348 lines
14 KiB
C++
348 lines
14 KiB
C++
/*
|
|
* Guidance.cpp
|
|
*
|
|
* Created on: 6 Jun 2022
|
|
* Author: Robin Marquardt
|
|
*/
|
|
|
|
|
|
#include "Guidance.h"
|
|
#include "string.h"
|
|
#include "util/MathOperations.h"
|
|
#include "util/CholeskyDecomposition.h"
|
|
#include <math.h>
|
|
#include <fsfw/globalfunctions/math/VectorOperations.h>
|
|
#include <fsfw/globalfunctions/math/MatrixOperations.h>
|
|
#include <fsfw/globalfunctions/math/QuaternionOperations.h>
|
|
|
|
Guidance::Guidance(AcsParameters *acsParameters_) {
|
|
acsParameters = *acsParameters_;
|
|
|
|
}
|
|
|
|
Guidance::~Guidance() {
|
|
|
|
}
|
|
|
|
void Guidance::getTargetParamsSafe(double sunTargetSafe[3], double satRateSafe[3]) {
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
sunTargetSafe[i] =
|
|
acsParameters.safeModeControllerParameters.sunTargetDir[i];
|
|
satRateSafe[i] =
|
|
acsParameters.safeModeControllerParameters.satRateRef[i];
|
|
|
|
}
|
|
|
|
|
|
// memcpy(sunTargetSafe, acsParameters.safeModeControllerParameters.sunTargetDir, 24);
|
|
|
|
}
|
|
|
|
void Guidance::targetQuatPtg(ACS::SensorValues* sensorValues, ACS::OutputValues *outputValues,
|
|
timeval now, double targetQuat[4], double refSatRate[3]){
|
|
//-------------------------------------------------------------------------------------
|
|
// Calculation of target quaternion to groundstation
|
|
//-------------------------------------------------------------------------------------
|
|
// Transform longitude, latitude and altitude of groundstation to cartesian coordiantes (earth fixed/centered frame)
|
|
double groundStationCart[3] = {0, 0, 0};
|
|
|
|
MathOperations<double>::cartesianFromLatLongAlt(acsParameters.groundStationParameters.latitudeGs,
|
|
acsParameters.groundStationParameters.longitudeGs, acsParameters.groundStationParameters.altitudeGs,
|
|
groundStationCart);
|
|
|
|
// Position of the satellite in the earth/fixed frame via GPS
|
|
double posSatE[3] = {0, 0, 0};
|
|
MathOperations<double>::cartesianFromLatLongAlt(sensorValues->gps0latitude, sensorValues->gps0longitude,
|
|
sensorValues->gps0altitude, posSatE);
|
|
|
|
// Target direction in the ECEF frame
|
|
double targetDirE[3] = {0, 0, 0};
|
|
VectorOperations<double>::subtract(groundStationCart, posSatE, targetDirE, 3);
|
|
|
|
// Transformation between ECEF and IJK frame
|
|
double dcmEJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
double dcmJE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
MathOperations<double>::dcmEJ(now, *dcmEJ);
|
|
MathOperations<double>::inverseMatrixDimThree(*dcmEJ, *dcmJE);
|
|
// Derivative of dmcEJ WITHOUT PRECISSION AND NUTATION
|
|
double dcmEJDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
double dcmJEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
double dcmDot[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}};
|
|
double omegaEarth = acsParameters.targetModeControllerParameters.omegaEarth;
|
|
|
|
// TEST SECTION !
|
|
//double dcmTEST[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
//MatrixOperations<double>::multiply(&acsParameters.magnetorquesParameter.mtq0orientationMatrix, dcmTEST, dcmTEST, 3, 3, 3);
|
|
|
|
MatrixOperations<double>::multiply(*dcmDot, *dcmEJ, *dcmEJDot, 3, 3, 3);
|
|
MatrixOperations<double>::multiplyScalar(*dcmEJDot, omegaEarth, *dcmEJDot, 3, 3);
|
|
MathOperations<double>::inverseMatrixDimThree(*dcmEJDot, *dcmJEDot);
|
|
|
|
// Transformation between ECEF and Body frame
|
|
double dcmBJ[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
double dcmBE[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
double quatBJ[4] = {0, 0, 0, 0};
|
|
quatBJ[0] = outputValues->quatMekfBJ[0];
|
|
quatBJ[1] = outputValues->quatMekfBJ[1];
|
|
quatBJ[2] = outputValues->quatMekfBJ[2];
|
|
quatBJ[3] = outputValues->quatMekfBJ[3];
|
|
QuaternionOperations::toDcm(quatBJ, dcmBJ);
|
|
MatrixOperations<double>::multiply(*dcmBJ, *dcmJE, *dcmBE, 3, 3, 3);
|
|
|
|
// Target Direction in the body frame
|
|
double targetDirB[3] = {0, 0, 0};
|
|
MatrixOperations<double>::multiply(*dcmBE, targetDirE, targetDirB, 3, 3, 1);
|
|
|
|
// rotation quaternion from two vectors
|
|
double refDir[3] = {0, 0, 0};
|
|
refDir[0] = acsParameters.targetModeControllerParameters.refDirection[0];
|
|
refDir[1] = acsParameters.targetModeControllerParameters.refDirection[1];
|
|
refDir[2] = acsParameters.targetModeControllerParameters.refDirection[2];
|
|
double noramlizedTargetDirB[3] = {0, 0, 0};
|
|
VectorOperations<double>::normalize(targetDirB, noramlizedTargetDirB, 3);
|
|
VectorOperations<double>::normalize(refDir, refDir, 3);
|
|
double normTargetDirB = VectorOperations<double>::norm(noramlizedTargetDirB, 3);
|
|
double normRefDir = VectorOperations<double>::norm(refDir, 3);
|
|
double crossDir[3] = {0, 0, 0};
|
|
double dotDirections = VectorOperations<double>::dot(noramlizedTargetDirB, refDir);
|
|
VectorOperations<double>::cross(noramlizedTargetDirB, refDir, crossDir);
|
|
targetQuat[0] = crossDir[0];
|
|
targetQuat[1] = crossDir[1];
|
|
targetQuat[2] = crossDir[2];
|
|
targetQuat[3] = sqrt(pow(normTargetDirB,2) * pow(normRefDir,2) + dotDirections);
|
|
VectorOperations<double>::normalize(targetQuat, targetQuat, 4);
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Calculation of reference rotation rate
|
|
//-------------------------------------------------------------------------------------
|
|
double velSatE[3] = {0, 0, 0};
|
|
velSatE[0] = sensorValues->gps0Velocity[0];
|
|
velSatE[1] = sensorValues->gps0Velocity[1];
|
|
velSatE[2] = sensorValues->gps0Velocity[2];
|
|
double velSatB[3] = {0, 0, 0}, velSatBPart1[3] = {0, 0, 0},
|
|
velSatBPart2[3] = {0, 0, 0};
|
|
// Velocity: v_B = dcm_BI * dcmIE * v_E + dcm_BI * DotDcm_IE * v_E
|
|
MatrixOperations<double>::multiply(*dcmBE, velSatE, velSatBPart1, 3, 3, 1);
|
|
double dcmBEDot[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
|
|
MatrixOperations<double>::multiply(*dcmBJ, *dcmJEDot, *dcmBEDot, 3, 3, 3);
|
|
MatrixOperations<double>::multiply(*dcmBEDot, posSatE, velSatBPart2, 3, 3, 1);
|
|
VectorOperations<double>::add(velSatBPart1, velSatBPart2, velSatB, 3);
|
|
|
|
double normVelSatB = VectorOperations<double>::norm(velSatB, 3);
|
|
double normRefSatRate = normVelSatB / normTargetDirB;
|
|
|
|
double satRateDir[3] = {0, 0, 0};
|
|
VectorOperations<double>::cross(velSatB, targetDirB, satRateDir);
|
|
VectorOperations<double>::normalize(satRateDir, satRateDir, 3);
|
|
VectorOperations<double>::mulScalar(satRateDir, normRefSatRate, refSatRate, 3);
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Calculation of reference rotation rate in case of star tracker blinding
|
|
//-------------------------------------------------------------------------------------
|
|
if ( acsParameters.targetModeControllerParameters.avoidBlindStr ) {
|
|
|
|
double sunDirJ[3] = {0, 0, 0};
|
|
double sunDirB[3] = {0, 0, 0};
|
|
|
|
if ( outputValues->sunDirModelValid ) {
|
|
|
|
sunDirJ[0] = outputValues->sunDirModel[0];
|
|
sunDirJ[1] = outputValues->sunDirModel[1];
|
|
sunDirJ[2] = outputValues->sunDirModel[2];
|
|
MatrixOperations<double>::multiply(*dcmBJ, sunDirJ, sunDirB, 3, 3, 1);
|
|
}
|
|
|
|
else {
|
|
sunDirB[0] = outputValues->sunDirEst[0];
|
|
sunDirB[1] = outputValues->sunDirEst[1];
|
|
sunDirB[2] = outputValues->sunDirEst[2];
|
|
|
|
}
|
|
|
|
double exclAngle = acsParameters.strParameters.exclusionAngle,
|
|
blindStart = acsParameters.targetModeControllerParameters.blindAvoidStart,
|
|
blindEnd = acsParameters.targetModeControllerParameters.blindAvoidStop;
|
|
|
|
double sightAngleSun = VectorOperations<double>::dot(acsParameters.strParameters.boresightAxis, sunDirB);
|
|
|
|
if ( !(strBlindAvoidFlag) ) {
|
|
|
|
double critSightAngle = blindStart * exclAngle;
|
|
|
|
if ( sightAngleSun < critSightAngle) {
|
|
strBlindAvoidFlag = true;
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
if ( sightAngleSun < blindEnd * exclAngle) {
|
|
|
|
double normBlindRefRate = acsParameters.targetModeControllerParameters.blindRotRate;
|
|
double blindRefRate[3] = {0, 0, 0};
|
|
|
|
|
|
if ( sunDirB[1] < 0) {
|
|
blindRefRate[0] = normBlindRefRate;
|
|
blindRefRate[1] = 0;
|
|
blindRefRate[2] = 0;
|
|
}
|
|
else {
|
|
blindRefRate[0] = -normBlindRefRate;
|
|
blindRefRate[1] = 0;
|
|
blindRefRate[2] = 0;
|
|
}
|
|
|
|
VectorOperations<double>::add(blindRefRate, refSatRate, refSatRate, 3);
|
|
|
|
}
|
|
else {
|
|
strBlindAvoidFlag = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Guidance::comparePtg(double targetQuat[4], ACS::OutputValues *outputValues, double refSatRate[3], double quatError[3], double deltaRate[3] ) {
|
|
|
|
double quatRef[4] = {0, 0, 0, 0};
|
|
quatRef[0] = acsParameters.targetModeControllerParameters.quatRef[0];
|
|
quatRef[1] = acsParameters.targetModeControllerParameters.quatRef[1];
|
|
quatRef[2] = acsParameters.targetModeControllerParameters.quatRef[2];
|
|
quatRef[3] = acsParameters.targetModeControllerParameters.quatRef[3];
|
|
|
|
double satRate[3] = {0, 0, 0};
|
|
satRate[0] = outputValues->satRateMekf[0];
|
|
satRate[1] = outputValues->satRateMekf[1];
|
|
satRate[2] = outputValues->satRateMekf[2];
|
|
VectorOperations<double>::subtract(satRate, refSatRate, deltaRate, 3);
|
|
// valid checks ?
|
|
double quatErrorMtx[4][4] = {{ quatRef[3], quatRef[2], -quatRef[1], -quatRef[0] },
|
|
{ -quatRef[2], quatRef[3], quatRef[0], -quatRef[1] },
|
|
{ quatRef[1], -quatRef[0], quatRef[3], -quatRef[2] },
|
|
{ quatRef[0], -quatRef[1], quatRef[2], quatRef[3] }};
|
|
|
|
double quatErrorComplete[4] = {0, 0, 0, 0};
|
|
MatrixOperations<double>::multiply(*quatErrorMtx, targetQuat, quatErrorComplete, 4, 4, 1);
|
|
|
|
if (quatErrorComplete[3] < 0) {
|
|
quatErrorComplete[3] *= -1;
|
|
}
|
|
|
|
quatError[0] = quatErrorComplete[0];
|
|
quatError[1] = quatErrorComplete[1];
|
|
quatError[2] = quatErrorComplete[2];
|
|
|
|
// target flag in matlab, importance, does look like it only gives
|
|
// feedback if pointing control is under 150 arcsec ??
|
|
|
|
}
|
|
|
|
|
|
void Guidance::getDistributionMatrixRw(ACS::SensorValues* sensorValues, double *rwPseudoInv) {
|
|
|
|
if (sensorValues->validRw0 && sensorValues->validRw1 && sensorValues->validRw2 && sensorValues->validRw3) {
|
|
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];
|
|
|
|
}
|
|
|
|
else if (!(sensorValues->validRw0) && sensorValues->validRw1 && sensorValues->validRw2 && sensorValues->validRw3) {
|
|
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.without0[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.without0[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.without0[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.without0[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.without0[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.without0[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.without0[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.without0[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.without0[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.without0[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.without0[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.without0[3][2];
|
|
}
|
|
|
|
else if ((sensorValues->validRw0) && !(sensorValues->validRw1) && sensorValues->validRw2 && sensorValues->validRw3) {
|
|
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.without1[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.without1[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.without1[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.without1[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.without1[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.without1[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.without1[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.without1[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.without1[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.without1[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.without1[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.without1[3][2];
|
|
}
|
|
|
|
else if ((sensorValues->validRw0) && (sensorValues->validRw1) && !(sensorValues->validRw2) && sensorValues->validRw3) {
|
|
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.without2[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.without2[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.without2[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.without2[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.without2[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.without2[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.without2[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.without2[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.without2[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.without2[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.without2[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.without2[3][2];
|
|
}
|
|
|
|
else if ((sensorValues->validRw0) && (sensorValues->validRw1) && (sensorValues->validRw2) && !(sensorValues->validRw3)) {
|
|
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.without3[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.without3[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.without3[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.without3[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.without3[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.without3[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.without3[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.without3[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.without3[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.without3[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.without3[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.without3[3][2];
|
|
}
|
|
|
|
else {
|
|
// @note: This one takes the normal pseudoInverse of all four raction wheels valid.
|
|
// Does not make sense, but is implemented that way in MATLAB ?!
|
|
// Thought: It does not really play a role, because in case there are more then one
|
|
// reaction wheel the pointing control is destined to fail.
|
|
rwPseudoInv[0] = acsParameters.rwMatrices.pseudoInverse[0][0];
|
|
rwPseudoInv[1] = acsParameters.rwMatrices.pseudoInverse[0][1];
|
|
rwPseudoInv[2] = acsParameters.rwMatrices.pseudoInverse[0][2];
|
|
rwPseudoInv[3] = acsParameters.rwMatrices.pseudoInverse[1][0];
|
|
rwPseudoInv[4] = acsParameters.rwMatrices.pseudoInverse[1][1];
|
|
rwPseudoInv[5] = acsParameters.rwMatrices.pseudoInverse[1][2];
|
|
rwPseudoInv[6] = acsParameters.rwMatrices.pseudoInverse[2][0];
|
|
rwPseudoInv[7] = acsParameters.rwMatrices.pseudoInverse[2][1];
|
|
rwPseudoInv[8] = acsParameters.rwMatrices.pseudoInverse[2][2];
|
|
rwPseudoInv[9] = acsParameters.rwMatrices.pseudoInverse[3][0];
|
|
rwPseudoInv[10] = acsParameters.rwMatrices.pseudoInverse[3][1];
|
|
rwPseudoInv[11] = acsParameters.rwMatrices.pseudoInverse[3][2];
|
|
|
|
}
|
|
}
|