eive-obsw/thirdparty/libcsp/src/crypto/csp_sha1.c

218 lines
6.0 KiB
C

/*
Cubesat Space Protocol - A small network-layer protocol designed for Cubesats
Copyright (C) 2012 GomSpace ApS (http://www.gomspace.com)
Copyright (C) 2012 AAUSAT3 Project (http://aausat3.space.aau.dk)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Code originally from Python's SHA1 Module, who based it on libtom.org */
#include <stdint.h>
#include <string.h>
/* CSP includes */
#include <csp/csp.h>
#include <csp/crypto/csp_sha1.h>
#if defined(CSP_USE_HMAC) || defined(CSP_USE_XTEA)
/* Rotate left macro */
#define ROL(x,y) (((x) << (y)) | ((x) >> (32-y)))
/* Endian Neutral macros that work on all platforms */
#define STORE32H(x, y) do { (y)[0] = (uint8_t)(((x) >> 24) & 0xff); \
(y)[1] = (uint8_t)(((x) >> 16) & 0xff); \
(y)[2] = (uint8_t)(((x) >> 8) & 0xff); \
(y)[3] = (uint8_t)(((x) >> 0) & 0xff); } while (0)
#define LOAD32H(x, y) do { (x) = ((uint32_t)((y)[0] & 0xff) << 24) | \
((uint32_t)((y)[1] & 0xff) << 16) | \
((uint32_t)((y)[2] & 0xff) << 8) | \
((uint32_t)((y)[3] & 0xff) << 0); } while (0)
#define STORE64H(x, y) do { (y)[0] = (uint8_t)(((x) >> 56) & 0xff); \
(y)[1] = (uint8_t)(((x) >> 48) & 0xff); \
(y)[2] = (uint8_t)(((x) >> 40) & 0xff); \
(y)[3] = (uint8_t)(((x) >> 32) & 0xff); \
(y)[4] = (uint8_t)(((x) >> 24) & 0xff); \
(y)[5] = (uint8_t)(((x) >> 16) & 0xff); \
(y)[6] = (uint8_t)(((x) >> 8) & 0xff); \
(y)[7] = (uint8_t)(((x) >> 0) & 0xff); } while (0)
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
/* SHA1 macros */
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
#define FF_0(a, b, c, d, e, i) do {e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30);} while (0)
#define FF_1(a, b, c, d, e, i) do {e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30);} while (0)
#define FF_2(a, b, c, d, e, i) do {e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30);} while (0)
#define FF_3(a, b, c, d, e, i) do {e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30);} while (0)
static void csp_sha1_compress(csp_sha1_state * sha1, const uint8_t * buf) {
uint32_t a, b, c, d, e, W[80], i;
/* Copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
LOAD32H(W[i], buf + (4*i));
/* Copy state */
a = sha1->state[0];
b = sha1->state[1];
c = sha1->state[2];
d = sha1->state[3];
e = sha1->state[4];
/* Expand it */
for (i = 16; i < 80; i++)
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
/* Compress */
i = 0;
/* Round one */
for (; i < 20;) {
FF_0(a, b, c, d, e, i++);
FF_0(e, a, b, c, d, i++);
FF_0(d, e, a, b, c, i++);
FF_0(c, d, e, a, b, i++);
FF_0(b, c, d, e, a, i++);
}
/* Round two */
for (; i < 40;) {
FF_1(a, b, c, d, e, i++);
FF_1(e, a, b, c, d, i++);
FF_1(d, e, a, b, c, i++);
FF_1(c, d, e, a, b, i++);
FF_1(b, c, d, e, a, i++);
}
/* Round three */
for (; i < 60;) {
FF_2(a, b, c, d, e, i++);
FF_2(e, a, b, c, d, i++);
FF_2(d, e, a, b, c, i++);
FF_2(c, d, e, a, b, i++);
FF_2(b, c, d, e, a, i++);
}
/* Round four */
for (; i < 80;) {
FF_3(a, b, c, d, e, i++);
FF_3(e, a, b, c, d, i++);
FF_3(d, e, a, b, c, i++);
FF_3(c, d, e, a, b, i++);
FF_3(b, c, d, e, a, i++);
}
/* Store */
sha1->state[0] += a;
sha1->state[1] += b;
sha1->state[2] += c;
sha1->state[3] += d;
sha1->state[4] += e;
}
void csp_sha1_init(csp_sha1_state * sha1) {
sha1->state[0] = 0x67452301UL;
sha1->state[1] = 0xefcdab89UL;
sha1->state[2] = 0x98badcfeUL;
sha1->state[3] = 0x10325476UL;
sha1->state[4] = 0xc3d2e1f0UL;
sha1->curlen = 0;
sha1->length = 0;
}
void csp_sha1_process(csp_sha1_state * sha1, const uint8_t * in, uint32_t inlen) {
uint32_t n;
while (inlen > 0) {
if (sha1->curlen == 0 && inlen >= SHA1_BLOCKSIZE) {
csp_sha1_compress(sha1, in);
sha1->length += SHA1_BLOCKSIZE * 8;
in += SHA1_BLOCKSIZE;
inlen -= SHA1_BLOCKSIZE;
} else {
n = MIN(inlen, (SHA1_BLOCKSIZE - sha1->curlen));
memcpy(sha1->buf + sha1->curlen, in, (size_t)n);
sha1->curlen += n;
in += n;
inlen -= n;
if (sha1->curlen == SHA1_BLOCKSIZE) {
csp_sha1_compress(sha1, sha1->buf);
sha1->length += 8*SHA1_BLOCKSIZE;
sha1->curlen = 0;
}
}
}
}
void csp_sha1_done(csp_sha1_state * sha1, uint8_t * out) {
uint32_t i;
/* Increase the length of the message */
sha1->length += sha1->curlen * 8;
/* Append the '1' bit */
sha1->buf[sha1->curlen++] = 0x80;
/* If the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (sha1->curlen > 56) {
while (sha1->curlen < 64)
sha1->buf[sha1->curlen++] = 0;
csp_sha1_compress(sha1, sha1->buf);
sha1->curlen = 0;
}
/* Pad up to 56 bytes of zeroes */
while (sha1->curlen < 56)
sha1->buf[sha1->curlen++] = 0;
/* Store length */
STORE64H(sha1->length, sha1->buf + 56);
csp_sha1_compress(sha1, sha1->buf);
/* Copy output */
for (i = 0; i < 5; i++)
STORE32H(sha1->state[i], out + (4 * i));
}
void csp_sha1_memory(const uint8_t * msg, uint32_t len, uint8_t * hash) {
csp_sha1_state md;
csp_sha1_init(&md);
csp_sha1_process(&md, msg, len);
csp_sha1_done(&md, hash);
}
#endif // CSP_USE_HMAC