153 lines
5.1 KiB
C++
153 lines
5.1 KiB
C++
#include "Igrf13Model.h"
|
|
|
|
#include <fsfw/src/fsfw/globalfunctions/constants.h>
|
|
#include <fsfw/src/fsfw/globalfunctions/math/MatrixOperations.h>
|
|
#include <fsfw/src/fsfw/globalfunctions/math/QuaternionOperations.h>
|
|
#include <fsfw/src/fsfw/globalfunctions/math/VectorOperations.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include <cmath>
|
|
|
|
#include "util/MathOperations.h"
|
|
|
|
using namespace Math;
|
|
|
|
Igrf13Model::Igrf13Model() {}
|
|
Igrf13Model::~Igrf13Model() {}
|
|
|
|
void Igrf13Model::magFieldComp(const double longitude, const double gcLatitude,
|
|
const double altitude, timeval timeOfMagMeasurement,
|
|
double* magFieldModelInertial) {
|
|
double phi = longitude, theta = gcLatitude; // geocentric
|
|
/* Here is the co-latitude needed*/
|
|
theta -= 90 * PI / 180;
|
|
theta *= (-1);
|
|
|
|
double rE = 6371200.0; // radius earth [m]
|
|
/* Predefine recursive associated Legendre polynomials */
|
|
double P11 = 1;
|
|
double P10 = P11; // P10 = P(n-1,m-0)
|
|
double dP11 = 0; // derivative
|
|
double dP10 = dP11; // derivative
|
|
|
|
double P2 = 0, dP2 = 0, P20 = 0, dP20 = 0, K = 0;
|
|
|
|
for (int m = 0; m <= igrfOrder; m++) {
|
|
for (int n = 1; n <= igrfOrder; n++) {
|
|
if (m <= n) {
|
|
/* Calculation of Legendre Polynoms (normalised) */
|
|
if (n == m) {
|
|
P2 = sin(theta) * P11;
|
|
dP2 = sin(theta) * dP11 + cos(theta) * P11;
|
|
P11 = P2;
|
|
P10 = P11;
|
|
P20 = 0;
|
|
dP11 = dP2;
|
|
dP10 = dP11;
|
|
dP20 = 0;
|
|
} else if (n == 1) {
|
|
P2 = cos(theta) * P10;
|
|
dP2 = cos(theta) * dP10 - sin(theta) * P10;
|
|
P20 = P10;
|
|
P10 = P2;
|
|
dP20 = dP10;
|
|
dP10 = dP2;
|
|
} else {
|
|
K = (pow((n - 1), 2) - pow(m, 2)) / ((2 * n - 1) * (2 * n - 3));
|
|
P2 = cos(theta) * P10 - K * P20;
|
|
dP2 = cos(theta) * dP10 - sin(theta) * P10 - K * dP20;
|
|
P20 = P10;
|
|
P10 = P2;
|
|
dP20 = dP10;
|
|
dP10 = dP2;
|
|
}
|
|
/* gradient of scalar potential towards radius */
|
|
magFieldModel[0] +=
|
|
pow(rE / (altitude + rE), (n + 2)) * (n + 1) *
|
|
((updatedG[m][n - 1] * cos(m * phi) + updatedH[m][n - 1] * sin(m * phi)) * P2);
|
|
/* gradient of scalar potential towards theta */
|
|
magFieldModel[1] +=
|
|
pow(rE / (altitude + rE), (n + 2)) *
|
|
((updatedG[m][n - 1] * cos(m * phi) + updatedH[m][n - 1] * sin(m * phi)) * dP2);
|
|
/* gradient of scalar potential towards phi */
|
|
magFieldModel[2] +=
|
|
pow(rE / (altitude + rE), (n + 2)) *
|
|
((-updatedG[m][n - 1] * sin(m * phi) + updatedH[m][n - 1] * cos(m * phi)) * P2 * m);
|
|
}
|
|
}
|
|
}
|
|
|
|
magFieldModel[1] *= -1;
|
|
magFieldModel[2] *= (-1 / sin(theta));
|
|
|
|
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement);
|
|
double UT1 = JD2000 / 36525.;
|
|
|
|
double gst =
|
|
280.46061837 + 360.98564736629 * JD2000 + 0.0003875 * pow(UT1, 2) - 2.6e-8 * pow(UT1, 3);
|
|
gst = std::fmod(gst, 360.);
|
|
gst *= PI / 180.;
|
|
double lst = gst + longitude; // local sidereal time [rad]
|
|
|
|
magFieldModelInertial[0] =
|
|
(magFieldModel[0] * cos(gcLatitude) + magFieldModel[1] * sin(gcLatitude)) * cos(lst) -
|
|
magFieldModel[2] * sin(lst);
|
|
magFieldModelInertial[1] =
|
|
(magFieldModel[0] * cos(gcLatitude) + magFieldModel[1] * sin(gcLatitude)) * sin(lst) +
|
|
magFieldModel[2] * cos(lst);
|
|
magFieldModelInertial[2] =
|
|
magFieldModel[0] * sin(gcLatitude) - magFieldModel[1] * cos(gcLatitude);
|
|
|
|
double normVecMagFieldInert[3] = {0, 0, 0};
|
|
VectorOperations<double>::normalize(magFieldModelInertial, normVecMagFieldInert, 3);
|
|
|
|
magFieldModel[0] = 0;
|
|
magFieldModel[1] = 0;
|
|
magFieldModel[2] = 0;
|
|
}
|
|
|
|
void Igrf13Model::updateCoeffGH(timeval timeOfMagMeasurement) {
|
|
double JD2000Igrf = (2458850.0 - 2451545); // Begin of IGRF-13 (2020-01-01,00:00:00) in JD2000
|
|
double JD2000 = MathOperations<double>::convertUnixToJD2000(timeOfMagMeasurement);
|
|
double days = ceil(JD2000 - JD2000Igrf);
|
|
for (int i = 0; i <= igrfOrder; i++) {
|
|
for (int j = 0; j <= (igrfOrder - 1); j++) {
|
|
updatedG[i][j] = coeffG[i][j] + svG[i][j] * (days / 365);
|
|
updatedH[i][j] = coeffH[i][j] + svH[i][j] * (days / 365);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Igrf13Model::schmidtNormalization() {
|
|
double kronDelta = 0;
|
|
schmidtFactors[0][0] = 1;
|
|
for (int n = 1; n <= igrfOrder; n++) {
|
|
if (n == 1) {
|
|
schmidtFactors[0][n - 1] = 1;
|
|
} else {
|
|
schmidtFactors[0][n - 1] = schmidtFactors[0][n - 2] * (2 * n - 1) / n;
|
|
}
|
|
for (int m = 1; m <= igrfOrder; m++) {
|
|
if (m == 1) {
|
|
kronDelta = 1;
|
|
} else {
|
|
kronDelta = 0;
|
|
}
|
|
schmidtFactors[m][n - 1] =
|
|
schmidtFactors[m - 1][n - 1] * sqrt((n - m + 1) * (kronDelta + 1) / (n + m));
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i <= igrfOrder; i++) {
|
|
for (int j = 0; j <= (igrfOrder - 1); j++) {
|
|
coeffG[i][j] = schmidtFactors[i][j] * coeffG[i][j];
|
|
coeffH[i][j] = schmidtFactors[i][j] * coeffH[i][j];
|
|
|
|
svG[i][j] = schmidtFactors[i][j] * svG[i][j];
|
|
svH[i][j] = schmidtFactors[i][j] * svH[i][j];
|
|
}
|
|
}
|
|
}
|