eive-obsw/mission/controller/acs/control/SafeCtrl.cpp
2023-04-17 09:20:09 +02:00

136 lines
6.0 KiB
C++

#include "SafeCtrl.h"
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h>
SafeCtrl::SafeCtrl(AcsParameters *acsParameters_) { acsParameters = acsParameters_; }
SafeCtrl::~SafeCtrl() {}
uint8_t SafeCtrl::safeCtrlStrategy(const bool magFieldValid, const bool mekfValid,
const bool satRotRateValid, const bool sunDirValid,
const uint8_t mekfEnabled, const uint8_t dampingEnabled) {
if (not magFieldValid) {
return acs::SafeModeStrategy::SAFECTRL_NO_MAG_FIELD_FOR_CONTROL;
} else if (mekfEnabled and mekfValid) {
return acs::SafeModeStrategy::SAFECTRL_ACTIVE_MEKF;
} else if (satRotRateValid and sunDirValid) {
return acs::SafeModeStrategy::SAFECTRL_WITHOUT_MEKF;
} else if (dampingEnabled and satRotRateValid and not sunDirValid) {
return acs::SafeModeStrategy::SAFECTRL_ECLIPSE_DAMPING;
} else if (not dampingEnabled and satRotRateValid and not sunDirValid) {
return acs::SafeModeStrategy::SAFECTRL_ECLIPSE_IDELING;
} else {
return acs::SafeModeStrategy::SAFECTRL_NO_SENSORS_FOR_CONTROL;
}
}
void SafeCtrl::safeMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirModelI, const double *quatBI, const double *sunDirRefB,
double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// convert sunDirModel to body rf
double sunDirB[3] = {0, 0, 0};
QuaternionOperations::multiplyVector(quatBI, sunDirModelI, sunDirB);
// calculate angle alpha between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
splitRotationalRate(satRotRateB, sunDirB);
calculateRotationalRateTorque(sunDirB, sunDirRefB, errorAngle,
acsParameters->safeModeControllerParameters.k_parallelMekf,
acsParameters->safeModeControllerParameters.k_orthoMekf);
calculateAngleErrorTorque(sunDirB, sunDirRefB,
acsParameters->safeModeControllerParameters.k_alignMekf);
// sum of all torques
for (uint8_t i = 0; i < 3; i++) {
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
}
calculateMagneticMoment(magMomB);
}
void SafeCtrl::safeNonMekf(const double *magFieldB, const double *satRotRateB,
const double *sunDirB, const double *sunDirRefB, double *magMomB,
double &errorAngle) {
// convert magFieldB from uT to T
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// calculate error angle between sunDirRef and sunDir
double dotSun = VectorOperations<double>::dot(sunDirRefB, sunDirB);
errorAngle = acos(dotSun);
splitRotationalRate(satRotRateB, sunDirB);
calculateRotationalRateTorque(sunDirB, sunDirRefB, errorAngle,
acsParameters->safeModeControllerParameters.k_parallelNonMekf,
acsParameters->safeModeControllerParameters.k_orthoNonMekf);
calculateAngleErrorTorque(sunDirB, sunDirRefB,
acsParameters->safeModeControllerParameters.k_alignNonMekf);
// sum of all torques
for (uint8_t i = 0; i < 3; i++) {
cmdTorque[i] = cmdAlign[i] + cmdOrtho[i] + cmdParallel[i];
}
calculateMagneticMoment(magMomB);
}
void SafeCtrl::safeRateDamping(const double *magFieldB, const double *satRotRateB,
const double *sunDirRefB, double *magMomB, double &errorAngle) {
// convert magFieldB from uT to T
VectorOperations<double>::mulScalar(magFieldB, 1e-6, magFieldBT, 3);
// no error angle available for eclipse
errorAngle = NAN;
splitRotationalRate(satRotRateB, sunDirRefB);
calculateRotationalRateTorque(sunDirRefB, sunDirRefB, errorAngle,
acsParameters->safeModeControllerParameters.k_parallelNonMekf,
acsParameters->safeModeControllerParameters.k_orthoNonMekf);
// sum of all torques
VectorOperations<double>::add(cmdParallel, cmdOrtho, cmdTorque, 3);
// calculate magnetic moment to command
calculateMagneticMoment(magMomB);
}
void SafeCtrl::splitRotationalRate(const double *satRotRateB, const double *sunDirB) {
// split rotational rate into parallel and orthogonal parts
double parallelLength = VectorOperations<double>::dot(satRotRateB, sunDirB) *
pow(VectorOperations<double>::norm(sunDirB, 3), -2);
VectorOperations<double>::mulScalar(sunDirB, parallelLength, satRotRateParallelB, 3);
VectorOperations<double>::subtract(satRotRateB, satRotRateParallelB, satRotRateOrthogonalB, 3);
}
void SafeCtrl::calculateRotationalRateTorque(const double *sunDirB, const double *sunDirRefB,
double &errorAngle, const double gainParallel,
const double gainOrtho) {
// calculate torque for parallel rotational rate
VectorOperations<double>::mulScalar(satRotRateParallelB, -gainParallel, cmdParallel, 3);
// calculate torque for orthogonal rotational rate
VectorOperations<double>::mulScalar(satRotRateOrthogonalB, -gainOrtho, cmdOrtho, 3);
}
void SafeCtrl::calculateAngleErrorTorque(const double *sunDirB, const double *sunDirRefB,
const double gainAlign) {
// calculate torque for alignment
double crossAlign[3] = {0, 0, 0};
VectorOperations<double>::cross(sunDirRefB, sunDirB, crossAlign);
VectorOperations<double>::mulScalar(crossAlign, gainAlign, cmdAlign, 3);
}
void SafeCtrl::calculateMagneticMoment(double *magMomB) {
double torqueMgt[3] = {0, 0, 0};
VectorOperations<double>::cross(magFieldBT, cmdTorque, torqueMgt);
double normMag = VectorOperations<double>::norm(magFieldBT, 3);
VectorOperations<double>::mulScalar(torqueMgt, pow(normMag, -2), magMomB, 3);
}