146 lines
4.5 KiB
C++
146 lines
4.5 KiB
C++
|
#include <framework/timemanager/Clock.h>
|
||
|
#include "RtemsBasic.h"
|
||
|
|
||
|
uint16_t Clock::leapSeconds = 0;
|
||
|
MutexIF* Clock::timeMutex = NULL;
|
||
|
|
||
|
uint32_t Clock::getTicksPerSecond(void){
|
||
|
rtems_interval ticks_per_second;
|
||
|
(void) rtems_clock_get(RTEMS_CLOCK_GET_TICKS_PER_SECOND, &ticks_per_second);
|
||
|
return ticks_per_second;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
|
||
|
//We need to cast to rtems internal time of day type here. Both structs have the same structure
|
||
|
//rtems provides no const guarantee, so we need to cast the const away
|
||
|
//TODO Check if this can be done safely
|
||
|
rtems_time_of_day* timeRtems = reinterpret_cast<rtems_time_of_day*>(const_cast<TimeOfDay_t*>(time));
|
||
|
rtems_status_code status = rtems_clock_set(timeRtems);
|
||
|
return RtemsBasic::convertReturnCode(status);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::setClock(const timeval* time) {
|
||
|
timespec newTime;
|
||
|
newTime.tv_sec = time->tv_sec;
|
||
|
newTime.tv_nsec = time->tv_usec * TOD_NANOSECONDS_PER_MICROSECOND;
|
||
|
//SHOULDDO: Not sure if we need to protect this call somehow (by thread lock or something).
|
||
|
//Uli: rtems docu says you can call this from an ISR, not sure if this means no protetion needed
|
||
|
_TOD_Set(&newTime);
|
||
|
return HasReturnvaluesIF::RETURN_OK;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getClock_timeval(timeval* time) {
|
||
|
rtems_status_code status = rtems_clock_get_tod_timeval(time);
|
||
|
return RtemsBasic::convertReturnCode(status);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getUptime(timeval* uptime) {
|
||
|
timespec time;
|
||
|
rtems_status_code status = rtems_clock_get_uptime(&time);
|
||
|
uptime->tv_sec = time.tv_sec;
|
||
|
time.tv_nsec = time.tv_nsec / 1000;
|
||
|
uptime->tv_usec = time.tv_nsec;
|
||
|
return RtemsBasic::convertReturnCode(status);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
|
||
|
*uptimeMs = rtems_clock_get_ticks_since_boot();
|
||
|
return RtemsBasic::convertReturnCode(RTEMS_SUCCESSFUL);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
|
||
|
timeval temp_time;
|
||
|
rtems_status_code returnValue = rtems_clock_get_tod_timeval(&temp_time);
|
||
|
*time = ((uint64_t) temp_time.tv_sec * 1000000) + temp_time.tv_usec;
|
||
|
return RtemsBasic::convertReturnCode(returnValue);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
|
||
|
rtems_time_of_day* timeRtems = reinterpret_cast<rtems_time_of_day*>(time);
|
||
|
rtems_status_code status = rtems_clock_get_tod(timeRtems);
|
||
|
return RtemsBasic::convertReturnCode(status);
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
|
||
|
timeval* to) {
|
||
|
//Fails in 2038..
|
||
|
const rtems_time_of_day* timeRtems = reinterpret_cast<const rtems_time_of_day*>(from);
|
||
|
to->tv_sec = _TOD_To_seconds(timeRtems);
|
||
|
to->tv_usec = timeRtems->ticks * 1000;
|
||
|
return HasReturnvaluesIF::RETURN_OK;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
|
||
|
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
|
||
|
/ 3600.;
|
||
|
return HasReturnvaluesIF::RETURN_OK;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
|
||
|
//SHOULDDO: works not for dates in the past (might have less leap seconds)
|
||
|
if (timeMutex == NULL) {
|
||
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||
|
}
|
||
|
|
||
|
uint16_t leapSeconds;
|
||
|
ReturnValue_t result = getLeapSeconds(&leapSeconds);
|
||
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||
|
return result;
|
||
|
}
|
||
|
timeval leapSeconds_timeval = { 0, 0 };
|
||
|
leapSeconds_timeval.tv_sec = leapSeconds;
|
||
|
|
||
|
//initial offset between UTC and TAI
|
||
|
timeval UTCtoTAI1972 = { 10, 0 };
|
||
|
|
||
|
timeval TAItoTT = { 32, 184000 };
|
||
|
|
||
|
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
|
||
|
|
||
|
return HasReturnvaluesIF::RETURN_OK;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
|
||
|
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
|
||
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||
|
}
|
||
|
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT);
|
||
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
leapSeconds = leapSeconds_;
|
||
|
|
||
|
result = timeMutex->unlockMutex();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
|
||
|
if(timeMutex==NULL){
|
||
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||
|
}
|
||
|
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT);
|
||
|
if (result != HasReturnvaluesIF::RETURN_OK) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
*leapSeconds_ = leapSeconds;
|
||
|
|
||
|
result = timeMutex->unlockMutex();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
ReturnValue_t Clock::checkOrCreateClockMutex(){
|
||
|
if(timeMutex==NULL){
|
||
|
MutexFactory* mutexFactory = MutexFactory::instance();
|
||
|
if (mutexFactory == NULL) {
|
||
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||
|
}
|
||
|
timeMutex = mutexFactory->createMutex();
|
||
|
if (timeMutex == NULL) {
|
||
|
return HasReturnvaluesIF::RETURN_FAILED;
|
||
|
}
|
||
|
}
|
||
|
return HasReturnvaluesIF::RETURN_OK;
|
||
|
}
|