosYSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::POSITIVE_Y_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Y_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_POS_Y_COIL_Z_TEMPERATURE, this);
/** +Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Y_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -Y self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -Y self test generates a negative dipole in y direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Y actuation
* 3. All coils off (FINA step)
*/
class NegYSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegYSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::NEGATIVE_Y_TEST) {}
NegYSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::NEGATIVE_Y_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Y_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Y_COIL_Z_TEMPERATURE, this);
/** -Y block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Y_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Y_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Y_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Y_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Y_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Y_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the +Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The +Z self test generates a positive dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. +Z actuation
* 3. All coils off (FINA step)
*/
class PosZSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
PosZSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::POSITIVE_Z_TEST) {}
PosZSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::POSITIVE_Y_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_POS_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_POS_Z_COIL_Z_CURRENT, this);
lp_var_t<uint16_t> initCoilXTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilYTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<uint16_t> initCoilZTemperature =
lp_var_t<uint16_t>(sid.objectId, INIT_POS_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, POS_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, POS_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, POS_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, POS_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, POS_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_POS_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_POS_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_POS_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_POS_Z_COIL_Z_TEMPERATURE, this);
};
/**
* @brief This dataset can be used to store the self test results of the -Z self test.
*
* @details Units of measurements:
* Raw magnetic field: [nT]
* Calibrated magnetic field: [nT]
* Coil currents: [mA]
* Temperature: [C]
* The -Z self test generates a negative dipole in z direction and measures the magnetic
* field with the built-in MTM. The procedure of the test is as follows:
* 1. All coils off (INIT step)
* 2. -Z actuation
* 3. All coils off (FINA step)
*/
class NegZSelfTestSet : public StaticLocalDataSet<SELF_TEST_DATASET_ENTRIES> {
public:
NegZSelfTestSet(HasLocalDataPoolIF* owner)
: StaticLocalDataSet(owner, imtq::SetIds::NEGATIVE_Z_TEST) {}
NegZSelfTestSet(object_id_t objectId)
: StaticLocalDataSet(sid_t(objectId, imtq::SetIds::NEGATIVE_Z_TEST)) {}
/** INIT block */
lp_var_t<uint8_t> initErr = lp_var_t<uint8_t>(sid.objectId, INIT_NEG_Z_ERR, this);
lp_var_t<float> initRawMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> initRawMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> initRawMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> initCalMagX = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> initCalMagY = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> initCalMagZ = lp_var_t<float>(sid.objectId, INIT_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> initCoilXCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> initCoilYCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> initCoilZCurrent = lp_var_t<float>(sid.objectId, INIT_NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> initCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> initCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> initCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, INIT_NEG_Z_COIL_Z_TEMPERATURE, this);
/** +Z block */
lp_var_t<uint8_t> err = lp_var_t<uint8_t>(sid.objectId, NEG_Z_ERR, this);
lp_var_t<float> rawMagX = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_X, this);
lp_var_t<float> rawMagY = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> rawMagZ = lp_var_t<float>(sid.objectId, NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> calMagX = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_X, this);
lp_var_t<float> calMagY = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> calMagZ = lp_var_t<float>(sid.objectId, NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> coilXCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> coilYCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> coilZCurrent = lp_var_t<float>(sid.objectId, NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> coilXTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> coilYTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> coilZTemperature =
lp_var_t<int16_t>(sid.objectId, NEG_Z_COIL_Z_TEMPERATURE, this);
/** FINA block */
lp_var_t<uint8_t> finaErr = lp_var_t<uint8_t>(sid.objectId, FINA_NEG_Z_ERR, this);
lp_var_t<float> finaRawMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_X, this);
lp_var_t<float> finaRawMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Y, this);
lp_var_t<float> finaRawMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_RAW_MAG_Z, this);
lp_var_t<float> finaCalMagX = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_X, this);
lp_var_t<float> finaCalMagY = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Y, this);
lp_var_t<float> finaCalMagZ = lp_var_t<float>(sid.objectId, FINA_NEG_Z_CAL_MAG_Z, this);
lp_var_t<float> finaCoilXCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_X_CURRENT, this);
lp_var_t<float> finaCoilYCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Y_CURRENT, this);
lp_var_t<float> finaCoilZCurrent = lp_var_t<float>(sid.objectId, FINA_NEG_Z_COIL_Z_CURRENT, this);
lp_var_t<int16_t> finaCoilXTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_X_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilYTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_Y_TEMPERATURE, this);
lp_var_t<int16_t> finaCoilZTemperature =
lp_var_t<int16_t>(sid.objectId, FINA_NEG_Z_COIL_Z_TEMPERATURE, this);
};
} // namespace imtq
struct ImtqRequest {
friend class ImtqHandler;
public:
static constexpr size_t REQUEST_LEN = 10;
ImtqRequest(const uint8_t* data, size_t maxSize)
: rawData(const_cast<uint8_t*>(data)), maxSize(maxSize) {}
imtq::RequestType getRequestType() const { return static_cast<imtq::RequestType>(rawData[0]); }
void setMeasureRequest(imtq::SpecialRequest specialRequest) {
rawData[0] = static_cast<uint8_t>(imtq::RequestType::MEASURE_NO_ACTUATION);
rawData[1] = static_cast<uint8_t>(specialRequest);
}
void setActuateRequest(int16_t dipoleX, int16_t dipoleY, int16_t dipoleZ,
uint16_t torqueDuration) {
size_t dummy = 0;
rawData[0] = static_cast<uint8_t>(imtq::RequestType::ACTUATE);
rawData[1] = static_cast<uint8_t>(imtq::SpecialRequest::NONE);
uint8_t* serPtr = rawData + 2;
SerializeAdapter::serialize(&dipoleX, &serPtr, &dummy, maxSize,
SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&dipoleY, &serPtr, &dummy, maxSize,
SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&dipoleZ, &serPtr, &dummy, maxSize,
SerializeIF::Endianness::MACHINE);
SerializeAdapter::serialize(&torqueDuration, &serPtr, &dummy, maxSize,
SerializeIF::Endianness::MACHINE);
}
uint8_t* startOfActuateDataPtr() { return rawData + 2; }
int16_t* getDipoles() { return reinterpret_cast<int16_t*>(rawData + 2); }
uint16_t getTorqueDuration() {
uint8_t* data = rawData + 2 + 6;
uint16_t value = 0;
size_t dummy = 0;
SerializeAdapter::deSerialize(&value, data, &dummy, SerializeIF::Endianness::MACHINE);
return value;
}
void setSpecialRequest(imtq::SpecialRequest specialRequest) {
rawData[1] = static_cast<uint8_t>(specialRequest);
}
imtq::SpecialRequest getSpecialRequest() const {
return static_cast<imtq::SpecialRequest>(rawData[1]);
}
private:
ImtqRequest(uint8_t* rawData, size_t maxLen) : rawData(rawData) {
if (rawData != nullptr) {
rawData[0] = static_cast<uint8_t>(imtq::RequestType::MEASURE_NO_ACTUATION);
}
}
uint8_t* rawData;
size_t maxSize = 0;
};
struct ImtqRepliesDefault {
friend class ImtqPollingTask;
public:
static constexpr size_t BASE_LEN =
imtq::replySize::DEFAULT_MIN_LEN + 1 + imtq::replySize::SYSTEM_STATE + 1 +
+imtq::replySize::DEFAULT_MIN_LEN + 1 + imtq::replySize::RAW_MTM_MEASUREMENT + 1 +
imtq::replySize::ENG_HK_DATA_REPLY + 1 + imtq::replySize::CAL_MTM_MEASUREMENT + 1;
ImtqRepliesDefault(const uint8_t* rawData) : rawData(const_cast<uint8_t*>(rawData)) {
initPointers();
}
uint8_t* getCalibMgmMeasurement() const { return calibMgmMeasurement + 1; }
bool wasCalibMgmMeasurementRead() const { return calibMgmMeasurement[0]; };
uint8_t* getEngHk() const { return engHk + 1; }
bool wasEngHkRead() const { return engHk[0]; };
uint8_t* getRawMgmMeasurement() const { return rawMgmMeasurement + 1; }
bool wasGetRawMgmMeasurementRead() const { return rawMgmMeasurement[0]; };
uint8_t* getSpecialRequest() const { return specialRequestReply + 1; }
bool wasSpecialRequestRead() const { return specialRequestReply[0]; }
uint8_t* getStartMtmMeasurement() const { return startMtmMeasurement + 1; }
bool wasStartMtmMeasurementRead() const { return startMtmMeasurement[0]; }
uint8_t* getSwReset() const { return swReset + 1; }
uint8_t* getSystemState() const { return systemState + 1; }
bool wasGetSystemStateRead() const { return systemState[0]; }
private:
void initPointers() {
swReset = rawData;
systemState = swReset + imtq::replySize::DEFAULT_MIN_LEN + 1;
startMtmMeasurement = systemState + imtq::replySize::SYSTEM_STATE + 1;
rawMgmMeasurement = startMtmMeasurement + imtq::replySize::DEFAULT_MIN_LEN + 1;
engHk = rawMgmMeasurement + imtq::replySize::RAW_MTM_MEASUREMENT + 1;
calibMgmMeasurement = engHk + imtq::replySize::ENG_HK_DATA_REPLY + 1;
specialRequestReply = calibMgmMeasurement + imtq::replySize::CAL_MTM_MEASUREMENT + 1;
}
uint8_t* rawData;
uint8_t* swReset;
uint8_t* systemState;
uint8_t* startMtmMeasurement;
uint8_t* rawMgmMeasurement;
uint8_t* engHk;
uint8_t* calibMgmMeasurement;
// Share this to reduce amount of copied code for each transfer.
uint8_t* specialRequestReply;
};
struct ImtqRepliesWithTorque {
friend class ImtqPollingTask;
public:
static constexpr size_t BASE_LEN =
imtq::replySize::DEFAULT_MIN_LEN + 1 + imtq::replySize::ENG_HK_DATA_REPLY + 1 +
imtq::replySize::DEFAULT_MIN_LEN + 1 + imtq::replySize::RAW_MTM_MEASUREMENT + 1;
ImtqRepliesWithTorque(const uint8_t* rawData) : rawData(const_cast<uint8_t*>(rawData)) {
initPointers();
}
uint8_t* getDipoleActuation() const { return dipoleActuation + 1; }
bool wasDipoleActuationRead() const { return dipoleActuation[0]; }
uint8_t* getEngHk() const { return engHk + 1; }
bool wasEngHkRead() const { return engHk[0]; };
uint8_t* getRawMgmMeasurement() const { return rawMgmMeasurement + 1; }
bool wasGetRawMgmMeasurementRead() const { return rawMgmMeasurement[0]; };
private:
void initPointers() {
dipoleActuation = rawData;
engHk = dipoleActuation + imtq::replySize::DEFAULT_MIN_LEN + 1;
startMtmMeasurement = engHk + imtq::replySize::ENG_HK_DATA_REPLY + 1;
rawMgmMeasurement = startMtmMeasurement + imtq::replySize::DEFAULT_MIN_LEN + 1;
}
uint8_t* rawData;
uint8_t* dipoleActuation;
uint8_t* engHk;
uint8_t* startMtmMeasurement;
uint8_t* rawMgmMeasurement;
};
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_IMTQDEFINITIONS_H_ */