eive-obsw/mission/controller/acs/SusConverter.cpp

135 lines
5.8 KiB
C++

/*
* SusConverter.cpp
*
* Created on: 17.01.2022
* Author: Timon Schwarz
*/
#include "SusConverter.h"
#include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/datapoollocal/LocalPoolVector.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <math.h> //for atan2
#include <iostream>
bool SusConverter::checkSunSensorData(lp_vec_t<uint16_t, 6> susChannel) {
if (susChannel.value[0] <= susChannelValueCheckLow ||
susChannel.value[0] > susChannelValueCheckHigh ||
susChannel.value[0] > susChannel.value[GNDREF]) {
return false;
}
if (susChannel.value[1] <= susChannelValueCheckLow ||
susChannel.value[1] > susChannelValueCheckHigh ||
susChannel.value[1] > susChannel.value[GNDREF]) {
return false;
};
if (susChannel.value[2] <= susChannelValueCheckLow ||
susChannel.value[2] > susChannelValueCheckHigh ||
susChannel.value[2] > susChannel.value[GNDREF]) {
return false;
};
if (susChannel.value[3] <= susChannelValueCheckLow ||
susChannel.value[3] > susChannelValueCheckHigh ||
susChannel.value[3] > susChannel.value[GNDREF]) {
return false;
};
susChannelValueSum = 4 * susChannel.value[GNDREF] - (susChannel.value[0] + susChannel.value[1] +
susChannel.value[2] + susChannel.value[3]);
if ((susChannelValueSum < susChannelValueSumHigh) &&
(susChannelValueSum > susChannelValueSumLow)) {
return false;
};
return true;
}
void SusConverter::calcAngle(lp_vec_t<uint16_t, 6> susChannel) {
float xout, yout;
float s = 0.03; // s=[mm] gap between diodes
uint8_t d = 5; // d=[mm] edge length of the quadratic aperture
uint8_t h = 1; // h=[mm] distance between diodes and aperture
int ch0, ch1, ch2, ch3;
// Substract measurement values from GNDREF zero current threshold
ch0 = susChannel.value[GNDREF] - susChannel.value[0];
ch1 = susChannel.value[GNDREF] - susChannel.value[1];
ch2 = susChannel.value[GNDREF] - susChannel.value[2];
ch3 = susChannel.value[GNDREF] - susChannel.value[3];
// Calculation of x and y
xout = ((d - s) / 2) * (ch2 - ch3 - ch0 + ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
yout = ((d - s) / 2) * (ch2 + ch3 - ch0 - ch1) / (ch0 + ch1 + ch2 + ch3); //[mm]
// Calculation of the angles
alphaBetaRaw[0] = atan2(xout, h) * (180 / M_PI); //[°]
alphaBetaRaw[1] = atan2(yout, h) * (180 / M_PI); //[°]
}
void SusConverter::calibration(const float coeffAlpha[9][10], const float coeffBeta[9][10]) {
uint8_t index;
float k, l;
// while loop iterates above all calibration cells to use the different calibration functions in
// each cell
k = 0;
while (k < 3) {
k++;
l = 0;
while (l < 3) {
l++;
// if-condition to check in which cell the data point has to be
if ((alphaBetaRaw[0] > ((completeCellWidth * ((k - 1) / 3)) - halfCellWidth) &&
alphaBetaRaw[0] < ((completeCellWidth * (k / 3)) - halfCellWidth)) &&
(alphaBetaRaw[1] > ((completeCellWidth * ((l - 1) / 3)) - halfCellWidth) &&
alphaBetaRaw[1] < ((completeCellWidth * (l / 3)) - halfCellWidth))) {
index = (3 * (k - 1) + l) - 1; // calculate the index of the datapoint for the right cell
alphaBetaCalibrated[0] =
coeffAlpha[index][0] + coeffAlpha[index][1] * alphaBetaRaw[0] +
coeffAlpha[index][2] * alphaBetaRaw[1] +
coeffAlpha[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffAlpha[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffAlpha[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffAlpha[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
alphaBetaCalibrated[1] =
coeffBeta[index][0] + coeffBeta[index][1] * alphaBetaRaw[0] +
coeffBeta[index][2] * alphaBetaRaw[1] +
coeffBeta[index][3] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][4] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][5] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][6] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[0] +
coeffBeta[index][7] * alphaBetaRaw[0] * alphaBetaRaw[0] * alphaBetaRaw[1] +
coeffBeta[index][8] * alphaBetaRaw[0] * alphaBetaRaw[1] * alphaBetaRaw[1] +
coeffBeta[index][9] * alphaBetaRaw[1] * alphaBetaRaw[1] * alphaBetaRaw[1]; //[°]
}
}
}
}
float* SusConverter::calculateSunVector() {
// Calculate the normalized Sun Vector
sunVectorBodyFrame[0] = (tan(alphaBetaCalibrated[0] * (M_PI / 180)) /
(sqrt((powf(tan(alphaBetaCalibrated[0] * (M_PI / 180)), 2)) +
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
sunVectorBodyFrame[1] = (tan(alphaBetaCalibrated[1] * (M_PI / 180)) /
(sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
powf(tan((alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
sunVectorBodyFrame[2] =
(-1 / (sqrt(powf((tan(alphaBetaCalibrated[0] * (M_PI / 180))), 2) +
powf((tan(alphaBetaCalibrated[1] * (M_PI / 180))), 2) + (1))));
return sunVectorBodyFrame;
}
float* SusConverter::getSunVectorSensorFrame(lp_vec_t<uint16_t, 6> susChannel,
const float coeffAlpha[9][10],
const float coeffBeta[9][10]) {
calcAngle(susChannel);
calibration(coeffAlpha, coeffBeta);
return calculateSunVector();
}