reapply clang format

This commit is contained in:
2022-02-02 10:29:30 +01:00
parent 70b593df65
commit ddcac2bbac
809 changed files with 52010 additions and 56052 deletions

File diff suppressed because it is too large Load Diff

View File

@ -3,15 +3,16 @@
// COULDDO: have calls in Clock.h which return time quality and use timespec accordingly
#include <cstddef>
#include <cstdint>
#include "../returnvalues/HasReturnvaluesIF.h"
#include "Clock.h"
#include "clockDefinitions.h"
#include "../returnvalues/HasReturnvaluesIF.h"
#include <cstdint>
#include <cstddef>
bool operator<(const timeval& lhs, const timeval& rhs);
bool operator<=(const timeval& lhs, const timeval& rhs);
bool operator==(const timeval& lhs, const timeval& rhs);
bool operator<(const timeval &lhs, const timeval &rhs);
bool operator<=(const timeval &lhs, const timeval &rhs);
bool operator==(const timeval &lhs, const timeval &rhs);
/**
* static helper class for CCSDS Time Code Formats
*
@ -19,217 +20,208 @@ bool operator==(const timeval& lhs, const timeval& rhs);
*
* Still work in progress
*/
class CCSDSTime: public HasReturnvaluesIF {
public:
/**
* The Time code identifications, bits 4-6 in the P-Field
*/
enum TimeCodeIdentification {
CCS = 0b101,
CUC_LEVEL1 = 0b001,
CUC_LEVEL2 = 0b010,
CDS = 0b100,
AGENCY_DEFINED = 0b110
};
static const uint8_t P_FIELD_CUC_6B_CCSDS = (CUC_LEVEL1 << 4) + (3 << 2)
+ 2;
static const uint8_t P_FIELD_CUC_6B_AGENCY = (CUC_LEVEL2 << 4) + (3 << 2)
+ 2;
static const uint8_t P_FIELD_CDS_SHORT = (CDS << 4);
/**
* Struct for CDS day-segmented format.
*/
struct CDS_short {
uint8_t pField;
uint8_t dayMSB;
uint8_t dayLSB;
uint8_t msDay_hh;
uint8_t msDay_h;
uint8_t msDay_l;
uint8_t msDay_ll;
};
/**
* Struct for the CCS fromat in day of month variation with max resolution
*/
struct Ccs_seconds {
uint8_t pField;
uint8_t yearMSB;
uint8_t yearLSB;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
};
class CCSDSTime : public HasReturnvaluesIF {
public:
/**
* The Time code identifications, bits 4-6 in the P-Field
*/
enum TimeCodeIdentification {
CCS = 0b101,
CUC_LEVEL1 = 0b001,
CUC_LEVEL2 = 0b010,
CDS = 0b100,
AGENCY_DEFINED = 0b110
};
static const uint8_t P_FIELD_CUC_6B_CCSDS = (CUC_LEVEL1 << 4) + (3 << 2) + 2;
static const uint8_t P_FIELD_CUC_6B_AGENCY = (CUC_LEVEL2 << 4) + (3 << 2) + 2;
static const uint8_t P_FIELD_CDS_SHORT = (CDS << 4);
/**
* Struct for CDS day-segmented format.
*/
struct CDS_short {
uint8_t pField;
uint8_t dayMSB;
uint8_t dayLSB;
uint8_t msDay_hh;
uint8_t msDay_h;
uint8_t msDay_l;
uint8_t msDay_ll;
};
/**
* Struct for the CCS fromat in day of month variation with max resolution
*/
struct Ccs_seconds {
uint8_t pField;
uint8_t yearMSB;
uint8_t yearLSB;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
};
/**
* Struct for the CCS fromat in day of month variation with 10E-4 seconds resolution
*/
struct Ccs_mseconds {
uint8_t pField;
uint8_t yearMSB;
uint8_t yearLSB;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
uint8_t secondEminus2;
uint8_t secondEminus4;
};
/**
* Struct for the CCS fromat in day of month variation with 10E-4 seconds resolution
*/
struct Ccs_mseconds {
uint8_t pField;
uint8_t yearMSB;
uint8_t yearLSB;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
uint8_t secondEminus2;
uint8_t secondEminus4;
};
struct OBT_FLP {
uint8_t pFiled;
uint8_t seconds_hh;
uint8_t seconds_h;
uint8_t seconds_l;
uint8_t seconds_ll;
uint8_t subsecondsMSB;
uint8_t subsecondsLSB;
};
struct OBT_FLP {
uint8_t pFiled;
uint8_t seconds_hh;
uint8_t seconds_h;
uint8_t seconds_l;
uint8_t seconds_ll;
uint8_t subsecondsMSB;
uint8_t subsecondsLSB;
};
struct TimevalLess {
bool operator()(const timeval& lhs, const timeval& rhs) const {
return (lhs < rhs);
}
};
struct TimevalLess {
bool operator()(const timeval &lhs, const timeval &rhs) const { return (lhs < rhs); }
};
static const uint8_t INTERFACE_ID = CLASS_ID::CCSDS_TIME_HELPER_CLASS;
static const ReturnValue_t UNSUPPORTED_TIME_FORMAT = MAKE_RETURN_CODE(0);
static const ReturnValue_t NOT_ENOUGH_INFORMATION_FOR_TARGET_FORMAT =
MAKE_RETURN_CODE(1);
static const ReturnValue_t LENGTH_MISMATCH = MAKE_RETURN_CODE(2);
static const ReturnValue_t INVALID_TIME_FORMAT = MAKE_RETURN_CODE(3);
static const ReturnValue_t INVALID_DAY_OF_YEAR = MAKE_RETURN_CODE(4);
static const ReturnValue_t TIME_DOES_NOT_FIT_FORMAT = MAKE_RETURN_CODE(5);
static const uint8_t INTERFACE_ID = CLASS_ID::CCSDS_TIME_HELPER_CLASS;
static const ReturnValue_t UNSUPPORTED_TIME_FORMAT = MAKE_RETURN_CODE(0);
static const ReturnValue_t NOT_ENOUGH_INFORMATION_FOR_TARGET_FORMAT = MAKE_RETURN_CODE(1);
static const ReturnValue_t LENGTH_MISMATCH = MAKE_RETURN_CODE(2);
static const ReturnValue_t INVALID_TIME_FORMAT = MAKE_RETURN_CODE(3);
static const ReturnValue_t INVALID_DAY_OF_YEAR = MAKE_RETURN_CODE(4);
static const ReturnValue_t TIME_DOES_NOT_FIT_FORMAT = MAKE_RETURN_CODE(5);
/**
* convert a TimeofDay struct to ccs with seconds resolution
*
* @param to pointer to a CCS struct
* @param from pointer to a TimeOfDay Struct
* @return
* - @c RETURN_OK if OK
* - @c INVALID_TIMECODE if not OK
*/
static ReturnValue_t convertToCcsds(Ccs_seconds *to,
Clock::TimeOfDay_t const *from);
/**
* convert a TimeofDay struct to ccs with seconds resolution
*
* @param to pointer to a CCS struct
* @param from pointer to a TimeOfDay Struct
* @return
* - @c RETURN_OK if OK
* - @c INVALID_TIMECODE if not OK
*/
static ReturnValue_t convertToCcsds(Ccs_seconds *to, Clock::TimeOfDay_t const *from);
/**
* Converts to CDS format from timeval.
* @param to pointer to the CDS struct to generate
* @param from pointer to a timeval struct which comprises a time of day since UNIX epoch.
* @return
* - @c RETURN_OK as it assumes a valid timeval.
*/
static ReturnValue_t convertToCcsds(CDS_short* to, timeval const *from);
/**
* Converts to CDS format from timeval.
* @param to pointer to the CDS struct to generate
* @param from pointer to a timeval struct which comprises a time of day since UNIX epoch.
* @return
* - @c RETURN_OK as it assumes a valid timeval.
*/
static ReturnValue_t convertToCcsds(CDS_short *to, timeval const *from);
static ReturnValue_t convertToCcsds(OBT_FLP* to, timeval const *from);
static ReturnValue_t convertToCcsds(OBT_FLP *to, timeval const *from);
/**
* convert a TimeofDay struct to ccs with 10E-3 seconds resolution
*
* The 10E-4 seconds in the CCS Struct are 0 as the TimeOfDay only has ms resolution
*
* @param to pointer to a CCS struct
* @param from pointer to a TimeOfDay Struct
* @return
* - @c RETURN_OK if OK
* - @c INVALID_TIMECODE if not OK
*/
static ReturnValue_t convertToCcsds(Ccs_mseconds *to,
Clock::TimeOfDay_t const *from);
/**
* convert a TimeofDay struct to ccs with 10E-3 seconds resolution
*
* The 10E-4 seconds in the CCS Struct are 0 as the TimeOfDay only has ms resolution
*
* @param to pointer to a CCS struct
* @param from pointer to a TimeOfDay Struct
* @return
* - @c RETURN_OK if OK
* - @c INVALID_TIMECODE if not OK
*/
static ReturnValue_t convertToCcsds(Ccs_mseconds *to, Clock::TimeOfDay_t const *from);
/**
* SHOULDDO: can this be modified to recognize padding?
* Tries to interpret a Level 1 CCSDS time code
*
* It assumes binary formats contain a valid P Field and recognizes the ASCII format
* by the lack of one.
*
* @param to an empty TimeOfDay struct
* @param from pointer to an CCSDS Time code
* @param length length of the Time code
* @return
* - @c RETURN_OK if successful
* - @c UNSUPPORTED_TIME_FORMAT if a (possibly valid) time code is not supported
* - @c LENGTH_MISMATCH if the length does not match the P Field
* - @c INVALID_TIME_FORMAT if the format or a value is invalid
*/
static ReturnValue_t convertFromCcsds(Clock::TimeOfDay_t *to,
uint8_t const *from, size_t length);
/**
* SHOULDDO: can this be modified to recognize padding?
* Tries to interpret a Level 1 CCSDS time code
*
* It assumes binary formats contain a valid P Field and recognizes the ASCII format
* by the lack of one.
*
* @param to an empty TimeOfDay struct
* @param from pointer to an CCSDS Time code
* @param length length of the Time code
* @return
* - @c RETURN_OK if successful
* - @c UNSUPPORTED_TIME_FORMAT if a (possibly valid) time code is not supported
* - @c LENGTH_MISMATCH if the length does not match the P Field
* - @c INVALID_TIME_FORMAT if the format or a value is invalid
*/
static ReturnValue_t convertFromCcsds(Clock::TimeOfDay_t *to, uint8_t const *from, size_t length);
/**
* not implemented yet
*
* @param to
* @param from
* @return
*/
static ReturnValue_t convertFromCcsds(timeval *to, uint8_t const *from,
size_t* foundLength, size_t maxLength);
/**
* not implemented yet
*
* @param to
* @param from
* @return
*/
static ReturnValue_t convertFromCcsds(timeval *to, uint8_t const *from, size_t *foundLength,
size_t maxLength);
static ReturnValue_t convertFromCUC(Clock::TimeOfDay_t *to,
uint8_t const *from, uint8_t length);
static ReturnValue_t convertFromCUC(Clock::TimeOfDay_t *to, uint8_t const *from, uint8_t length);
static ReturnValue_t convertFromCUC(timeval *to, uint8_t const *from,
size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCUC(timeval *to, uint8_t const *from, size_t *foundLength,
size_t maxLength);
static ReturnValue_t convertFromCUC(timeval *to, uint8_t pField,
uint8_t const *from, size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCUC(timeval *to, uint8_t pField, uint8_t const *from,
size_t *foundLength, size_t maxLength);
static ReturnValue_t convertFromCCS(timeval *to, uint8_t const *from,
size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCCS(timeval *to, uint8_t const *from, size_t *foundLength,
size_t maxLength);
static ReturnValue_t convertFromCCS(timeval *to, uint8_t pField,
uint8_t const *from, size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCCS(timeval *to, uint8_t pField, uint8_t const *from,
size_t *foundLength, size_t maxLength);
static ReturnValue_t convertFromCDS(Clock::TimeOfDay_t *to,
uint8_t const *from, uint8_t length);
static ReturnValue_t convertFromCDS(Clock::TimeOfDay_t *to, uint8_t const *from, uint8_t length);
static ReturnValue_t convertFromCDS(timeval *to, uint8_t const *from,
size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCDS(timeval *to, uint8_t const *from, size_t *foundLength,
size_t maxLength);
static ReturnValue_t convertFromCCS(Clock::TimeOfDay_t *to,
uint8_t const *from, size_t* foundLength, size_t maxLength);
static ReturnValue_t convertFromCCS(Clock::TimeOfDay_t *to, uint8_t const *from,
size_t *foundLength, size_t maxLength);
static ReturnValue_t convertFromASCII(Clock::TimeOfDay_t *to,
uint8_t const *from, uint8_t length);
static ReturnValue_t convertFromASCII(Clock::TimeOfDay_t *to, uint8_t const *from,
uint8_t length);
static uint32_t subsecondsToMicroseconds(uint16_t subseconds);
private:
CCSDSTime();
virtual ~CCSDSTime();
/**
* checks a ccs time stream for validity
*
* Stream may be longer than the actual timecode
*
* @param time pointer to an Ccs stream
* @param length length of stream
* @return
*/
static ReturnValue_t checkCcs(const uint8_t* time, uint8_t length);
static uint32_t subsecondsToMicroseconds(uint16_t subseconds);
static ReturnValue_t checkTimeOfDay(const Clock::TimeOfDay_t *time);
private:
CCSDSTime();
virtual ~CCSDSTime();
/**
* checks a ccs time stream for validity
*
* Stream may be longer than the actual timecode
*
* @param time pointer to an Ccs stream
* @param length length of stream
* @return
*/
static ReturnValue_t checkCcs(const uint8_t *time, uint8_t length);
static const uint32_t SECONDS_PER_DAY = 24 * 60 * 60;
static const uint32_t SECONDS_PER_NON_LEAP_YEAR = SECONDS_PER_DAY * 365;
static const uint32_t DAYS_CCSDS_TO_UNIX_EPOCH = 4383; //!< Time difference between CCSDS and POSIX epoch. This is exact, because leap-seconds where not introduced before 1972.
static const uint32_t SECONDS_CCSDS_TO_UNIX_EPOCH = DAYS_CCSDS_TO_UNIX_EPOCH
* SECONDS_PER_DAY;
/**
* @param dayofYear
* @param year
* @param month
* @param day
*/
static ReturnValue_t convertDaysOfYear(uint16_t dayofYear, uint16_t year,
uint8_t *month, uint8_t *day);
static ReturnValue_t checkTimeOfDay(const Clock::TimeOfDay_t *time);
static bool isLeapYear(uint32_t year);
static ReturnValue_t convertTimevalToTimeOfDay(Clock::TimeOfDay_t* to,
timeval* from);
static const uint32_t SECONDS_PER_DAY = 24 * 60 * 60;
static const uint32_t SECONDS_PER_NON_LEAP_YEAR = SECONDS_PER_DAY * 365;
static const uint32_t DAYS_CCSDS_TO_UNIX_EPOCH =
4383; //!< Time difference between CCSDS and POSIX epoch. This is exact, because leap-seconds
//!< where not introduced before 1972.
static const uint32_t SECONDS_CCSDS_TO_UNIX_EPOCH = DAYS_CCSDS_TO_UNIX_EPOCH * SECONDS_PER_DAY;
/**
* @param dayofYear
* @param year
* @param month
* @param day
*/
static ReturnValue_t convertDaysOfYear(uint16_t dayofYear, uint16_t year, uint8_t *month,
uint8_t *day);
static bool isLeapYear(uint32_t year);
static ReturnValue_t convertTimevalToTimeOfDay(Clock::TimeOfDay_t *to, timeval *from);
};
#endif /* FSFW_TIMEMANAGER_CCSDSTIME_H_ */

View File

@ -1,13 +1,13 @@
#ifndef FSFW_TIMEMANAGER_CLOCK_H_
#define FSFW_TIMEMANAGER_CLOCK_H_
#include "clockDefinitions.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include "fsfw/ipc/MutexFactory.h"
#include "fsfw/globalfunctions/timevalOperations.h"
#include <cstdint>
#include "clockDefinitions.h"
#include "fsfw/globalfunctions/timevalOperations.h"
#include "fsfw/ipc/MutexFactory.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#ifdef WIN32
#include <winsock2.h>
#else
@ -15,158 +15,157 @@
#endif
class Clock {
public:
typedef struct {
uint32_t year; //!< Year, A.D.
uint32_t month; //!< Month, 1 .. 12.
uint32_t day; //!< Day, 1 .. 31.
uint32_t hour; //!< Hour, 0 .. 23.
uint32_t minute; //!< Minute, 0 .. 59.
uint32_t second; //!< Second, 0 .. 59.
uint32_t usecond; //!< Microseconds, 0 .. 999999
} TimeOfDay_t;
public:
typedef struct {
uint32_t year; //!< Year, A.D.
uint32_t month; //!< Month, 1 .. 12.
uint32_t day; //!< Day, 1 .. 31.
uint32_t hour; //!< Hour, 0 .. 23.
uint32_t minute; //!< Minute, 0 .. 59.
uint32_t second; //!< Second, 0 .. 59.
uint32_t usecond; //!< Microseconds, 0 .. 999999
} TimeOfDay_t;
/**
* This method returns the number of clock ticks per second.
* In RTEMS, this is typically 1000.
* @return The number of ticks.
*
* @deprecated, we should not worry about ticks, but only time
*/
static uint32_t getTicksPerSecond(void);
/**
* This system call sets the system time.
* To set the time, it uses a TimeOfDay_t struct.
* @param time The struct with the time settings to set.
* @return -@c RETURN_OK on success. Otherwise, the OS failure code
* is returned.
*/
static ReturnValue_t setClock(const TimeOfDay_t *time);
/**
* This system call sets the system time.
* To set the time, it uses a timeval struct.
* @param time The struct with the time settings to set.
* @return -@c RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t setClock(const timeval *time);
/**
* This system call returns the current system clock in timeval format.
* The timval format has the fields @c tv_sec with seconds and @c tv_usec with
* microseconds since an OS-defined epoch.
* @param time A pointer to a timeval struct where the current time is stored.
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getClock_timeval(timeval *time);
/**
* This method returns the number of clock ticks per second.
* In RTEMS, this is typically 1000.
* @return The number of ticks.
*
* @deprecated, we should not worry about ticks, but only time
*/
static uint32_t getTicksPerSecond(void);
/**
* This system call sets the system time.
* To set the time, it uses a TimeOfDay_t struct.
* @param time The struct with the time settings to set.
* @return -@c RETURN_OK on success. Otherwise, the OS failure code
* is returned.
*/
static ReturnValue_t setClock(const TimeOfDay_t *time);
/**
* This system call sets the system time.
* To set the time, it uses a timeval struct.
* @param time The struct with the time settings to set.
* @return -@c RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t setClock(const timeval *time);
/**
* This system call returns the current system clock in timeval format.
* The timval format has the fields @c tv_sec with seconds and @c tv_usec with
* microseconds since an OS-defined epoch.
* @param time A pointer to a timeval struct where the current time is stored.
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getClock_timeval(timeval *time);
/**
* Get the time since boot in a timeval struct
*
* @param[out] time A pointer to a timeval struct where the uptime is stored.
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
*
* @deprecated, I do not think this should be able to fail, use timeval getUptime()
*/
static ReturnValue_t getUptime(timeval *uptime);
/**
* Get the time since boot in a timeval struct
*
* @param[out] time A pointer to a timeval struct where the uptime is stored.
* @return @c RETURN_OK on success. Otherwise, the OS failure code is returned.
*
* @deprecated, I do not think this should be able to fail, use timeval getUptime()
*/
static ReturnValue_t getUptime(timeval *uptime);
static timeval getUptime();
static timeval getUptime();
/**
* Get the time since boot in milliseconds
*
* This value can overflow! Still, it can be used to calculate time intervalls
* between two calls up to 49 days by always using uint32_t in the calculation
*
* @param ms uptime in ms
* @return RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getUptime(uint32_t *uptimeMs);
/**
* Get the time since boot in milliseconds
*
* This value can overflow! Still, it can be used to calculate time intervalls
* between two calls up to 49 days by always using uint32_t in the calculation
*
* @param ms uptime in ms
* @return RETURN_OK on success. Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getUptime(uint32_t *uptimeMs);
/**
* Returns the time in microseconds since an OS-defined epoch.
* The time is returned in a 64 bit unsigned integer.
* @param time A pointer to a 64 bit unisigned integer where the data is stored.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getClock_usecs(uint64_t *time);
/**
* Returns the time in a TimeOfDay_t struct.
* @param time A pointer to a TimeOfDay_t struct.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getDateAndTime(TimeOfDay_t *time);
/**
* Returns the time in microseconds since an OS-defined epoch.
* The time is returned in a 64 bit unsigned integer.
* @param time A pointer to a 64 bit unisigned integer where the data is stored.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getClock_usecs(uint64_t *time);
/**
* Returns the time in a TimeOfDay_t struct.
* @param time A pointer to a TimeOfDay_t struct.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t getDateAndTime(TimeOfDay_t *time);
/**
* Converts a time of day struct to POSIX seconds.
* @param time The time of day as input
* @param timeval The corresponding seconds since the epoch.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t convertTimeOfDayToTimeval(const TimeOfDay_t *from,
timeval *to);
/**
* Converts a time of day struct to POSIX seconds.
* @param time The time of day as input
* @param timeval The corresponding seconds since the epoch.
* @return
* - @c RETURN_OK on success.
* - Otherwise, the OS failure code is returned.
*/
static ReturnValue_t convertTimeOfDayToTimeval(const TimeOfDay_t *from, timeval *to);
/**
* Converts a time represented as seconds and subseconds since unix
* epoch to days since J2000
*
* @param time seconds since unix epoch
* @param[out] JD2000 days since J2000
* @return @c RETURN_OK
*/
static ReturnValue_t convertTimevalToJD2000(timeval time, double *JD2000);
/**
* Converts a time represented as seconds and subseconds since unix
* epoch to days since J2000
*
* @param time seconds since unix epoch
* @param[out] JD2000 days since J2000
* @return @c RETURN_OK
*/
static ReturnValue_t convertTimevalToJD2000(timeval time, double *JD2000);
/**
* Calculates and adds the offset between UTC and TT
*
* Depends on the leap seconds to be set correctly.
* Therefore, it does not work for historic
* dates as only the current leap seconds are known.
*
* @param utc timeval, corresponding to UTC time
* @param[out] tt timeval, corresponding to Terrestial Time
* @return
* - @c RETURN_OK on success
* - @c RETURN_FAILED if leapSeconds are not set
*/
static ReturnValue_t convertUTCToTT(timeval utc, timeval *tt);
/**
* Calculates and adds the offset between UTC and TT
*
* Depends on the leap seconds to be set correctly.
* Therefore, it does not work for historic
* dates as only the current leap seconds are known.
*
* @param utc timeval, corresponding to UTC time
* @param[out] tt timeval, corresponding to Terrestial Time
* @return
* - @c RETURN_OK on success
* - @c RETURN_FAILED if leapSeconds are not set
*/
static ReturnValue_t convertUTCToTT(timeval utc, timeval *tt);
/**
* Set the Leap Seconds since 1972
*
* @param leapSeconds_
* @return
* - @c RETURN_OK on success.
*/
static ReturnValue_t setLeapSeconds(const uint16_t leapSeconds_);
/**
* Set the Leap Seconds since 1972
*
* @param leapSeconds_
* @return
* - @c RETURN_OK on success.
*/
static ReturnValue_t setLeapSeconds(const uint16_t leapSeconds_);
/**
* Get the Leap Seconds since 1972
*
* Setter must be called before
*
* @param[out] leapSeconds_
* @return
* - @c RETURN_OK on success.
* - @c RETURN_FAILED on error
*/
static ReturnValue_t getLeapSeconds(uint16_t *leapSeconds_);
/**
* Get the Leap Seconds since 1972
*
* Setter must be called before
*
* @param[out] leapSeconds_
* @return
* - @c RETURN_OK on success.
* - @c RETURN_FAILED on error
*/
static ReturnValue_t getLeapSeconds(uint16_t *leapSeconds_);
private:
/**
* Function to check and create the Mutex for the clock
* @return
* - @c RETURN_OK on success.
* - Otherwise @c RETURN_FAILED if not able to create one
*/
static ReturnValue_t checkOrCreateClockMutex();
private:
/**
* Function to check and create the Mutex for the clock
* @return
* - @c RETURN_OK on success.
* - Otherwise @c RETURN_FAILED if not able to create one
*/
static ReturnValue_t checkOrCreateClockMutex();
static MutexIF *timeMutex;
static uint16_t leapSeconds;
static MutexIF *timeMutex;
static uint16_t leapSeconds;
};
#endif /* FSFW_TIMEMANAGER_CLOCK_H_ */

View File

@ -1,57 +1,57 @@
#include "fsfw/timemanager/Clock.h"
#include "fsfw/ipc/MutexGuard.h"
#include "fsfw/timemanager/Clock.h"
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval *tt) {
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = { 0, 0 };
leapSeconds_timeval.tv_sec = leapSeconds;
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = {0, 0};
leapSeconds_timeval.tv_sec = leapSeconds;
//initial offset between UTC and TAI
timeval UTCtoTAI1972 = { 10, 0 };
// initial offset between UTC and TAI
timeval UTCtoTAI1972 = {10, 0};
timeval TAItoTT = { 32, 184000 };
timeval TAItoTT = {32, 184000};
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
return HasReturnvaluesIF::RETURN_OK;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if (checkOrCreateClockMutex() != HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexGuard helper(timeMutex);
if (checkOrCreateClockMutex() != HasReturnvaluesIF::RETURN_OK) {
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexGuard helper(timeMutex);
leapSeconds = leapSeconds_;
leapSeconds = leapSeconds_;
return HasReturnvaluesIF::RETURN_OK;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t *leapSeconds_) {
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexGuard helper(timeMutex);
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
MutexGuard helper(timeMutex);
*leapSeconds_ = leapSeconds;
*leapSeconds_ = leapSeconds;
return HasReturnvaluesIF::RETURN_OK;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::checkOrCreateClockMutex() {
if (timeMutex == nullptr) {
MutexFactory *mutexFactory = MutexFactory::instance();
if (mutexFactory == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
if (timeMutex == nullptr) {
MutexFactory *mutexFactory = MutexFactory::instance();
if (mutexFactory == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -1,51 +1,43 @@
#include "fsfw/timemanager/Countdown.h"
Countdown::Countdown(uint32_t initialTimeout): timeout(initialTimeout) {
}
Countdown::Countdown(uint32_t initialTimeout) : timeout(initialTimeout) {}
Countdown::~Countdown() {
}
Countdown::~Countdown() {}
ReturnValue_t Countdown::setTimeout(uint32_t milliseconds) {
ReturnValue_t returnValue = Clock::getUptime( &startTime );
timeout = milliseconds;
return returnValue;
ReturnValue_t returnValue = Clock::getUptime(&startTime);
timeout = milliseconds;
return returnValue;
}
bool Countdown::hasTimedOut() const {
if ( uint32_t( this->getCurrentTime() - startTime) >= timeout) {
return true;
} else {
return false;
}
if (uint32_t(this->getCurrentTime() - startTime) >= timeout) {
return true;
} else {
return false;
}
}
bool Countdown::isBusy() const {
return !hasTimedOut();
}
bool Countdown::isBusy() const { return !hasTimedOut(); }
ReturnValue_t Countdown::resetTimer() {
return setTimeout(timeout);
}
ReturnValue_t Countdown::resetTimer() { return setTimeout(timeout); }
void Countdown::timeOut() {
startTime = this->getCurrentTime() - timeout;
}
void Countdown::timeOut() { startTime = this->getCurrentTime() - timeout; }
uint32_t Countdown::getRemainingMillis() const {
// We fetch the time before the if-statement
// to be sure that the return is in
// range 0 <= number <= timeout
uint32_t currentTime = this->getCurrentTime();
if (this->hasTimedOut()){
return 0;
}else{
return (startTime + timeout) - currentTime;
}
// We fetch the time before the if-statement
// to be sure that the return is in
// range 0 <= number <= timeout
uint32_t currentTime = this->getCurrentTime();
if (this->hasTimedOut()) {
return 0;
} else {
return (startTime + timeout) - currentTime;
}
}
uint32_t Countdown::getCurrentTime() const {
uint32_t currentTime;
Clock::getUptime( &currentTime );
return currentTime;
uint32_t currentTime;
Clock::getUptime(&currentTime);
return currentTime;
}

View File

@ -17,64 +17,65 @@
*
*/
class Countdown {
public:
/**
* Constructor which sets the countdown duration in milliseconds
*
* It does not start the countdown!
* Call resetTimer or setTimeout before usage!
* Otherwise a call to hasTimedOut might return True.
*
* @param initialTimeout Countdown duration in milliseconds
*/
Countdown(uint32_t initialTimeout = 0);
~Countdown();
/**
* Call to set a new countdown duration.
*
* Resets the countdown!
*
* @param milliseconds new countdown duration in milliseconds
* @return Returnvalue from Clock::getUptime
*/
ReturnValue_t setTimeout(uint32_t milliseconds);
/**
* Returns true if the countdown duration has passed.
*
* @return True if the countdown has passed
* False if it is still running
*/
bool hasTimedOut() const;
/**
* Complementary to hasTimedOut.
*
* @return True if the countdown is till running
* False if it is still running
*/
bool isBusy() const;
/**
* Uses last set timeout value and restarts timer.
*/
ReturnValue_t resetTimer();
/**
* Returns the remaining milliseconds (0 if timeout)
*/
uint32_t getRemainingMillis() const;
/**
* Makes hasTimedOut() return true
*/
void timeOut();
/**
* Internal countdown duration in milliseconds
*/
uint32_t timeout;
private:
/**
* Last time the timer was started (uptime)
*/
uint32_t startTime = 0;
public:
/**
* Constructor which sets the countdown duration in milliseconds
*
* It does not start the countdown!
* Call resetTimer or setTimeout before usage!
* Otherwise a call to hasTimedOut might return True.
*
* @param initialTimeout Countdown duration in milliseconds
*/
Countdown(uint32_t initialTimeout = 0);
~Countdown();
/**
* Call to set a new countdown duration.
*
* Resets the countdown!
*
* @param milliseconds new countdown duration in milliseconds
* @return Returnvalue from Clock::getUptime
*/
ReturnValue_t setTimeout(uint32_t milliseconds);
/**
* Returns true if the countdown duration has passed.
*
* @return True if the countdown has passed
* False if it is still running
*/
bool hasTimedOut() const;
/**
* Complementary to hasTimedOut.
*
* @return True if the countdown is till running
* False if it is still running
*/
bool isBusy() const;
/**
* Uses last set timeout value and restarts timer.
*/
ReturnValue_t resetTimer();
/**
* Returns the remaining milliseconds (0 if timeout)
*/
uint32_t getRemainingMillis() const;
/**
* Makes hasTimedOut() return true
*/
void timeOut();
/**
* Internal countdown duration in milliseconds
*/
uint32_t timeout;
uint32_t getCurrentTime() const;
private:
/**
* Last time the timer was started (uptime)
*/
uint32_t startTime = 0;
uint32_t getCurrentTime() const;
};
#endif /* FSFW_TIMEMANAGER_COUNTDOWN_H_ */

View File

@ -8,19 +8,16 @@
* with the help of a dedicated message queue.
*/
class ReceivesTimeInfoIF {
public:
/**
* Returns the id of the queue which receives the timing information.
* @return Queue id of the timing queue.
*/
virtual MessageQueueId_t getTimeReceptionQueue() const = 0;
/**
* Empty virtual destructor.
*/
virtual ~ReceivesTimeInfoIF() {
}
public:
/**
* Returns the id of the queue which receives the timing information.
* @return Queue id of the timing queue.
*/
virtual MessageQueueId_t getTimeReceptionQueue() const = 0;
/**
* Empty virtual destructor.
*/
virtual ~ReceivesTimeInfoIF() {}
};
#endif /* FSFW_TIMEMANAGER_RECEIVESTIMEINFOIF_H_ */

View File

@ -1,74 +1,68 @@
#include "fsfw/timemanager/Stopwatch.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#if FSFW_CPP_OSTREAM_ENABLED == 1
#include <iomanip>
#endif
Stopwatch::Stopwatch(bool displayOnDestruction,
StopwatchDisplayMode displayMode): displayOnDestruction(
displayOnDestruction), displayMode(displayMode) {
// Measures start time on initialization.
Clock::getUptime(&startTime);
Stopwatch::Stopwatch(bool displayOnDestruction, StopwatchDisplayMode displayMode)
: displayOnDestruction(displayOnDestruction), displayMode(displayMode) {
// Measures start time on initialization.
Clock::getUptime(&startTime);
}
void Stopwatch::start() {
Clock::getUptime(&startTime);
}
void Stopwatch::start() { Clock::getUptime(&startTime); }
dur_millis_t Stopwatch::stop(bool display) {
stopInternal();
if(display) {
this->display();
}
return elapsedTime.tv_sec * 1000 + elapsedTime.tv_usec / 1000;
stopInternal();
if (display) {
this->display();
}
return elapsedTime.tv_sec * 1000 + elapsedTime.tv_usec / 1000;
}
double Stopwatch::stopSeconds() {
stopInternal();
return timevalOperations::toDouble(elapsedTime);
stopInternal();
return timevalOperations::toDouble(elapsedTime);
}
void Stopwatch::display() {
if(displayMode == StopwatchDisplayMode::MILLIS) {
dur_millis_t timeMillis = static_cast<dur_millis_t>(
elapsedTime.tv_sec * 1000 + elapsedTime.tv_usec / 1000);
if (displayMode == StopwatchDisplayMode::MILLIS) {
dur_millis_t timeMillis =
static_cast<dur_millis_t>(elapsedTime.tv_sec * 1000 + elapsedTime.tv_usec / 1000);
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Stopwatch: Operation took " << timeMillis << " milliseconds" << std::endl;
sif::info << "Stopwatch: Operation took " << timeMillis << " milliseconds" << std::endl;
#else
sif::printInfo("Stopwatch: Operation took %lu milliseconds\n\r",
static_cast<unsigned int>(timeMillis));
sif::printInfo("Stopwatch: Operation took %lu milliseconds\n\r",
static_cast<unsigned int>(timeMillis));
#endif
}
else if(displayMode == StopwatchDisplayMode::SECONDS) {
} else if (displayMode == StopwatchDisplayMode::SECONDS) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info <<"Stopwatch: Operation took " << std::setprecision(3)
<< std::fixed << timevalOperations::toDouble(elapsedTime)
<< " seconds" << std::endl;
sif::info << "Stopwatch: Operation took " << std::setprecision(3) << std::fixed
<< timevalOperations::toDouble(elapsedTime) << " seconds" << std::endl;
#else
sif::printInfo("Stopwatch: Operation took %.3f seconds\n\r",
static_cast<float>(timevalOperations::toDouble(elapsedTime)));
sif::printInfo("Stopwatch: Operation took %.3f seconds\n\r",
static_cast<float>(timevalOperations::toDouble(elapsedTime)));
#endif
}
}
}
Stopwatch::~Stopwatch() {
if(displayOnDestruction) {
stopInternal();
display();
}
if (displayOnDestruction) {
stopInternal();
display();
}
}
void Stopwatch::setDisplayMode(StopwatchDisplayMode displayMode) {
this->displayMode = displayMode;
this->displayMode = displayMode;
}
StopwatchDisplayMode Stopwatch::getDisplayMode() const {
return displayMode;
}
StopwatchDisplayMode Stopwatch::getDisplayMode() const { return displayMode; }
void Stopwatch::stopInternal() {
timeval endTime;
Clock::getUptime(&endTime);
elapsedTime = endTime - startTime;
timeval endTime;
Clock::getUptime(&endTime);
elapsedTime = endTime - startTime;
}

View File

@ -3,10 +3,7 @@
#include "Clock.h"
enum class StopwatchDisplayMode {
MILLIS,
SECONDS
};
enum class StopwatchDisplayMode { MILLIS, SECONDS };
/**
* @brief Simple Stopwatch implementation to measure elapsed time
@ -18,53 +15,53 @@ enum class StopwatchDisplayMode {
* @author R. Mueller
*/
class Stopwatch {
public:
/**
* Default constructor. Call "Stopwatch stopwatch" without brackets if
* no parameters are required!
* @param displayOnDestruction If set to true, displays measured time on
* object destruction
* @param displayMode Display format is either MS rounded or MS as double
* format
* @param outputPrecision If using double format, specify precision here.
*/
Stopwatch(bool displayOnDestruction = true, StopwatchDisplayMode displayMode
= StopwatchDisplayMode::MILLIS);
virtual~ Stopwatch();
public:
/**
* Default constructor. Call "Stopwatch stopwatch" without brackets if
* no parameters are required!
* @param displayOnDestruction If set to true, displays measured time on
* object destruction
* @param displayMode Display format is either MS rounded or MS as double
* format
* @param outputPrecision If using double format, specify precision here.
*/
Stopwatch(bool displayOnDestruction = true,
StopwatchDisplayMode displayMode = StopwatchDisplayMode::MILLIS);
virtual ~Stopwatch();
/**
* Caches the start time
*/
void start();
/**
* Caches the start time
*/
void start();
/**
* Calculates the elapsed time since start and returns it
* @return elapsed time in milliseconds (rounded)
*/
dur_millis_t stop(bool display = false);
/**
* Calculates the elapsed time since start and returns it
* @return elapsed time in seconds (double precision)
*/
double stopSeconds();
/**
* Calculates the elapsed time since start and returns it
* @return elapsed time in milliseconds (rounded)
*/
dur_millis_t stop(bool display = false);
/**
* Calculates the elapsed time since start and returns it
* @return elapsed time in seconds (double precision)
*/
double stopSeconds();
/**
* Displays the elapsed times on the osstream, depending on internal display
* mode.
*/
void display();
/**
* Displays the elapsed times on the osstream, depending on internal display
* mode.
*/
void display();
StopwatchDisplayMode getDisplayMode() const;
void setDisplayMode(StopwatchDisplayMode displayMode);
bool displayOnDestruction = true;
private:
timeval startTime {0, 0};
timeval elapsedTime {0, 0};
StopwatchDisplayMode getDisplayMode() const;
void setDisplayMode(StopwatchDisplayMode displayMode);
bool displayOnDestruction = true;
StopwatchDisplayMode displayMode = StopwatchDisplayMode::MILLIS;
private:
timeval startTime{0, 0};
timeval elapsedTime{0, 0};
void stopInternal();
StopwatchDisplayMode displayMode = StopwatchDisplayMode::MILLIS;
void stopInternal();
};
#endif /* FSFW_TIMEMANAGER_STOPWATCH_H_ */

View File

@ -1,30 +1,25 @@
#include "fsfw/timemanager/TimeMessage.h"
TimeMessage::TimeMessage() {
this->messageSize += sizeof(timeval) + sizeof(uint32_t);
}
TimeMessage::TimeMessage() { this->messageSize += sizeof(timeval) + sizeof(uint32_t); }
TimeMessage::TimeMessage(timeval setTime, uint32_t CounterValue) {
memcpy (this->getData(), &setTime, sizeof(timeval));
this->messageSize += sizeof(timeval) + sizeof(uint32_t);
memcpy (this->getData() + sizeof(timeval), &CounterValue, sizeof(uint32_t));
memcpy(this->getData(), &setTime, sizeof(timeval));
this->messageSize += sizeof(timeval) + sizeof(uint32_t);
memcpy(this->getData() + sizeof(timeval), &CounterValue, sizeof(uint32_t));
}
TimeMessage::~TimeMessage() {
}
TimeMessage::~TimeMessage() {}
timeval TimeMessage::getTime() {
timeval temp;
memcpy( &temp, this->getData(), sizeof(timeval));
return temp;
timeval temp;
memcpy(&temp, this->getData(), sizeof(timeval));
return temp;
}
uint32_t TimeMessage::getCounterValue() {
uint32_t temp;
memcpy ( &temp, this->getData() + sizeof(timeval), sizeof(uint32_t));
return temp;
uint32_t temp;
memcpy(&temp, this->getData() + sizeof(timeval), sizeof(uint32_t));
return temp;
}
size_t TimeMessage::getMinimumMessageSize() const {
return this->MAX_SIZE;
}
size_t TimeMessage::getMinimumMessageSize() const { return this->MAX_SIZE; }

View File

@ -1,49 +1,50 @@
#ifndef FSFW_TIMEMANAGER_TIMEMESSAGE_H_
#define FSFW_TIMEMANAGER_TIMEMESSAGE_H_
#include "Clock.h"
#include "../ipc/MessageQueueMessage.h"
#include <cstring>
#include "../ipc/MessageQueueMessage.h"
#include "Clock.h"
class TimeMessage : public MessageQueueMessage {
protected:
/**
* @brief This call always returns the same fixed size of the message.
* @return Returns HEADER_SIZE + \c sizeof(timeval) + sizeof(uint32_t).
*/
size_t getMinimumMessageSize() const override;
public:
protected:
/**
* @brief This call always returns the same fixed size of the message.
* @return Returns HEADER_SIZE + \c sizeof(timeval) + sizeof(uint32_t).
*/
size_t getMinimumMessageSize() const override;
/**
* @ brief the size of a TimeMessage
*/
static const uint32_t MAX_SIZE = HEADER_SIZE + sizeof(timeval) + sizeof(uint32_t);
public:
/**
* @ brief the size of a TimeMessage
*/
static const uint32_t MAX_SIZE = HEADER_SIZE + sizeof(timeval) + sizeof(uint32_t);
/**
* @brief In the default constructor, only the message_size is set.
*/
TimeMessage();
/**
* @brief With this constructor, the passed time information is directly put
* into the message.
* @param setTime The time information to put into the message.
* @param counterValue The counterValue to put into the message (GPS PPS).
*/
TimeMessage( timeval setTime, uint32_t counterValue = 0 );
/**
* @brief The class's destructor is empty.
*/
~TimeMessage();
/**
* @brief This getter returns the time information in timeval format.
* @return Returns the time stored in this packet.
*/
timeval getTime();
/**
* @brief This getter returns the CounterValue in uint32_t format.
* @return Returns the CounterValue stored in this packet.
*/
uint32_t getCounterValue();
/**
* @brief In the default constructor, only the message_size is set.
*/
TimeMessage();
/**
* @brief With this constructor, the passed time information is directly put
* into the message.
* @param setTime The time information to put into the message.
* @param counterValue The counterValue to put into the message (GPS PPS).
*/
TimeMessage(timeval setTime, uint32_t counterValue = 0);
/**
* @brief The class's destructor is empty.
*/
~TimeMessage();
/**
* @brief This getter returns the time information in timeval format.
* @return Returns the time stored in this packet.
*/
timeval getTime();
/**
* @brief This getter returns the CounterValue in uint32_t format.
* @return Returns the CounterValue stored in this packet.
*/
uint32_t getCounterValue();
};
#endif /* FSFW_TIMEMANAGER_TIMEMESSAGE_H_ */

View File

@ -1,24 +1,23 @@
#include "fsfw/timemanager/TimeStamper.h"
#include "fsfw/timemanager/Clock.h"
#include <cstring>
TimeStamper::TimeStamper(object_id_t objectId): SystemObject(objectId) {}
#include "fsfw/timemanager/Clock.h"
TimeStamper::TimeStamper(object_id_t objectId) : SystemObject(objectId) {}
ReturnValue_t TimeStamper::addTimeStamp(uint8_t* buffer,
const uint8_t maxSize) {
if(maxSize < TimeStamperIF::MISSION_TIMESTAMP_SIZE){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t TimeStamper::addTimeStamp(uint8_t* buffer, const uint8_t maxSize) {
if (maxSize < TimeStamperIF::MISSION_TIMESTAMP_SIZE) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeval now;
Clock::getClock_timeval(&now);
CCSDSTime::CDS_short cds;
ReturnValue_t result = CCSDSTime::convertToCcsds(&cds,&now);
if(result != HasReturnvaluesIF::RETURN_OK){
return result;
}
std::memcpy(buffer,&cds,sizeof(cds));
return result;
timeval now;
Clock::getClock_timeval(&now);
CCSDSTime::CDS_short cds;
ReturnValue_t result = CCSDSTime::convertToCcsds(&cds, &now);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
std::memcpy(buffer, &cds, sizeof(cds));
return result;
}

View File

@ -1,9 +1,9 @@
#ifndef FSFW_TIMEMANAGER_TIMESTAMPER_H_
#define FSFW_TIMEMANAGER_TIMESTAMPER_H_
#include "TimeStamperIF.h"
#include "CCSDSTime.h"
#include "../objectmanager/SystemObject.h"
#include "CCSDSTime.h"
#include "TimeStamperIF.h"
/**
* @brief Time stamper which can be used to add any timestamp to a
@ -14,23 +14,23 @@
* overriding the #addTimeStamp function.
* @ingroup utility
*/
class TimeStamper: public TimeStamperIF, public SystemObject {
public:
/**
* @brief Default constructor which also registers the time stamper as a
* system object so it can be found with the #objectManager.
* @param objectId
*/
TimeStamper(object_id_t objectId);
class TimeStamper : public TimeStamperIF, public SystemObject {
public:
/**
* @brief Default constructor which also registers the time stamper as a
* system object so it can be found with the #objectManager.
* @param objectId
*/
TimeStamper(object_id_t objectId);
/**
* Adds a CCSDS CDC short 8 byte timestamp to the given buffer.
* This function can be overriden to use a custom timestamp.
* @param buffer
* @param maxSize
* @return
*/
virtual ReturnValue_t addTimeStamp(uint8_t* buffer, const uint8_t maxSize);
/**
* Adds a CCSDS CDC short 8 byte timestamp to the given buffer.
* This function can be overriden to use a custom timestamp.
* @param buffer
* @param maxSize
* @return
*/
virtual ReturnValue_t addTimeStamp(uint8_t* buffer, const uint8_t maxSize);
};
#endif /* FSFW_TIMEMANAGER_TIMESTAMPER_H_ */

View File

@ -2,8 +2,8 @@
#define FSFW_TIMEMANAGER_TIMESTAMPERIF_H_
#include <FSFWConfig.h>
#include "../returnvalues/HasReturnvaluesIF.h"
#include <FSFWConfig.h>
/**
* A class implementing this IF provides facilities to add a time stamp to the
@ -12,19 +12,16 @@
* addTimeStamp may be called in parallel from a different context.
*/
class TimeStamperIF {
public:
static const uint8_t INTERFACE_ID = CLASS_ID::TIME_STAMPER_IF;
static const ReturnValue_t BAD_TIMESTAMP = MAKE_RETURN_CODE(1);
public:
static const uint8_t INTERFACE_ID = CLASS_ID::TIME_STAMPER_IF;
static const ReturnValue_t BAD_TIMESTAMP = MAKE_RETURN_CODE(1);
//! This is a mission-specific constant and determines the total
//! size reserved for timestamps.
static const uint8_t MISSION_TIMESTAMP_SIZE = fsfwconfig::FSFW_MISSION_TIMESTAMP_SIZE;
//! This is a mission-specific constant and determines the total
//! size reserved for timestamps.
static const uint8_t MISSION_TIMESTAMP_SIZE = fsfwconfig::FSFW_MISSION_TIMESTAMP_SIZE;
virtual ReturnValue_t addTimeStamp(uint8_t* buffer,
const uint8_t maxSize) = 0;
virtual ~TimeStamperIF() {}
virtual ReturnValue_t addTimeStamp(uint8_t* buffer, const uint8_t maxSize) = 0;
virtual ~TimeStamperIF() {}
};
#endif /* FSFW_TIMEMANAGER_TIMESTAMPERIF_H_ */