Robin Marquardt adef468c0b
All checks were successful
EIVE/eive-obsw/pipeline/pr-eggert/acs This commit looks good
applyed CppStyle Format
2023-01-23 16:34:52 +01:00

192 lines
8.3 KiB
C++

/*
* PtgCtrl.cpp
*
* Created on: 17 Jul 2022
* Author: Robin Marquardt
*/
#include "PtgCtrl.h"
#include <fsfw/globalfunctions/constants.h>
#include <fsfw/globalfunctions/math/MatrixOperations.h>
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
#include <fsfw/globalfunctions/math/VectorOperations.h>
#include <fsfw/globalfunctions/sign.h>
#include <math.h>
#include "../util/MathOperations.h"
PtgCtrl::PtgCtrl(AcsParameters *acsParameters_) { loadAcsParameters(acsParameters_); }
PtgCtrl::~PtgCtrl() {}
void PtgCtrl::loadAcsParameters(AcsParameters *acsParameters_) {
inertiaEIVE = &(acsParameters_->inertiaEIVE);
rwHandlingParameters = &(acsParameters_->rwHandlingParameters);
rwMatrices = &(acsParameters_->rwMatrices);
}
void PtgCtrl::ptgLaw(AcsParameters::PointingLawParameters *pointingLawParameters,
const double *qError, const double *deltaRate, const double *rwPseudoInv,
double *torqueRws) {
//------------------------------------------------------------------------------------------------
// Compute gain matrix K and P matrix
//------------------------------------------------------------------------------------------------
double om = pointingLawParameters->om;
double zeta = pointingLawParameters->zeta;
double qErrorMin = pointingLawParameters->qiMin;
double omMax = pointingLawParameters->omMax;
double cInt = 2 * om * zeta;
double kInt = 2 * pow(om, 2);
double qErrorLaw[3] = {0, 0, 0};
for (int i = 0; i < 3; i++) {
if (abs(qError[i]) < qErrorMin) {
qErrorLaw[i] = qErrorMin;
} else {
qErrorLaw[i] = abs(qError[i]);
}
}
double qErrorLawNorm = VectorOperations<double>::norm(qErrorLaw, 3);
double gain1 = cInt * omMax / qErrorLawNorm;
double gainVector[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(qErrorLaw, gain1, gainVector, 3);
double gainMatrixDiagonal[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
double gainMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
gainMatrixDiagonal[0][0] = gainVector[0];
gainMatrixDiagonal[1][1] = gainVector[1];
gainMatrixDiagonal[2][2] = gainVector[2];
MatrixOperations<double>::multiply(*gainMatrixDiagonal, *(inertiaEIVE->inertiaMatrix),
*gainMatrix, 3, 3, 3);
// Inverse of gainMatrix
double gainMatrixInverse[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
gainMatrixInverse[0][0] = 1 / gainMatrix[0][0];
gainMatrixInverse[1][1] = 1 / gainMatrix[1][1];
gainMatrixInverse[2][2] = 1 / gainMatrix[2][2];
double pMatrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MatrixOperations<double>::multiply(*gainMatrixInverse, *(inertiaEIVE->inertiaMatrix), *pMatrix, 3,
3, 3);
MatrixOperations<double>::multiplyScalar(*pMatrix, kInt, *pMatrix, 3, 3);
//------------------------------------------------------------------------------------------------
// Torque Calculations for the reaction wheels
//------------------------------------------------------------------------------------------------
double pError[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*pMatrix, qError, pError, 3, 3, 1);
double pErrorSign[3] = {0, 0, 0};
for (int i = 0; i < 3; i++) {
if (abs(pError[i]) > 1) {
pErrorSign[i] = sign(pError[i]);
} else {
pErrorSign[i] = pError[i];
}
}
// Torque for quaternion error
double torqueQuat[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*gainMatrix, pErrorSign, torqueQuat, 3, 3, 1);
VectorOperations<double>::mulScalar(torqueQuat, -1, torqueQuat, 3);
// Torque for rate error
double torqueRate[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), deltaRate, torqueRate, 3, 3, 1);
VectorOperations<double>::mulScalar(torqueRate, cInt, torqueRate, 3);
VectorOperations<double>::mulScalar(torqueRate, -1, torqueRate, 3);
// Final commanded Torque for every reaction wheel
double torque[3] = {0, 0, 0};
VectorOperations<double>::add(torqueRate, torqueQuat, torque, 3);
MatrixOperations<double>::multiply(rwPseudoInv, torque, torqueRws, 4, 3, 1);
VectorOperations<double>::mulScalar(torqueRws, -1, torqueRws, 4);
}
void PtgCtrl::ptgDesaturation(AcsParameters::PointingLawParameters *pointingLawParameters,
double *magFieldEst, bool magFieldEstValid, double *satRate,
int32_t *speedRw0, int32_t *speedRw1, int32_t *speedRw2,
int32_t *speedRw3, double *mgtDpDes) {
if (!(magFieldEstValid) || !(pointingLawParameters->desatOn)) {
mgtDpDes[0] = 0;
mgtDpDes[1] = 0;
mgtDpDes[2] = 0;
return;
}
// calculating momentum of satellite and momentum of reaction wheels
double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
double momentumRwU[4] = {0, 0, 0, 0}, momentumRw[3] = {0, 0, 0};
VectorOperations<double>::mulScalar(speedRws, rwHandlingParameters->inertiaWheel, momentumRwU, 4);
MatrixOperations<double>::multiply(*(rwMatrices->alignmentMatrix), momentumRwU, momentumRw, 3, 4,
1);
double momentumSat[3] = {0, 0, 0}, momentumTotal[3] = {0, 0, 0};
MatrixOperations<double>::multiply(*(inertiaEIVE->inertiaMatrix), satRate, momentumSat, 3, 3, 1);
VectorOperations<double>::add(momentumSat, momentumRw, momentumTotal, 3);
// calculating momentum error
double deltaMomentum[3] = {0, 0, 0};
VectorOperations<double>::subtract(momentumTotal, pointingLawParameters->desatMomentumRef,
deltaMomentum, 3);
// resulting magnetic dipole command
double crossMomentumMagField[3] = {0, 0, 0};
VectorOperations<double>::cross(deltaMomentum, magFieldEst, crossMomentumMagField);
double normMag = VectorOperations<double>::norm(magFieldEst, 3), factor = 0;
factor = (pointingLawParameters->deSatGainFactor) / normMag;
VectorOperations<double>::mulScalar(crossMomentumMagField, factor, mgtDpDes, 3);
}
void PtgCtrl::ptgNullspace(AcsParameters::PointingLawParameters *pointingLawParameters,
const int32_t *speedRw0, const int32_t *speedRw1,
const int32_t *speedRw2, const int32_t *speedRw3, double *rwTrqNs) {
double speedRws[4] = {(double)*speedRw0, (double)*speedRw1, (double)*speedRw2, (double)*speedRw3};
double wheelMomentum[4] = {0, 0, 0, 0};
double rpmOffset[4] = {1, 1, 1, -1}, factor = 350 * 2 * Math::PI / 60;
// Conversion to [rad/s] for further calculations
VectorOperations<double>::mulScalar(rpmOffset, factor, rpmOffset, 4);
VectorOperations<double>::mulScalar(speedRws, 2 * Math::PI / 60, speedRws, 4);
double diffRwSpeed[4] = {0, 0, 0, 0};
VectorOperations<double>::subtract(speedRws, rpmOffset, diffRwSpeed, 4);
VectorOperations<double>::mulScalar(diffRwSpeed, rwHandlingParameters->inertiaWheel,
wheelMomentum, 4);
double gainNs = pointingLawParameters->gainNullspace;
double nullSpaceMatrix[4][4] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
MathOperations<double>::vecTransposeVecMatrix(rwMatrices->nullspace, rwMatrices->nullspace,
*nullSpaceMatrix, 4);
MatrixOperations<double>::multiply(*nullSpaceMatrix, wheelMomentum, rwTrqNs, 4, 4, 1);
VectorOperations<double>::mulScalar(rwTrqNs, gainNs, rwTrqNs, 4);
VectorOperations<double>::mulScalar(rwTrqNs, -1, rwTrqNs, 4);
}
void PtgCtrl::rwAntistiction(const bool *rwAvailable, const int32_t *omegaRw,
double *torqueCommand) {
for (uint8_t i = 0; i < 4; i++) {
if (rwAvailable[i]) {
if (torqueMemory[i] != 0) {
if ((omegaRw[i] * torqueMemory[i]) > rwHandlingParameters->stictionReleaseSpeed) {
torqueMemory[i] = 0;
} else {
torqueCommand[i] = torqueMemory[i] * rwHandlingParameters->stictionTorque;
}
} else {
if ((omegaRw[i] < rwHandlingParameters->stictionSpeed) &&
(omegaRw[i] > -rwHandlingParameters->stictionSpeed)) {
if (omegaRw[i] < omegaMemory[i]) {
torqueMemory[i] = -1;
} else {
torqueMemory[i] = 1;
}
torqueCommand[i] = torqueMemory[i] * rwHandlingParameters->stictionTorque;
}
}
} else {
torqueMemory[i] = 0;
}
omegaMemory[i] = omegaRw[i];
}
}