eive-obsw/mission/com/LiveTmTask.cpp

185 lines
6.0 KiB
C++

#include "LiveTmTask.h"
#include <fsfw/ipc/QueueFactory.h>
#include <fsfw/subsystem/helper.h>
#include <fsfw/tasks/TaskFactory.h>
#include <fsfw/timemanager/Stopwatch.h>
#include "mission/sysDefs.h"
static constexpr bool DEBUG_TM_QUEUE_SPEED = false;
std::atomic_bool signals::CFDP_CHANNEL_THROTTLE_SIGNAL = false;
LiveTmTask::LiveTmTask(object_id_t objectId, PusTmFunnel& pusFunnel, CfdpTmFunnel& cfdpFunnel,
VirtualChannel& channel, const std::atomic_bool& ptmeLocked,
uint32_t regularTmQueueDepth, uint32_t cfdpQueueDepth)
: SystemObject(objectId),
modeHelper(this),
pusFunnel(pusFunnel),
cfdpFunnel(cfdpFunnel),
channel(channel),
ptmeLocked(ptmeLocked) {
requestQueue = QueueFactory::instance()->createMessageQueue();
cfdpTmQueue = QueueFactory::instance()->createMessageQueue(cfdpQueueDepth);
regularTmQueue = QueueFactory::instance()->createMessageQueue(regularTmQueueDepth);
}
ReturnValue_t LiveTmTask::performOperation(uint8_t opCode) {
readCommandQueue();
bool handledTm;
ReturnValue_t result;
uint32_t consecutiveRegularCounter = 0;
uint32_t consecutiveCfdpCounter = 0;
bool isCfdp = false;
while (true) {
isCfdp = false;
// TODO: Must read CFDP TM queue and regular TM queue and forward them. Handle regular queue
// first.
handledTm = false;
if (!channel.isBusy()) {
result = handleRegularTmQueue();
if (result == MessageQueueIF::EMPTY) {
result = handleCfdpTmQueue();
isCfdp = true;
}
if (result == returnvalue::OK) {
handledTm = true;
if (DEBUG_TM_QUEUE_SPEED) {
if (isCfdp) {
consecutiveCfdpCounter++;
} else {
consecutiveRegularCounter++;
}
}
}
}
if (channel.isBusy() and not signals::CFDP_CHANNEL_THROTTLE_SIGNAL) {
// Throttle CFDP packet creator. It is by far the most relevant data creator, so throttling
// it is the easiest way to handle back pressure for now in a sensible way. It is cleared
// by the data creator.
signals::CFDP_CHANNEL_THROTTLE_SIGNAL = true;
}
if (!handledTm) {
if (tmFunnelCd.hasTimedOut()) {
pusFunnel.performOperation(0);
cfdpFunnel.performOperation(0);
tmFunnelCd.resetTimer();
}
// Read command queue during idle times.
readCommandQueue();
if (DEBUG_TM_QUEUE_SPEED) {
if (consecutiveCfdpCounter > 0) {
sif::debug << "Concecutive CFDP TM handled: " << consecutiveCfdpCounter << std::endl;
}
if (consecutiveRegularCounter > 0) {
sif::debug << "Concecutive regular TM handled: " << consecutiveRegularCounter
<< std::endl;
}
consecutiveRegularCounter = 0;
consecutiveCfdpCounter = 0;
}
// 40 ms IDLE delay. Might tweak this in the future.
TaskFactory::delayTask(40);
}
}
}
MessageQueueId_t LiveTmTask::getCommandQueue() const { return requestQueue->getId(); }
void LiveTmTask::getMode(Mode_t* mode, Submode_t* submode) {
if (mode != nullptr) {
*mode = this->mode;
}
if (submode != nullptr) {
*submode = SUBMODE_NONE;
}
}
ReturnValue_t LiveTmTask::checkModeCommand(Mode_t mode, Submode_t submode,
uint32_t* msToReachTheMode) {
if (mode == MODE_ON or mode == MODE_OFF) {
return returnvalue::OK;
}
return returnvalue::FAILED;
}
void LiveTmTask::startTransition(Mode_t mode, Submode_t submode) {
this->mode = mode;
modeHelper.modeChanged(mode, submode);
announceMode(false);
}
void LiveTmTask::announceMode(bool recursive) { triggerEvent(MODE_INFO, mode, SUBMODE_NONE); }
object_id_t LiveTmTask::getObjectId() const { return SystemObject::getObjectId(); }
const HasHealthIF* LiveTmTask::getOptHealthIF() const { return nullptr; }
const HasModesIF& LiveTmTask::getModeIF() const { return *this; }
ReturnValue_t LiveTmTask::connectModeTreeParent(HasModeTreeChildrenIF& parent) {
return modetree::connectModeTreeParent(parent, *this, nullptr, modeHelper);
}
void LiveTmTask::readCommandQueue(void) {
CommandMessage commandMessage;
ReturnValue_t result = returnvalue::FAILED;
result = requestQueue->receiveMessage(&commandMessage);
if (result == returnvalue::OK) {
result = modeHelper.handleModeCommand(&commandMessage);
if (result == returnvalue::OK) {
return;
}
CommandMessage reply;
reply.setReplyRejected(CommandMessage::UNKNOWN_COMMAND, commandMessage.getCommand());
requestQueue->reply(&reply);
return;
}
}
ReturnValue_t LiveTmTask::handleRegularTmQueue() { return handleGenericTmQueue(*regularTmQueue); }
ReturnValue_t LiveTmTask::handleCfdpTmQueue() { return handleGenericTmQueue(*cfdpTmQueue); }
ReturnValue_t LiveTmTask::handleGenericTmQueue(MessageQueueIF& queue) {
TmTcMessage message;
ReturnValue_t result = queue.receiveMessage(&message);
if (result == MessageQueueIF::EMPTY) {
return result;
}
store_address_t storeId = message.getStorageId();
const uint8_t* data = nullptr;
size_t size = 0;
result = tmStore->getData(storeId, &data, &size);
if (result != returnvalue::OK) {
sif::warning << "VirtualChannel::performOperation: Failed to read data from TM store"
<< std::endl;
tmStore->deleteData(storeId);
return result;
}
if (!ptmeLocked) {
result = channel.write(data, size);
}
// Try delete in any case, ignore failures (which should not happen), it is more important to
// propagate write errors.
tmStore->deleteData(storeId);
return result;
}
ModeTreeChildIF& LiveTmTask::getModeTreeChildIF() { return *this; }
ReturnValue_t LiveTmTask::initialize() {
modeHelper.initialize();
tmStore = ObjectManager::instance()->get<StorageManagerIF>(objects::TM_STORE);
if (tmStore == nullptr) {
return ObjectManagerIF::CHILD_INIT_FAILED;
}
return returnvalue::OK;
}
MessageQueueId_t LiveTmTask::getNormalLiveQueueId() const { return regularTmQueue->getId(); }
MessageQueueId_t LiveTmTask::getCfdpLiveQueueId() const { return cfdpTmQueue->getId(); }