init commit

This commit is contained in:
Robin Müller 2020-09-06 15:23:38 +02:00
parent b3d08cd40b
commit e9b86e51df
38 changed files with 2090 additions and 1590 deletions

View File

@ -1,15 +0,0 @@
#ifndef CONTROLLERSET_H_
#define CONTROLLERSET_H_
#include "DataSet.h"
class ControllerSet :public DataSet {
public:
ControllerSet();
virtual ~ControllerSet();
virtual void setToDefault() = 0;
void setInvalid();
};
#endif /* CONTROLLERSET_H_ */

View File

@ -1,131 +0,0 @@
#include "DataPool.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../ipc/MutexFactory.h"
DataPool::DataPool( void ( *initFunction )( std::map<uint32_t, PoolEntryIF*>* pool_map ) ) {
mutex = MutexFactory::instance()->createMutex();
if (initFunction != NULL ) {
initFunction( &this->data_pool );
}
}
DataPool::~DataPool() {
MutexFactory::instance()->deleteMutex(mutex);
for ( std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.begin(); it != this->data_pool.end(); ++it ) {
delete it->second;
}
}
//The function checks PID, type and array length before returning a copy of the PoolEntry. In failure case, it returns a temp-Entry with size 0 and NULL-ptr.
template <typename T> PoolEntry<T>* DataPool::getData( uint32_t data_pool_id, uint8_t sizeOrPosition ) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
if ( it != this->data_pool.end() ) {
PoolEntry<T>* entry = dynamic_cast< PoolEntry<T>* >( it->second );
if (entry != NULL ) {
if ( sizeOrPosition <= entry->length ) {
return entry;
}
}
}
return NULL;
}
PoolEntryIF* DataPool::getRawData( uint32_t data_pool_id ) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
if ( it != this->data_pool.end() ) {
return it->second;
} else {
return NULL;
}
}
//uint8_t DataPool::getRawData( uint32_t data_pool_id, uint8_t* address, uint16_t* size, uint32_t maxSize ) {
// std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( data_pool_id );
// if ( it != this->data_pool.end() ) {
// if ( it->second->getByteSize() <= maxSize ) {
// *size = it->second->getByteSize();
// memcpy( address, it->second->getRawData(), *size );
// return DP_SUCCESSFUL;
// }
// }
// *size = 0;
// return DP_FAILURE;
//}
ReturnValue_t DataPool::freeDataPoolLock() {
ReturnValue_t status = mutex->unlockMutex();
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: unlock of mutex failed with error code: " << status << std::endl;
}
return status;
}
ReturnValue_t DataPool::lockDataPool() {
ReturnValue_t status = mutex->lockMutex(MutexIF::BLOCKING);
if ( status != RETURN_OK ) {
sif::error << "DataPool::DataPool: lock of mutex failed with error code: " << status << std::endl;
}
return status;
}
void DataPool::print() {
sif::debug << "DataPool contains: " << std::endl;
std::map<uint32_t, PoolEntryIF*>::iterator dataPoolIt;
dataPoolIt = this->data_pool.begin();
while( dataPoolIt != this->data_pool.end() ) {
sif::debug << std::hex << dataPoolIt->first << std::dec << " |";
dataPoolIt->second->print();
dataPoolIt++;
}
}
template PoolEntry<uint8_t>* DataPool::getData<uint8_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint16_t>* DataPool::getData<uint16_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint32_t>* DataPool::getData<uint32_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint64_t>* DataPool::getData<uint64_t>(uint32_t data_pool_id,
uint8_t size);
template PoolEntry<int8_t>* DataPool::getData<int8_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<int16_t>* DataPool::getData<int16_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<int32_t>* DataPool::getData<int32_t>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<float>* DataPool::getData<float>( uint32_t data_pool_id, uint8_t size );
template PoolEntry<double>* DataPool::getData<double>(uint32_t data_pool_id,
uint8_t size);
uint32_t DataPool::PIDToDataPoolId(uint32_t parameter_id) {
return (parameter_id >> 8) & 0x00FFFFFF;
}
uint8_t DataPool::PIDToArrayIndex(uint32_t parameter_id) {
return (parameter_id & 0x000000FF);
}
uint32_t DataPool::poolIdAndPositionToPid(uint32_t poolId, uint8_t index) {
return (poolId << 8) + index;
}
//SHOULDDO: Do we need a mutex lock here... I don't think so, as we only check static const values of elements in a list that do not change.
//there is no guarantee in the standard, but it seems to me that the implementation is safe -UM
ReturnValue_t DataPool::getType(uint32_t parameter_id, Type* type) {
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( PIDToDataPoolId(parameter_id));
if ( it != this->data_pool.end() ) {
*type = it->second->getType();
return RETURN_OK;
} else {
*type = Type::UNKNOWN_TYPE;
return RETURN_FAILED;
}
}
bool DataPool::exists(uint32_t parameterId) {
uint32_t poolId = PIDToDataPoolId(parameterId);
uint32_t index = PIDToArrayIndex(parameterId);
std::map<uint32_t, PoolEntryIF*>::iterator it = this->data_pool.find( poolId );
if (it != data_pool.end()) {
if (it->second->getSize() >= index) {
return true;
}
}
return false;
}

View File

@ -1,135 +0,0 @@
/**
* \file DataPool.h
*
* \date 10/17/2012
* \author Bastian Baetz
*
* \brief This file contains the definition of the DataPool class and (temporarily)
* the "extern" definition of the global dataPool instance.
*/
#ifndef DATAPOOL_H_
#define DATAPOOL_H_
#include "PoolEntry.h"
#include "../globalfunctions/Type.h"
#include "../ipc/MutexIF.h"
#include <map>
/**
* \defgroup data_pool Data Pool
* This is the group, where all classes associated with Data Pool Handling belong to.
* This includes classes to access Data Pool variables.
*/
#define DP_SUCCESSFUL 0
#define DP_FAILURE 1
/**
* \brief This class represents the OBSW global data-pool.
*
* \details All variables are registered and space is allocated in an initialization
* function, which is passed do the constructor.
* Space for the variables is allocated on the heap (with a new call).
* The data is found by a data pool id, which uniquely represents a variable.
* Data pool variables should be used with a blackboard logic in mind,
* which means read data is valid (if flagged so), but not necessarily up-to-date.
* Variables are either single values or arrays.
* \ingroup data_pool
*/
class DataPool : public HasReturnvaluesIF {
private:
/**
* \brief This is the actual data pool itself.
* \details It is represented by a map
* with the data pool id as index and a pointer to a single PoolEntry as value.
*/
std::map<uint32_t, PoolEntryIF*> data_pool;
public:
/**
* \brief The mutex is created in the constructor and makes access mutual exclusive.
* \details Locking and unlocking the pool is only done by the DataSet class.
*/
MutexIF* mutex;
/**
* \brief In the classes constructor, the passed initialization function is called.
* \details To enable filling the pool,
* a pointer to the map is passed, allowing direct access to the pool's content.
* On runtime, adding or removing variables is forbidden.
*/
DataPool( void ( *initFunction )( std::map<uint32_t, PoolEntryIF*>* pool_map ) );
/**
* \brief The destructor iterates through the data_pool map and calls all Entries destructors to clean up the heap.
*/
~DataPool();
/**
* \brief This is the default call to access the pool.
* \details A pointer to the PoolEntry object is returned.
* The call checks data pool id, type and array size. Returns NULL in case of failure.
* \param data_pool_id The data pool id to search.
* \param sizeOrPosition The array size (not byte size!) of the pool entry, or the position the user wants to read.
* If smaller than the entry size, everything's ok.
*/
template <typename T> PoolEntry<T>* getData( uint32_t data_pool_id, uint8_t sizeOrPosition );
/**
* \brief An alternative call to get a data pool entry in case the type is not implicitly known
* (i.e. in Housekeeping Telemetry).
* \details It returns a basic interface and does NOT perform
* a size check. The caller has to assure he does not copy too much data.
* Returns NULL in case the entry is not found.
* \param data_pool_id The data pool id to search.
*/
PoolEntryIF* getRawData( uint32_t data_pool_id );
/**
* \brief This is a small helper function to facilitate locking the global data pool.
* \details It fetches the pool's mutex id and tries to acquire the mutex.
*/
ReturnValue_t lockDataPool();
/**
* \brief This is a small helper function to facilitate unlocking the global data pool.
* \details It fetches the pool's mutex id and tries to free the mutex.
*/
ReturnValue_t freeDataPoolLock();
/**
* \brief The print call is a simple debug method.
* \details It prints the current content of the data pool.
* It iterates through the data_pool map and calls each entry's print() method.
*/
void print();
/**
* Extracts the data pool id from a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The data pool id as used within the OBSW.
*/
static uint32_t PIDToDataPoolId( uint32_t parameter_id );
/**
* Extracts an array index out of a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The index of the corresponding data pool entry.
*/
static uint8_t PIDToArrayIndex( uint32_t parameter_id );
/**
* Retransforms a data pool id and an array index to a SCOS 2000 PID.
*/
static uint32_t poolIdAndPositionToPid( uint32_t poolId, uint8_t index );
/**
* Method to return the type of a pool variable.
* @param parameter_id A parameterID (not pool id) of a DP member.
* @param type Returns the type or TYPE::UNKNOWN_TYPE
* @return RETURN_OK if parameter exists, RETURN_FAILED else.
*/
ReturnValue_t getType( uint32_t parameter_id, Type* type );
/**
* Method to check if a PID exists.
* Does not lock, as there's no possibility to alter the list that is checked during run-time.
* @param parameterId The PID (not pool id!) of a parameter.
* @return true if exists, false else.
*/
bool exists(uint32_t parameterId);
};
//We assume someone globally instantiates a DataPool.
extern DataPool dataPool;
#endif /* DATAPOOL_H_ */

View File

@ -1,150 +0,0 @@
#include "DataSet.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
DataSet::DataSet() :
fill_count(0), state(DATA_SET_UNINITIALISED) {
for (unsigned count = 0; count < DATA_SET_MAX_SIZE; count++) {
registeredVariables[count] = NULL;
}
}
DataSet::~DataSet() {
//Don't do anything with your variables, they are dead already! (Destructor is already called)
}
ReturnValue_t DataSet::read() {
ReturnValue_t result = RETURN_OK;
if (state == DATA_SET_UNINITIALISED) {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
ReturnValue_t status = registeredVariables[count]->read();
if (status != RETURN_OK) {
result = INVALID_PARAMETER_DEFINITION;
break;
}
}
}
state = DATA_SET_WAS_READ;
freeDataPoolLock();
} else {
sif::error << "DataSet::read(): Call made in wrong position." << std::endl;
result = SET_WAS_ALREADY_READ;
}
return result;
}
ReturnValue_t DataSet::commit(uint8_t valid) {
setValid(valid);
return commit();
}
ReturnValue_t DataSet::commit() {
if (state == DATA_SET_WAS_READ) {
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
}
}
state = DATA_SET_UNINITIALISED;
freeDataPoolLock();
return RETURN_OK;
} else {
ReturnValue_t result = RETURN_OK;
lockDataPool();
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
== PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commit();
} else if (registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
if (result != COMMITING_WITHOUT_READING) {
sif::error <<
"DataSet::commit(): commit-without-read "
"call made with non write-only variable." << std::endl;
result = COMMITING_WITHOUT_READING;
}
}
}
state = DATA_SET_UNINITIALISED;
freeDataPoolLock();
return result;
}
}
void DataSet::registerVariable(PoolVariableIF* variable) {
if (state == DATA_SET_UNINITIALISED) {
if (variable != NULL) {
if (fill_count < DATA_SET_MAX_SIZE) {
registeredVariables[fill_count] = variable;
fill_count++;
return;
}
}
}
sif::error
<< "DataSet::registerVariable: failed. Either NULL, or set is full, or call made in wrong position."
<< std::endl;
return;
}
uint8_t DataSet::freeDataPoolLock() {
return ::dataPool.freeDataPoolLock();
}
uint8_t DataSet::lockDataPool() {
return ::dataPool.lockDataPool();
}
ReturnValue_t DataSet::serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->serialize(buffer, size, maxSize,
streamEndianness);
if (result != RETURN_OK) {
return result;
}
}
return result;
}
size_t DataSet::getSerializedSize() const {
size_t size = 0;
for (uint16_t count = 0; count < fill_count; count++) {
size += registeredVariables[count]->getSerializedSize();
}
return size;
}
void DataSet::setValid(uint8_t valid) {
for (uint16_t count = 0; count < fill_count; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ) {
registeredVariables[count]->setValid(valid);
}
}
}
ReturnValue_t DataSet::deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) {
ReturnValue_t result = RETURN_FAILED;
for (uint16_t count = 0; count < fill_count; count++) {
result = registeredVariables[count]->deSerialize(buffer, size,
streamEndianness);
if (result != RETURN_OK) {
return result;
}
}
return result;
}

View File

@ -1,159 +0,0 @@
/*
* \file DataSet.h
*
* \brief This file contains the DataSet class and a small structure called DataSetContent.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*
*/
#ifndef DATASET_H_
#define DATASET_H_
#include "DataPool.h"
#include "DataSetIF.h"
#include "PoolRawAccess.h"
#include "PoolVariable.h"
#include "PoolVarList.h"
#include "PoolVector.h"
#include "../serialize/SerializeAdapter.h"
/**
* \brief The DataSet class manages a set of locally checked out variables.
*
* \details This class manages a list, where a set of local variables (or pool variables) are
* registered. They are checked-out (i.e. their values are looked up and copied)
* with the read call. After the user finishes working with the pool variables,
* he can write back all variable values to the pool with the commit call.
* The data set manages locking and freeing the data pool, to ensure that all values
* are read and written back at once.
* An internal state manages usage of this class. Variables may only be registered before
* the read call is made, and the commit call only after the read call.
* If pool variables are writable and not committed until destruction of the set, the
* DataSet class automatically sets the valid flag in the data pool to invalid (without)
* changing the variable's value.
*
* \ingroup data_pool
*/
class DataSet: public DataSetIF, public HasReturnvaluesIF, public SerializeIF {
private:
//SHOULDDO we could use a linked list of datapool variables
static const uint8_t DATA_SET_MAX_SIZE = 63; //!< This definition sets the maximum number of variables to register in one DataSet.
/**
* \brief This array represents all pool variables registered in this set.
* \details It has a maximum size of DATA_SET_MAX_SIZE.
*/
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
/**
* \brief The fill_count attribute ensures that the variables register in the correct array
* position and that the maximum number of variables is not exceeded.
*/
uint16_t fill_count;
/**
* States of the seet.
*/
enum States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* \brief state manages the internal state of the data set, which is important e.g. for the
* behavior on destruction.
*/
States state;
/**
* \brief This is a small helper function to facilitate locking the global data pool.
* \details It makes use of the lockDataPool method offered by the DataPool class.
*/
uint8_t lockDataPool();
/**
* \brief This is a small helper function to facilitate unlocking the global data pool.
* \details It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
uint8_t freeDataPoolLock();
public:
static const uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static const ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static const ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static const ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
/**
* \brief The constructor simply sets the fill_count to zero and sets the state to "uninitialized".
*/
DataSet();
/**
* \brief The destructor automatically manages writing the valid information of variables.
* \details In case the data set was read out, but not committed (indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~DataSet();
/**
* \brief The read call initializes reading out all registered variables.
* \details It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values from the
* data pool) which are not write-only. In case of an error (e.g. a wrong data type,
* or an invalid data pool id), the operation is aborted and
* \c INVALID_PARAMETER_DEFINITION returned.
* The data pool is locked during the whole read operation and freed afterwards.
* The state changes to "was written" after this operation.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - \c SET_WAS_ALREADY_READ if read() is called twice without calling
* commit() in between
*/
ReturnValue_t read();
/**
* \brief The commit call initializes writing back the registered variables.
* \details It iterates through the list of registered variables and calls
* the commit() method of the remaining registered variables (which write back
* their values to the pool).
* The data pool is locked during the whole commit operation and freed afterwards.
* The state changes to "was committed" after this operation.
* If the set does contain at least one variable which is not write-only commit()
* can only be called after read(). If the set only contains variables which are
* write only, commit() can be called without a preceding read() call.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(void);
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(uint8_t valid);
/**
* \brief This operation is used to register the local variables in the set.
* \details It copies all required information to the currently
* free space in the registeredVariables list.
*/
void registerVariable(PoolVariableIF* variable);
/**
* Set the valid information of all variables contained in the set which are not readonly
*
* @param valid Validity information from PoolVariableIF.
*/
void setValid(uint8_t valid);
ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const override;
size_t getSerializedSize() const override;
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override;
};
#endif /* DATASET_H_ */

View File

@ -1,39 +1,47 @@
/** #ifndef FSFW_DATAPOOL_DATASETIF_H_
* \file DataSetIF.h #define FSFW_DATAPOOL_DATASETIF_H_
*
* \brief This file contains the small interface to access the DataSet class.
*
* \date 10/23/2012
*
* \author Bastian Baetz
*
*/
#ifndef DATASETIF_H_
#define DATASETIF_H_
#include "../returnvalues/HasReturnvaluesIF.h"
#include "../timemanager/Clock.h"
class PoolVariableIF; class PoolVariableIF;
/** /**
* \brief This class defines a small interface to register on a DataSet. * @brief This class defines a small interface to register on a DataSet.
* *
* \details Currently, the only purpose of this interface is to provide a method for locally * @details
* checked-out variables to register on a data set. Still, it may become useful for * Currently, the only purpose of this interface is to provide a
* other purposes as well. * method for locally checked-out variables to register on a data set.
* * Still, it may become useful for other purposes as well.
* \ingroup data_pool * @author Bastian Baetz
* @ingroup data_pool
*/ */
class DataSetIF { class DataSetIF {
public: public:
static constexpr uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static constexpr ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static constexpr ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static constexpr ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
static constexpr ReturnValue_t DATA_SET_UNINITIALISED = MAKE_RETURN_CODE( 0x04 );
static constexpr ReturnValue_t DATA_SET_FULL = MAKE_RETURN_CODE( 0x05 );
static constexpr ReturnValue_t POOL_VAR_NULL = MAKE_RETURN_CODE( 0x06 );
/** /**
* \brief This is an empty virtual destructor, as it is proposed for C++ interfaces. * @brief This is an empty virtual destructor,
* as it is proposed for C++ interfaces.
*/ */
virtual ~DataSetIF() {} virtual ~DataSetIF() {}
/** /**
* \brief This operation provides a method to register local data pool variables * @brief This operation provides a method to register local data pool
* to register in a data set by passing itself to this DataSet operation. * variables to register in a data set by passing itself
* to this DataSet operation.
*/ */
virtual void registerVariable( PoolVariableIF* variable ) = 0; virtual ReturnValue_t registerVariable(PoolVariableIF* variable) = 0;
virtual uint16_t getFillCount() const = 0;
}; };
#endif /* DATASETIF_H_ */ #endif /* FSFW_DATAPOOL_DATASETIF_H_ */

View File

@ -1,5 +1,4 @@
#include "HkSwitchHelper.h" #include "../datapool/HkSwitchHelper.h"
//#include <mission/tmtcservices/HKService_03.h>
#include "../ipc/QueueFactory.h" #include "../ipc/QueueFactory.h"
HkSwitchHelper::HkSwitchHelper(EventReportingProxyIF* eventProxy) : HkSwitchHelper::HkSwitchHelper(EventReportingProxyIF* eventProxy) :
@ -22,14 +21,14 @@ ReturnValue_t HkSwitchHelper::initialize() {
} }
ReturnValue_t HkSwitchHelper::performOperation(uint8_t operationCode) { ReturnValue_t HkSwitchHelper::performOperation(uint8_t operationCode) {
CommandMessage message; CommandMessage command;
while (actionQueue->receiveMessage(&message) == HasReturnvaluesIF::RETURN_OK) { while (actionQueue->receiveMessage(&command) == HasReturnvaluesIF::RETURN_OK) {
ReturnValue_t result = commandActionHelper.handleReply(&message); ReturnValue_t result = commandActionHelper.handleReply(&command);
if (result == HasReturnvaluesIF::RETURN_OK) { if (result == HasReturnvaluesIF::RETURN_OK) {
continue; continue;
} }
message.setToUnknownCommand(); command.setToUnknownCommand();
actionQueue->reply(&message); actionQueue->reply(&command);
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;

View File

@ -0,0 +1,169 @@
#include "PoolDataSetBase.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
PoolDataSetBase::PoolDataSetBase(PoolVariableIF** registeredVariablesArray,
const size_t maxFillCount):
registeredVariables(registeredVariablesArray),
maxFillCount(maxFillCount) {
}
PoolDataSetBase::~PoolDataSetBase() {}
ReturnValue_t PoolDataSetBase::registerVariable(
PoolVariableIF *variable) {
if (state != States::DATA_SET_UNINITIALISED) {
sif::error << "DataSet::registerVariable: "
"Call made in wrong position." << std::endl;
return DataSetIF::DATA_SET_UNINITIALISED;
}
if (variable == nullptr) {
sif::error << "DataSet::registerVariable: "
"Pool variable is nullptr." << std::endl;
return DataSetIF::POOL_VAR_NULL;
}
if (fillCount >= maxFillCount) {
sif::error << "DataSet::registerVariable: "
"DataSet is full." << std::endl;
return DataSetIF::DATA_SET_FULL;
}
registeredVariables[fillCount] = variable;
fillCount++;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t PoolDataSetBase::read(uint32_t lockTimeout) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if (state == States::DATA_SET_UNINITIALISED) {
lockDataPool(lockTimeout);
for (uint16_t count = 0; count < fillCount; count++) {
result = readVariable(count);
if(result != RETURN_OK) {
break;
}
}
state = States::DATA_SET_WAS_READ;
unlockDataPool();
}
else {
sif::error << "DataSet::read(): "
"Call made in wrong position. Don't forget to commit"
" member datasets!" << std::endl;
result = SET_WAS_ALREADY_READ;
}
return result;
}
uint16_t PoolDataSetBase::getFillCount() const {
return fillCount;
}
ReturnValue_t PoolDataSetBase::readVariable(uint16_t count) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
// These checks are often performed by the respective
// variable implementation too, but I guess a double check does not hurt.
if (registeredVariables[count]->getReadWriteMode() !=
PoolVariableIF::VAR_WRITE and
registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER)
{
result = registeredVariables[count]->readWithoutLock();
if(result != HasReturnvaluesIF::RETURN_OK) {
result = INVALID_PARAMETER_DEFINITION;
}
}
return result;
}
ReturnValue_t PoolDataSetBase::commit(uint32_t lockTimeout) {
if (state == States::DATA_SET_WAS_READ) {
handleAlreadyReadDatasetCommit(lockTimeout);
return HasReturnvaluesIF::RETURN_OK;
}
else {
return handleUnreadDatasetCommit(lockTimeout);
}
}
void PoolDataSetBase::handleAlreadyReadDatasetCommit(uint32_t lockTimeout) {
lockDataPool(lockTimeout);
for (uint16_t count = 0; count < fillCount; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commitWithoutLock();
}
}
state = States::DATA_SET_UNINITIALISED;
unlockDataPool();
}
ReturnValue_t PoolDataSetBase::handleUnreadDatasetCommit(uint32_t lockTimeout) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
lockDataPool(lockTimeout);
for (uint16_t count = 0; count < fillCount; count++) {
if (registeredVariables[count]->getReadWriteMode()
== PoolVariableIF::VAR_WRITE
&& registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
registeredVariables[count]->commitWithoutLock();
} else if (registeredVariables[count]->getDataPoolId()
!= PoolVariableIF::NO_PARAMETER) {
if (result != COMMITING_WITHOUT_READING) {
sif::error << "DataSet::commit(): commit-without-read call made "
"with non write-only variable." << std::endl;
result = COMMITING_WITHOUT_READING;
}
}
}
state = States::DATA_SET_UNINITIALISED;
unlockDataPool();
return result;
}
ReturnValue_t PoolDataSetBase::lockDataPool(uint32_t timeoutMs) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t PoolDataSetBase::unlockDataPool() {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t PoolDataSetBase::serialize(uint8_t** buffer, size_t* size,
const size_t maxSize, SerializeIF::Endianness streamEndianness) const {
ReturnValue_t result = HasReturnvaluesIF::RETURN_FAILED;
for (uint16_t count = 0; count < fillCount; count++) {
result = registeredVariables[count]->serialize(buffer, size, maxSize,
streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
ReturnValue_t PoolDataSetBase::deSerialize(const uint8_t** buffer, size_t* size,
SerializeIF::Endianness streamEndianness) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_FAILED;
for (uint16_t count = 0; count < fillCount; count++) {
result = registeredVariables[count]->deSerialize(buffer, size,
streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
size_t PoolDataSetBase::getSerializedSize() const {
uint32_t size = 0;
for (uint16_t count = 0; count < fillCount; count++) {
size += registeredVariables[count]->getSerializedSize();
}
return size;
}
void PoolDataSetBase::setContainer(PoolVariableIF **variablesContainer) {
this->registeredVariables = variablesContainer;
}

152
datapool/PoolDataSetBase.h Normal file
View File

@ -0,0 +1,152 @@
#ifndef FSFW_DATAPOOL_POOLDATASETBASE_H_
#define FSFW_DATAPOOL_POOLDATASETBASE_H_
#include "PoolDataSetIF.h"
#include "PoolVariableIF.h"
#include "../ipc/MutexIF.h"
/**
* @brief The DataSetBase class manages a set of locally checked out variables.
* @details
* This class manages a list, where a set of local variables (or pool variables)
* are registered. They are checked-out (i.e. their values are looked
* up and copied) with the read call. After the user finishes working with the
* pool variables, he can write back all variable values to the pool with
* the commit call. The data set manages locking and freeing the data pool,
* to ensure that all values are read and written back at once.
*
* An internal state manages usage of this class. Variables may only be
* registered before the read call is made, and the commit call only
* after the read call.
*
* If pool variables are writable and not committed until destruction
* of the set, the DataSet class automatically sets the valid flag in the
* data pool to invalid (without) changing the variable's value.
*
* The base class lockDataPool und unlockDataPool implementation are empty
* and should be implemented to protect the underlying pool type.
* @author Bastian Baetz
* @ingroup data_pool
*/
class PoolDataSetBase: public PoolDataSetIF,
public SerializeIF,
public HasReturnvaluesIF {
public:
/**
* @brief Creates an empty dataset. Use registerVariable or
* supply a pointer to this dataset to PoolVariable
* initializations to register pool variables.
*/
PoolDataSetBase(PoolVariableIF** registeredVariablesArray,
const size_t maxFillCount);
virtual~ PoolDataSetBase();
/**
* @brief The read call initializes reading out all registered variables.
* @details
* It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values
* from the data pool) which are not write-only.
* In case of an error (e.g. a wrong data type, or an invalid data pool id),
* the operation is aborted and @c INVALID_PARAMETER_DEFINITION returned.
*
* The data pool is locked during the whole read operation and
* freed afterwards.The state changes to "was written" after this operation.
* @return
* - @c RETURN_OK if all variables were read successfully.
* - @c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - @c SET_WAS_ALREADY_READ if read() is called twice without calling
* commit() in between
*/
virtual ReturnValue_t read(uint32_t lockTimeout =
MutexIF::BLOCKING) override;
/**
* @brief The commit call initializes writing back the registered variables.
* @details
* It iterates through the list of registered variables and calls the
* commit() method of the remaining registered variables (which write back
* their values to the pool).
*
* The data pool is locked during the whole commit operation and
* freed afterwards. The state changes to "was committed" after this operation.
*
* If the set does contain at least one variable which is not write-only
* commit() can only be called after read(). If the set only contains
* variables which are write only, commit() can be called without a
* preceding read() call.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
virtual ReturnValue_t commit(uint32_t lockTimeout =
MutexIF::BLOCKING) override;
/**
* Register the passed pool variable instance into the data set.
* @param variable
* @return
*/
virtual ReturnValue_t registerVariable( PoolVariableIF* variable) override;
/**
* Provides the means to lock the underlying data structure to ensure
* thread-safety. Default implementation is empty
* @return Always returns -@c RETURN_OK
*/
virtual ReturnValue_t lockDataPool(uint32_t timeoutMs =
MutexIF::BLOCKING) override;
/**
* Provides the means to unlock the underlying data structure to ensure
* thread-safety. Default implementation is empty
* @return Always returns -@c RETURN_OK
*/
virtual ReturnValue_t unlockDataPool() override;
virtual uint16_t getFillCount() const;
/* SerializeIF implementations */
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t maxSize,
SerializeIF::Endianness streamEndianness) const override;
virtual size_t getSerializedSize() const override;
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
SerializeIF::Endianness streamEndianness) override;
protected:
/**
* @brief The fill_count attribute ensures that the variables
* register in the correct array position and that the maximum
* number of variables is not exceeded.
*/
uint16_t fillCount = 0;
/**
* States of the seet.
*/
enum class States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* @brief state manages the internal state of the data set,
* which is important e.g. for the behavior on destruction.
*/
States state = States::DATA_SET_UNINITIALISED;
/**
* @brief This array represents all pool variables registered in this set.
* Child classes can use a static or dynamic container to create
* an array of registered variables and assign the first entry here.
*/
PoolVariableIF** registeredVariables = nullptr;
const size_t maxFillCount = 0;
void setContainer(PoolVariableIF** variablesContainer);
private:
ReturnValue_t readVariable(uint16_t count);
void handleAlreadyReadDatasetCommit(uint32_t lockTimeout);
ReturnValue_t handleUnreadDatasetCommit(uint32_t lockTimeout);
};
#endif /* FSFW_DATAPOOL_POOLDATASETBASE_H_ */

33
datapool/PoolDataSetIF.h Normal file
View File

@ -0,0 +1,33 @@
#ifndef FSFW_DATAPOOL_POOLDATASETIF_H_
#define FSFW_DATAPOOL_POOLDATASETIF_H_
#include "DataSetIF.h"
/**
* @brief Extendes the DataSetIF by adding abstract functions to lock
* and unlock a data pool and read/commit semantics.
*/
class PoolDataSetIF: public DataSetIF {
public:
virtual~ PoolDataSetIF() {};
virtual ReturnValue_t read(dur_millis_t lockTimeout) = 0;
virtual ReturnValue_t commit(dur_millis_t lockTimeout) = 0;
/**
* @brief Most underlying data structures will have a pool like structure
* and will require a lock and unlock mechanism to ensure
* thread-safety
* @return Lock operation result
*/
virtual ReturnValue_t lockDataPool(dur_millis_t timeoutMs) = 0;
/**
* @brief Unlock call corresponding to the lock call.
* @return Unlock operation result
*/
virtual ReturnValue_t unlockDataPool() = 0;
virtual bool isValid() const = 0;
};
#endif /* FSFW_DATAPOOL_POOLDATASETIF_H_ */

View File

@ -1,4 +1,5 @@
#include "PoolEntry.h" #include "PoolEntry.h"
#include "../serviceinterface/ServiceInterfaceStream.h" #include "../serviceinterface/ServiceInterfaceStream.h"
#include "../globalfunctions/arrayprinter.h" #include "../globalfunctions/arrayprinter.h"
#include <cstring> #include <cstring>

View File

@ -1,5 +1,5 @@
#ifndef FRAMEWORK_DATAPOOL_POOLENTRY_H_ #ifndef FSFW_DATAPOOL_POOLENTRY_H_
#define FRAMEWORK_DATAPOOL_POOLENTRY_H_ #define FSFW_DATAPOOL_POOLENTRY_H_
#include "PoolEntryIF.h" #include "PoolEntryIF.h"
@ -127,4 +127,4 @@ public:
Type getType(); Type getType();
}; };
#endif /* POOLENTRY_H_ */ #endif /* FSFW_DATAPOOL_POOLENTRY_H_ */

View File

@ -1,5 +1,5 @@
#ifndef FRAMEWORK_DATAPOOL_POOLENTRYIF_H_ #ifndef FSFW_DATAPOOL_POOLENTRYIF_H_
#define FRAMEWORK_DATAPOOL_POOLENTRYIF_H_ #define FSFW_DATAPOOL_POOLENTRYIF_H_
#include "../globalfunctions/Type.h" #include "../globalfunctions/Type.h"
#include <cstdint> #include <cstdint>
@ -60,4 +60,4 @@ public:
virtual Type getType() = 0; virtual Type getType() = 0;
}; };
#endif /* POOLENTRYIF_H_ */ #endif /* FSFW_DATAPOOL_POOLENTRYIF_H_ */

View File

@ -1,187 +0,0 @@
#include "DataPool.h"
#include "PoolEntryIF.h"
#include "PoolRawAccess.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../serialize/EndianConverter.h"
#include <cstring>
PoolRawAccess::PoolRawAccess(uint32_t set_id, uint8_t setArrayEntry,
DataSetIF *data_set, ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), arrayEntry(setArrayEntry), valid(false), type(
Type::UNKNOWN_TYPE), typeSize(0), arraySize(0), sizeTillEnd(0), readWriteMode(
setReadWriteMode) {
memset(value, 0, sizeof(value));
if (data_set != NULL) {
data_set->registerVariable(this);
}
}
PoolRawAccess::~PoolRawAccess() {
}
ReturnValue_t PoolRawAccess::read() {
PoolEntryIF *read_out = ::dataPool.getRawData(dataPoolId);
if (read_out != NULL) {
valid = read_out->getValid();
if (read_out->getSize() > arrayEntry) {
arraySize = read_out->getSize();
typeSize = read_out->getByteSize() / read_out->getSize();
type = read_out->getType();
if (typeSize <= sizeof(value)) {
uint16_t arrayPosition = arrayEntry * typeSize;
sizeTillEnd = read_out->getByteSize() - arrayPosition;
uint8_t *ptr =
&((uint8_t*) read_out->getRawData())[arrayPosition];
memcpy(value, ptr, typeSize);
return HasReturnvaluesIF::RETURN_OK;
} else {
//Error value type too large.
}
} else {
//Error index requested too large
}
} else {
//Error entry does not exist.
}
sif::error << "PoolRawAccess: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
valid = INVALID;
typeSize = 0;
sizeTillEnd = 0;
memset(value, 0, sizeof(value));
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t PoolRawAccess::commit() {
PoolEntryIF *write_back = ::dataPool.getRawData(dataPoolId);
if ((write_back != NULL) && (readWriteMode != VAR_READ)) {
write_back->setValid(valid);
uint8_t array_position = arrayEntry * typeSize;
uint8_t *ptr = &((uint8_t*) write_back->getRawData())[array_position];
memcpy(ptr, value, typeSize);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t* PoolRawAccess::getEntry() {
return value;
}
ReturnValue_t PoolRawAccess::getEntryEndianSafe(uint8_t *buffer,
size_t *writtenBytes, size_t maxSize) {
uint8_t *data_ptr = getEntry();
// debug << "PoolRawAccess::getEntry: Array position: " << index * size_of_type << " Size of T: " << (int)size_of_type << " ByteSize: " << byte_size << " Position: " << *size << std::endl;
if (typeSize == 0) {
return DATA_POOL_ACCESS_FAILED;
}
if (typeSize > maxSize) {
return INCORRECT_SIZE;
}
EndianConverter::convertBigEndian(buffer, data_ptr, typeSize);
*writtenBytes = typeSize;
return HasReturnvaluesIF::RETURN_OK;
}
Type PoolRawAccess::getType() {
return type;
}
size_t PoolRawAccess::getSizeOfType() {
return typeSize;
}
size_t PoolRawAccess::getArraySize() {
return arraySize;
}
uint32_t PoolRawAccess::getDataPoolId() const {
return dataPoolId;
}
PoolVariableIF::ReadWriteMode_t PoolRawAccess::getReadWriteMode() const {
return readWriteMode;
}
ReturnValue_t PoolRawAccess::setEntryFromBigEndian(const uint8_t *buffer,
size_t setSize) {
if (typeSize == setSize) {
EndianConverter::convertBigEndian(value, buffer, typeSize);
return HasReturnvaluesIF::RETURN_OK;
} else {
sif::error
<< "PoolRawAccess::setEntryFromBigEndian: Illegal sizes: Internal"
<< (uint32_t) typeSize << ", Requested: " << setSize
<< std::endl;
return INCORRECT_SIZE;
}
}
bool PoolRawAccess::isValid() const {
if (valid != INVALID)
return true;
else
return false;
}
void PoolRawAccess::setValid(uint8_t valid) {
this->valid = valid;
}
size_t PoolRawAccess::getSizeTillEnd() const {
return sizeTillEnd;
}
ReturnValue_t PoolRawAccess::serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const {
if (typeSize + *size <= maxSize) {
switch (streamEndianness) {
case (Endianness::BIG):
EndianConverter::convertBigEndian(*buffer, value, typeSize);
break;
case (Endianness::LITTLE):
EndianConverter::convertLittleEndian(*buffer, value, typeSize);
break;
default:
case (Endianness::MACHINE):
memcpy(*buffer, value, typeSize);
break;
}
*size += typeSize;
(*buffer) += typeSize;
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
size_t PoolRawAccess::getSerializedSize() const {
return typeSize;
}
ReturnValue_t PoolRawAccess::deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) {
if (*size >= typeSize) {
switch (streamEndianness) {
case (Endianness::BIG):
EndianConverter::convertBigEndian(value, *buffer, typeSize);
break;
case (Endianness::LITTLE):
EndianConverter::convertLittleEndian(value, *buffer, typeSize);
break;
default:
case (Endianness::MACHINE):
memcpy(value, *buffer, typeSize);
break;
}
*size -= typeSize;
*buffer += typeSize;
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::STREAM_TOO_SHORT;
}
}

View File

@ -1,152 +0,0 @@
#ifndef POOLRAWACCESS_H_
#define POOLRAWACCESS_H_
#include "DataSetIF.h"
#include "PoolVariableIF.h"
/**
* This class allows accessing Data Pool variables as raw bytes.
* This is necessary to have an access method for HK data, as the PID's alone do not
* provide a type information.
* \ingroup data_pool
*/
class PoolRawAccess: public PoolVariableIF {
private:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The array entry that is fetched from the data pool.
*/
uint8_t arrayEntry;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief This value contains the type of the data pool entry.
*/
Type type;
/**
* \brief This value contains the size of the data pool entry in bytes.
*/
size_t typeSize;
/**
* The size of the DP array (single values return 1)
*/
size_t arraySize;
/**
* The size (in bytes) from the selected entry till the end of this DataPool variable.
*/
size_t sizeTillEnd;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
static const uint8_t RAW_MAX_SIZE = sizeof(double);
protected:
/**
* \brief This is a call to read the value from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read();
/**
* \brief The commit call writes back the variable's value to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit();
public:
static const uint8_t INTERFACE_ID = CLASS_ID::POOL_RAW_ACCESS_CLASS;
static const ReturnValue_t INCORRECT_SIZE = MAKE_RETURN_CODE(0x01);
static const ReturnValue_t DATA_POOL_ACCESS_FAILED = MAKE_RETURN_CODE(0x02);
uint8_t value[RAW_MAX_SIZE];
PoolRawAccess(uint32_t data_pool_id, uint8_t arrayEntry,
DataSetIF *data_set, ReadWriteMode_t setReadWriteMode =
PoolVariableIF::VAR_READ);
/**
* \brief The classes destructor is empty. If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~PoolRawAccess();
/**
* \brief This operation returns a pointer to the entry fetched.
* \details This means, it does not return a pointer to byte "index", but to the start byte of
* array entry "index". Example: If the original data pool array consists of an double
* array of size four, getEntry(1) returns &(this->value[8]).
*/
uint8_t* getEntry();
/**
* \brief This operation returns the fetched entry from the data pool and
* flips the bytes, if necessary.
* \details It makes use of the getEntry call of this function, but additionally flips the
* bytes to big endian, which is the default for external communication (as House-
* keeping telemetry). To achieve this, the data is copied directly to the passed
* buffer, if it fits in the given maxSize.
* \param buffer A pointer to a buffer to write to
* \param writtenBytes The number of bytes written is returned with this value.
* \param maxSize The maximum size that the function may write to buffer.
* \return - \c RETURN_OK if entry could be acquired
* - \c RETURN_FAILED else.
*/
ReturnValue_t getEntryEndianSafe(uint8_t *buffer, size_t *size,
size_t maxSize);
/**
* With this method, the content can be set from a big endian buffer safely.
* @param buffer Pointer to the data to set
* @param size Size of the data to write. Must fit this->size.
* @return - \c RETURN_OK on success
* - \c RETURN_FAILED on failure
*/
ReturnValue_t setEntryFromBigEndian(const uint8_t *buffer,
size_t setSize);
/**
* \brief This operation returns the type of the entry currently stored.
*/
Type getType();
/**
* \brief This operation returns the size of the entry currently stored.
*/
size_t getSizeOfType();
/**
*
* @return the size of the datapool array
*/
size_t getArraySize();
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const;
/**
* This method returns if the variable is read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const;
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const;
void setValid(uint8_t valid);
/**
* Getter for the remaining size.
*/
size_t getSizeTillEnd() const;
ReturnValue_t serialize(uint8_t **buffer, size_t *size, size_t maxSize,
Endianness streamEndianness) const override;
size_t getSerializedSize() const override;
ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) override;
};
#endif /* POOLRAWACCESS_H_ */

View File

@ -1,14 +1,15 @@
#ifndef POOLVARLIST_H_ #ifndef FSFW_DATAPOOL_POOLVARLIST_H_
#define POOLVARLIST_H_ #define FSFW_DATAPOOL_POOLVARLIST_H_
#include "PoolVariable.h" #include "../datapool/PoolVariableIF.h"
#include "PoolVariableIF.h" #include "../datapoolglob/GlobalPoolVariable.h"
template <class T, uint8_t n_var> template <class T, uint8_t n_var>
class PoolVarList { class PoolVarList {
private: private:
PoolVariable<T> variables[n_var]; GlobPoolVar<T> variables[n_var];
public: public:
PoolVarList( const uint32_t set_id[n_var], DataSetIF* dataSet, PoolVariableIF::ReadWriteMode_t setReadWriteMode ) { PoolVarList( const uint32_t set_id[n_var], DataSetIF* dataSet,
PoolVariableIF::ReadWriteMode_t setReadWriteMode ) {
//I really should have a look at the new init list c++ syntax. //I really should have a look at the new init list c++ syntax.
if (dataSet == NULL) { if (dataSet == NULL) {
return; return;
@ -20,9 +21,9 @@ public:
} }
} }
PoolVariable<T> &operator [](int i) { return variables[i]; } GlobPoolVar<T> &operator [](int i) { return variables[i]; }
}; };
#endif /* POOLVARLIST_H_ */ #endif /* FSFW_DATAPOOL_POOLVARLIST_H_ */

View File

@ -1,295 +0,0 @@
/*
* \file PoolVariable.h
*
* \brief This file contains the PoolVariable class, which locally represents a non-array data pool variable.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*/
#ifndef POOLVARIABLE_H_
#define POOLVARIABLE_H_
#include "DataSetIF.h"
#include "PoolEntry.h"
#include "PoolVariableIF.h"
#include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
template<typename T, uint8_t n_var> class PoolVarList;
/**
* \brief This is the access class for non-array data pool entries.
*
* \details To ensure safe usage of the data pool, operation is not done directly on the data pool
* entries, but on local copies. This class provides simple type-safe access to single
* data pool entries (i.e. entries with length = 1).
* The class can be instantiated as read-write and read only.
* It provides a commit-and-roll-back semantic, which means that the variable's value in
* the data pool is not changed until the commit call is executed.
* \tparam T The template parameter sets the type of the variable. Currently, all plain data types
* are supported, but in principle any type is possible.
* \ingroup data_pool
*/
template<typename T>
class PoolVariable: public PoolVariableIF {
template<typename U, uint8_t n_var> friend class PoolVarList;
protected:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
/**
* \brief This is a call to read the value from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read() {
PoolEntry<T> *read_out = ::dataPool.getData < T > (dataPoolId, 1);
if (read_out != NULL) {
valid = read_out->valid;
value = *(read_out->address);
return HasReturnvaluesIF::RETURN_OK;
} else {
value = 0;
valid = false;
sif::error << "PoolVariable: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
/**
* \brief The commit call writes back the variable's value to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit() {
PoolEntry<T> *write_back = ::dataPool.getData < T > (dataPoolId, 1);
if ((write_back != NULL) && (readWriteMode != VAR_READ)) {
write_back->valid = valid;
*(write_back->address) = value;
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
/**
* Empty ctor for List initialization
*/
PoolVariable() :
dataPoolId(PoolVariableIF::NO_PARAMETER), valid(
PoolVariableIF::INVALID), readWriteMode(VAR_READ), value(0) {
}
public:
/**
* \brief This is the local copy of the data pool entry.
* \details The user can work on this attribute
* just like he would on a simple local variable.
*/
T value;
/**
* \brief In the constructor, the variable can register itself in a DataSet (if not NULL is
* passed).
* \details It DOES NOT fetch the current value from the data pool, but sets the value
* attribute to default (0). The value is fetched within the read() operation.
* \param set_id This is the id in the global data pool this instance of the access class
* corresponds to.
* \param dataSet The data set in which the variable shall register itself. If NULL,
* the variable is not registered.
* \param setWritable If this flag is set to true, changes in the value attribute can be
* written back to the data pool, otherwise not.
*/
PoolVariable(uint32_t set_id, DataSetIF *dataSet,
ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), valid(PoolVariableIF::INVALID), readWriteMode(
setReadWriteMode), value(0) {
if (dataSet != NULL) {
dataSet->registerVariable(this);
}
}
/**
* Copy ctor to copy classes containing Pool Variables.
*/
PoolVariable(const PoolVariable &rhs) :
dataPoolId(rhs.dataPoolId), valid(rhs.valid), readWriteMode(
rhs.readWriteMode), value(rhs.value) {
}
/**
* \brief The classes destructor is empty.
* \details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~PoolVariable() {
}
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const {
return dataPoolId;
}
/**
* This operation sets the data pool id of the variable.
* The method is necessary to set id's of data pool member variables with bad initialization.
*/
void setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const {
return readWriteMode;
}
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const {
if (valid)
return true;
else
return false;
}
uint8_t getValid() {
return valid;
}
void setValid(uint8_t valid) {
this->valid = valid;
}
operator T() {
return value;
}
operator T() const {
return value;
}
PoolVariable<T>& operator=(T newValue) {
value = newValue;
return *this;
}
PoolVariable<T>& operator=(PoolVariable<T> newPoolVariable) {
value = newPoolVariable.value;
return *this;
}
virtual ReturnValue_t serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const override {
return SerializeAdapter::serialize<T>(&value, buffer, size, maxSize,
streamEndianness);
}
virtual size_t getSerializedSize() const override {
return SerializeAdapter::getSerializedSize(&value);
}
virtual ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) override {
return SerializeAdapter::deSerialize(&value, buffer, size, streamEndianness);
}
};
typedef PoolVariable<uint8_t> db_uint8_t;
typedef PoolVariable<uint16_t> db_uint16_t;
typedef PoolVariable<uint32_t> db_uint32_t;
typedef PoolVariable<int8_t> db_int8_t;
typedef PoolVariable<int16_t> db_int16_t;
typedef PoolVariable<int32_t> db_int32_t;
typedef PoolVariable<uint8_t> db_bool_t;
typedef PoolVariable<float> db_float_t;
typedef PoolVariable<double> db_double_t;
//Alternative (but I thing this is not as useful: code duplication, differences too small):
//template <typename T>
//class PoolReader : public PoolVariableIF {
//private:
// uint32_t parameter_id;
// uint8_t valid;
//public:
// T value;
// PoolReader( uint32_t set_id, DataSetIF* set ) : parameter_id(set_id), valid(false), value(0) {
// set->registerVariable( this );
// }
//
// ~PoolReader() {};
//
// uint8_t commit() {
// return HasReturnvaluesIF::RETURN_OK;
// }
//
// uint8_t read() {
// PoolEntry<T>* read_out = ::dataPool.getData<T>( parameter_id, 1 );
// if ( read_out != NULL ) {
// valid = read_out->valid;
// value = *(read_out->address);
// return HasReturnvaluesIF::RETURN_OK;
// } else {
// value = 0;
// valid = false;
// return CHECKOUT_FAILED;
// }
// }
// uint32_t getParameterId() { return parameter_id; }
// bool isWritable() { return false; };
// bool isValid() { if (valid) return true; else return false; }
//};
//
//template <typename T>
//class PoolWriter : public PoolVariableIF {
//private:
// uint32_t parameter_id;
//public:
// T value;
// PoolWriter( uint32_t set_id, DataSetIF* set ) : parameter_id(set_id), value(0) {
// set->registerVariable( this );
// }
//
// ~PoolWriter() {};
//
// uint8_t commit() {
// PoolEntry<T>* write_back = ::dataPool.getData<T>( parameter_id, 1 );
// if ( write_back != NULL ) {
// write_back->valid = true;
// *(write_back->address) = value;
// return HasReturnvaluesIF::RETURN_OK;
// } else {
// return CHECKOUT_FAILED;
// }
// }
// uint8_t read() {
// PoolEntry<T>* read_out = ::dataPool.getData<T>( parameter_id, 1 );
// if ( read_out != NULL ) {
// value = *(read_out->address);
// return HasReturnvaluesIF::RETURN_OK;
// } else {
// value = 0;
// return CHECKOUT_FAILED;
// }
// }
// uint32_t getParameterId() { return parameter_id; }
// bool isWritable() { return true; };
// bool isValid() { return false; }
//};
#endif /* POOLVARIABLE_H_ */

View File

@ -1,71 +1,99 @@
/* #ifndef FSFW_DATAPOOL_POOLVARIABLEIF_H_
* \file PoolVariableIF.h #define FSFW_DATAPOOL_POOLVARIABLEIF_H_
*
* \brief This file contains the interface definition for pool variables.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*/
#ifndef POOLVARIABLEIF_H_
#define POOLVARIABLEIF_H_
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include "../serialize/SerializeIF.h" #include "../serialize/SerializeIF.h"
/** /**
* \brief This interface is used to control local data pool variable representations. * @brief This interface is used to control data pool
* * variable representations.
* \details To securely handle data pool variables, all pool entries are locally managed by * @details
* data pool variable access classes, which are called pool variables. To ensure a * To securely handle data pool variables, all pool entries are locally
* common state of a set of variables needed in a function, these local pool variables * managed by data pool variable access classes, which are called pool
* again are managed by other classes, e.g. the DataSet. This interface provides unified * variables. To ensure a common state of a set of variables needed in a
* access to local pool variables for such manager classes. * function, these local pool variables again are managed by other classes,
* \ingroup data_pool * like the DataSet classes. This interface provides unified access to
* local pool variables for such manager classes.
* @author Bastian Baetz
* @ingroup data_pool
*/ */
class PoolVariableIF : public SerializeIF { class PoolVariableIF : public SerializeIF {
friend class DataSet; friend class PoolDataSetBase;
protected: friend class GlobDataSet;
/** friend class LocalPoolDataSetBase;
* \brief The commit call shall write back a newly calculated local value to the data pool.
*/
virtual ReturnValue_t commit() = 0;
/**
* \brief The read call shall read the value of this parameter from the data pool and store
* the content locally.
*/
virtual ReturnValue_t read() = 0;
public: public:
static const uint8_t VALID = 1; static constexpr uint8_t INTERFACE_ID = CLASS_ID::POOL_VARIABLE_IF;
static const uint8_t INVALID = 0; static constexpr ReturnValue_t INVALID_READ_WRITE_MODE = MAKE_RETURN_CODE(0xA0);
static const uint32_t NO_PARAMETER = 0;
static constexpr bool VALID = 1;
static constexpr bool INVALID = 0;
static constexpr uint32_t NO_PARAMETER = 0xffffffff;
enum ReadWriteMode_t { enum ReadWriteMode_t {
VAR_READ, VAR_WRITE, VAR_READ_WRITE VAR_READ, VAR_WRITE, VAR_READ_WRITE
}; };
/** /**
* \brief This is an empty virtual destructor, as it is proposed for C++ interfaces. * @brief This is an empty virtual destructor,
* as it is proposed for C++ interfaces.
*/ */
virtual ~PoolVariableIF() { virtual ~PoolVariableIF() {}
}
/** /**
* \brief This method returns if the variable is write-only, read-write or read-only. * @brief This method returns if the variable is write-only,
* read-write or read-only.
*/ */
virtual ReadWriteMode_t getReadWriteMode() const = 0; virtual ReadWriteMode_t getReadWriteMode() const = 0;
/** /**
* \brief This operation shall return the data pool id of the variable. * @brief This operation shall return the data pool id of the variable.
*/ */
virtual uint32_t getDataPoolId() const = 0; virtual uint32_t getDataPoolId() const = 0;
/** /**
* \brief With this call, the valid information of the variable is returned. * @brief With this call, the valid information of the
* variable is returned.
*/ */
virtual bool isValid() const = 0; virtual bool isValid() const = 0;
/** /**
* \brief With this call, the valid information of the variable is set. * @brief With this call, the valid information of the variable is set.
*/ */
virtual void setValid(uint8_t validity) = 0; virtual void setValid(bool validity) = 0;
/**
* @brief The commit call shall write back a newly calculated local
* value to the data pool.
* @details
* It is assumed that these calls are implemented in a thread-safe manner!
*/
virtual ReturnValue_t commit(uint32_t lockTimeout) = 0;
/**
* @brief The read call shall read the value of this parameter from
* the data pool and store the content locally.
* @details
* It is assumbed that these calls are implemented in a thread-safe manner!
*/
virtual ReturnValue_t read(uint32_t lockTimeout) = 0;
protected:
/**
* @brief Same as commit with the difference that comitting will be
* performed without a lock
* @return
* This can be used if the lock protection is handled externally
* to avoid the overhead of locking and unlocking consecutively.
* Declared protected to avoid free public usage.
*/
virtual ReturnValue_t readWithoutLock() = 0;
/**
* @brief Same as commit with the difference that comitting will be
* performed without a lock
* @return
* This can be used if the lock protection is handled externally
* to avoid the overhead of locking and unlocking consecutively.
* Declared protected to avoid free public usage.
*/
virtual ReturnValue_t commitWithoutLock() = 0;
}; };
#endif /* POOLVARIABLEIF_H_ */ using pool_rwm_t = PoolVariableIF::ReadWriteMode_t;
#endif /* FSFW_DATAPOOL_POOLVARIABLEIF_H_ */

View File

@ -1,233 +0,0 @@
/*
* \file PoolVector.h
*
* \brief This file contains the PoolVector class, the header only class to handle data pool vectors.
*
* \date 10/23/2012
*
* \author Bastian Baetz
*/
#ifndef POOLVECTOR_H_
#define POOLVECTOR_H_
#include "DataSetIF.h"
#include "PoolEntry.h"
#include "PoolVariableIF.h"
#include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
/**
* \brief This is the access class for array-type data pool entries.
*
* \details To ensure safe usage of the data pool, operation is not done directly on the data pool
* entries, but on local copies. This class provides simple type- and length-safe access
* to vector-style data pool entries (i.e. entries with length > 1).
* The class can be instantiated as read-write and read only.
* It provides a commit-and-roll-back semantic, which means that no array entry in
* the data pool is changed until the commit call is executed.
* There are two template parameters:
* \tparam T This template parameter specifies the data type of an array entry. Currently, all
* plain data types are supported, but in principle any type is possible.
* \tparam vector_size This template parameter specifies the vector size of this entry.
* Using a template parameter for this is not perfect, but avoids dynamic memory allocation.
* \ingroup data_pool
*/
template<typename T, uint16_t vector_size>
class PoolVector: public PoolVariableIF {
private:
/**
* \brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* \brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* \brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
protected:
/**
* \brief This is a call to read the array's values from the global data pool.
* \details When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies all array values and the valid
* information to its local attributes. In case of a failure (wrong type, size or
* pool id not found), the variable is set to zero and invalid.
* The operation does NOT provide any mutual exclusive protection by itself.
*/
ReturnValue_t read() {
PoolEntry<T>* read_out = ::dataPool.getData<T>(this->dataPoolId,
vector_size);
if (read_out != NULL) {
this->valid = read_out->valid;
memcpy(this->value, read_out->address, read_out->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
memset(this->value, 0, vector_size * sizeof(T));
sif::error << "PoolVector: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
this->valid = INVALID;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
/**
* \brief The commit call copies the array values back to the data pool.
* \details It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
*
*/
ReturnValue_t commit() {
PoolEntry<T>* write_back = ::dataPool.getData<T>(this->dataPoolId,
vector_size);
if ((write_back != NULL) && (this->readWriteMode != VAR_READ)) {
write_back->valid = valid;
memcpy(write_back->address, this->value, write_back->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
public:
/**
* \brief This is the local copy of the data pool entry.
* \detials The user can work on this attribute
* just like he would on a local array of this type.
*/
T value[vector_size];
/**
* \brief In the constructor, the variable can register itself in a DataSet (if not NULL is
* passed).
* \details It DOES NOT fetch the current value from the data pool, but sets the value
* attribute to default (0). The value is fetched within the read() operation.
* \param set_id This is the id in the global data pool this instance of the access class
* corresponds to.
* \param dataSet The data set in which the variable shall register itself. If NULL,
* the variable is not registered.
* \param setWritable If this flag is set to true, changes in the value attribute can be
* written back to the data pool, otherwise not.
*/
PoolVector(uint32_t set_id, DataSetIF* set,
ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), valid(false), readWriteMode(setReadWriteMode) {
memset(this->value, 0, vector_size * sizeof(T));
if (set != NULL) {
set->registerVariable(this);
}
}
/**
* Copy ctor to copy classes containing Pool Variables.
*/
// PoolVector(const PoolVector& rhs) {
// PoolVector<T, vector_size> temp(rhs.dataPoolId, rhs.)
// memcpy(value, rhs.value, sizeof(T)*vector_size);
// }
/**
* \brief The classes destructor is empty.
* \details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~PoolVector() {
}
;
/**
* \brief The operation returns the number of array entries in this variable.
*/
uint8_t getSize() {
return vector_size;
}
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const {
return dataPoolId;
}
/**
* This operation sets the data pool id of the variable.
* The method is necessary to set id's of data pool member variables with bad initialization.
*/
void setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const {
return readWriteMode;
}
;
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const {
if (valid != INVALID)
return true;
else
return false;
}
void setValid(uint8_t valid) {
this->valid = valid;
}
uint8_t getValid() {
return valid;
}
T &operator [](int i) {
return value[i];
}
const T &operator [](int i) const {
return value[i];
}
PoolVector<T, vector_size> &operator=(
PoolVector<T, vector_size> newPoolVector) {
for (uint16_t i = 0; i < vector_size; i++) {
this->value[i] = newPoolVector.value[i];
}
return *this;
}
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vector_size; i++) {
result = SerializeAdapter::serialize(&(value[i]), buffer, size,
maxSize, streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
virtual size_t getSerializedSize() const {
return vector_size * SerializeAdapter::getSerializedSize(value);
}
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vector_size; i++) {
result = SerializeAdapter::deSerialize(&(value[i]), buffer, size,
streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
};
#endif /* POOLVECTOR_H_ */

View File

@ -0,0 +1,14 @@
#ifndef FRAMEWORK_DATAPOOL_SHAREDDATASETIF_H_
#define FRAMEWORK_DATAPOOL_SHAREDDATASETIF_H_
#include "PoolDataSetIF.h"
class SharedDataSetIF: public PoolDataSetIF {
public:
virtual ~SharedDataSetIF() {};
private:
virtual ReturnValue_t lockDataset(dur_millis_t mutexTimeout) = 0;
virtual ReturnValue_t unlockDataset() = 0;
};
#endif /* FRAMEWORK_DATAPOOL_SHAREDDATASETIF_H_ */

View File

@ -1,4 +1,4 @@
#include "ControllerSet.h" #include <fsfw/datapoolglob/ControllerSet.h>
ControllerSet::ControllerSet() { ControllerSet::ControllerSet() {

View File

@ -0,0 +1,15 @@
#ifndef FSFW_DATAPOOLGLOB_CONTROLLERSET_H_
#define FSFW_DATAPOOLGLOB_CONTROLLERSET_H_
#include "../datapoolglob/GlobalDataSet.h"
class ControllerSet :public GlobDataSet {
public:
ControllerSet();
virtual ~ControllerSet();
virtual void setToDefault() = 0;
void setInvalid();
};
#endif /* FSFW_DATAPOOLGLOB_CONTROLLERSET_H_ */

View File

@ -1,7 +1,8 @@
#include "DataPool.h"
#include "DataPoolAdmin.h" #include "DataPoolAdmin.h"
#include "DataSet.h" #include "GlobalDataSet.h"
#include "GlobalDataPool.h"
#include "PoolRawAccess.h" #include "PoolRawAccess.h"
#include "../ipc/CommandMessage.h" #include "../ipc/CommandMessage.h"
#include "../ipc/QueueFactory.h" #include "../ipc/QueueFactory.h"
#include "../parameters/ParameterMessage.h" #include "../parameters/ParameterMessage.h"
@ -40,9 +41,9 @@ ReturnValue_t DataPoolAdmin::executeAction(ActionId_t actionId,
uint8_t valid = data[4]; uint8_t valid = data[4];
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = glob::dataPool.PIDToDataPoolId(address);
DataSet mySet; GlobDataSet mySet;
PoolRawAccess variable(poolId, 0, &mySet, PoolVariableIF::VAR_READ_WRITE); PoolRawAccess variable(poolId, 0, &mySet, PoolVariableIF::VAR_READ_WRITE);
ReturnValue_t status = mySet.read(); ReturnValue_t status = mySet.read();
if (status != RETURN_OK) { if (status != RETURN_OK) {
@ -92,9 +93,9 @@ void DataPoolAdmin::handleCommand() {
ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address, ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address,
const uint8_t* data, size_t size, uint8_t** dataPointer) { const uint8_t* data, size_t size, uint8_t** dataPointer) {
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = glob::dataPool.PIDToDataPoolId(address);
uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address); uint8_t arrayIndex = glob::dataPool.PIDToArrayIndex(address);
DataSet testSet; GlobDataSet testSet;
PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet, PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
ReturnValue_t status = testSet.read(); ReturnValue_t status = testSet.read();
@ -113,7 +114,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address,
const uint8_t* readPosition = data; const uint8_t* readPosition = data;
for (; size > 0; size -= typeSize) { for (; size > 0; size -= typeSize) {
DataSet rawSet; GlobDataSet rawSet;
PoolRawAccess variable(poolId, arrayIndex, &rawSet, PoolRawAccess variable(poolId, arrayIndex, &rawSet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
status = rawSet.read(); status = rawSet.read();
@ -131,9 +132,9 @@ ReturnValue_t DataPoolAdmin::handleMemoryLoad(uint32_t address,
ReturnValue_t DataPoolAdmin::handleMemoryDump(uint32_t address, size_t size, ReturnValue_t DataPoolAdmin::handleMemoryDump(uint32_t address, size_t size,
uint8_t** dataPointer, uint8_t* copyHere) { uint8_t** dataPointer, uint8_t* copyHere) {
uint32_t poolId = ::dataPool.PIDToDataPoolId(address); uint32_t poolId = glob::dataPool.PIDToDataPoolId(address);
uint8_t arrayIndex = ::dataPool.PIDToArrayIndex(address); uint8_t arrayIndex = glob::dataPool.PIDToArrayIndex(address);
DataSet testSet; GlobDataSet testSet;
PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet, PoolRawAccess varToGetSize(poolId, arrayIndex, &testSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
ReturnValue_t status = testSet.read(); ReturnValue_t status = testSet.read();
@ -146,7 +147,7 @@ ReturnValue_t DataPoolAdmin::handleMemoryDump(uint32_t address, size_t size,
} }
uint8_t* ptrToCopy = copyHere; uint8_t* ptrToCopy = copyHere;
for (; size > 0; size -= typeSize) { for (; size > 0; size -= typeSize) {
DataSet rawSet; GlobDataSet rawSet;
PoolRawAccess variable(poolId, arrayIndex, &rawSet, PoolRawAccess variable(poolId, arrayIndex, &rawSet,
PoolVariableIF::VAR_READ); PoolVariableIF::VAR_READ);
status = rawSet.read(); status = rawSet.read();

View File

@ -1,15 +1,17 @@
#ifndef DATAPOOLADMIN_H_ #ifndef FSFW_DATAPOOLGLOB_DATAPOOLADMIN_H_
#define DATAPOOLADMIN_H_ #define FSFW_DATAPOOLGLOB_DATAPOOLADMIN_H_
#include "DataPoolParameterWrapper.h"
#include "../memory/MemoryHelper.h"
#include "../action/HasActionsIF.h"
#include "../action/SimpleActionHelper.h"
#include "../objectmanager/SystemObject.h" #include "../objectmanager/SystemObject.h"
#include "../returnvalues/HasReturnvaluesIF.h" #include "../returnvalues/HasReturnvaluesIF.h"
#include "../tasks/ExecutableObjectIF.h" #include "../tasks/ExecutableObjectIF.h"
#include "../parameters/ReceivesParameterMessagesIF.h" #include "../action/HasActionsIF.h"
#include "DataPoolParameterWrapper.h"
#include "../ipc/MessageQueueIF.h" #include "../ipc/MessageQueueIF.h"
#include "../parameters/ReceivesParameterMessagesIF.h"
#include "../action/SimpleActionHelper.h"
#include "../memory/MemoryHelper.h"
class DataPoolAdmin: public HasActionsIF, class DataPoolAdmin: public HasActionsIF,
public ExecutableObjectIF, public ExecutableObjectIF,
@ -55,4 +57,4 @@ private:
Command_t initialCommand); Command_t initialCommand);
}; };
#endif /* DATAPOOLADMIN_H_ */ #endif /* FSFW_DATAPOOLGLOB_DATAPOOLADMIN_H_ */

View File

@ -1,10 +1,8 @@
#include "DataPoolParameterWrapper.h" #include "../datapoolglob/GlobalDataSet.h"
#include "../datapoolglob/DataPoolParameterWrapper.h"
//for returncodes #include "../datapoolglob/PoolRawAccess.h"
#include "../parameters/HasParametersIF.h" #include "../parameters/HasParametersIF.h"
#include "DataSet.h"
#include "PoolRawAccess.h"
DataPoolParameterWrapper::DataPoolParameterWrapper() : DataPoolParameterWrapper::DataPoolParameterWrapper() :
type(Type::UNKNOWN_TYPE), rows(0), columns(0), poolId( type(Type::UNKNOWN_TYPE), rows(0), columns(0), poolId(
@ -20,7 +18,7 @@ ReturnValue_t DataPoolParameterWrapper::set(uint8_t domainId,
uint16_t parameterId) { uint16_t parameterId) {
poolId = (domainId << 16) + parameterId; poolId = (domainId << 16) + parameterId;
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, 0, &mySet, PoolVariableIF::VAR_READ); PoolRawAccess raw(poolId, 0, &mySet, PoolVariableIF::VAR_READ);
ReturnValue_t status = mySet.read(); ReturnValue_t status = mySet.read();
if (status != HasReturnvaluesIF::RETURN_OK) { if (status != HasReturnvaluesIF::RETURN_OK) {
@ -57,7 +55,7 @@ ReturnValue_t DataPoolParameterWrapper::serialize(uint8_t** buffer,
} }
for (uint8_t index = 0; index < rows; index++){ for (uint8_t index = 0; index < rows; index++){
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, index, &mySet,PoolVariableIF::VAR_READ); PoolRawAccess raw(poolId, index, &mySet,PoolVariableIF::VAR_READ);
mySet.read(); mySet.read();
result = raw.serialize(buffer,size,maxSize,streamEndianness); result = raw.serialize(buffer,size,maxSize,streamEndianness);
@ -94,7 +92,7 @@ ReturnValue_t DataPoolParameterWrapper::deSerializeData(uint8_t startingRow,
for (uint8_t fromRow = 0; fromRow < fromRows; fromRow++) { for (uint8_t fromRow = 0; fromRow < fromRows; fromRow++) {
DataSet mySet; GlobDataSet mySet;
PoolRawAccess raw(poolId, startingRow + fromRow, &mySet, PoolRawAccess raw(poolId, startingRow + fromRow, &mySet,
PoolVariableIF::VAR_READ_WRITE); PoolVariableIF::VAR_READ_WRITE);
mySet.read(); mySet.read();

View File

@ -0,0 +1,133 @@
#include "../datapoolglob/GlobalDataPool.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../ipc/MutexFactory.h"
GlobalDataPool::GlobalDataPool(
void(*initFunction)(GlobPoolMap* pool_map)) {
mutex = MutexFactory::instance()->createMutex();
if (initFunction != NULL ) {
initFunction( &this->globDataPool );
}
}
GlobalDataPool::~GlobalDataPool() {
MutexFactory::instance()->deleteMutex(mutex);
for(GlobPoolMapIter it = this->globDataPool.begin();
it != this->globDataPool.end(); ++it )
{
delete it->second;
}
}
// The function checks PID, type and array length before returning a copy of
// the PoolEntry. In failure case, it returns a temp-Entry with size 0 and NULL-ptr.
template <typename T> PoolEntry<T>* GlobalDataPool::getData( uint32_t data_pool_id,
uint8_t sizeOrPosition ) {
GlobPoolMapIter it = this->globDataPool.find( data_pool_id );
if ( it != this->globDataPool.end() ) {
PoolEntry<T>* entry = dynamic_cast< PoolEntry<T>* >( it->second );
if (entry != nullptr ) {
if ( sizeOrPosition <= entry->length ) {
return entry;
}
}
}
return nullptr;
}
PoolEntryIF* GlobalDataPool::getRawData( uint32_t data_pool_id ) {
GlobPoolMapIter it = this->globDataPool.find( data_pool_id );
if ( it != this->globDataPool.end() ) {
return it->second;
} else {
return nullptr;
}
}
ReturnValue_t GlobalDataPool::unlockDataPool() {
ReturnValue_t status = mutex->unlockMutex();
if(status != RETURN_OK) {
sif::error << "DataPool::DataPool: unlock of mutex failed with"
" error code: " << status << std::endl;
}
return status;
}
ReturnValue_t GlobalDataPool::lockDataPool(uint32_t timeoutMs) {
ReturnValue_t status = mutex->lockMutex(MutexIF::TimeoutType::WAITING,
timeoutMs);
if(status != RETURN_OK) {
sif::error << "DataPool::DataPool: lock of mutex failed "
"with error code: " << status << std::endl;
}
return status;
}
void GlobalDataPool::print() {
sif::debug << "DataPool contains: " << std::endl;
std::map<uint32_t, PoolEntryIF*>::iterator dataPoolIt;
dataPoolIt = this->globDataPool.begin();
while( dataPoolIt != this->globDataPool.end() ) {
sif::debug << std::hex << dataPoolIt->first << std::dec << " |";
dataPoolIt->second->print();
dataPoolIt++;
}
}
uint32_t GlobalDataPool::PIDToDataPoolId(uint32_t parameter_id) {
return (parameter_id >> 8) & 0x00FFFFFF;
}
uint8_t GlobalDataPool::PIDToArrayIndex(uint32_t parameter_id) {
return (parameter_id & 0x000000FF);
}
uint32_t GlobalDataPool::poolIdAndPositionToPid(uint32_t poolId, uint8_t index) {
return (poolId << 8) + index;
}
//SHOULDDO: Do we need a mutex lock here... I don't think so,
//as we only check static const values of elements in a list that do not change.
//there is no guarantee in the standard, but it seems to me that the implementation is safe -UM
ReturnValue_t GlobalDataPool::getType(uint32_t parameter_id, Type* type) {
GlobPoolMapIter it = this->globDataPool.find( PIDToDataPoolId(parameter_id));
if ( it != this->globDataPool.end() ) {
*type = it->second->getType();
return RETURN_OK;
} else {
*type = Type::UNKNOWN_TYPE;
return RETURN_FAILED;
}
}
bool GlobalDataPool::exists(uint32_t parameterId) {
uint32_t poolId = PIDToDataPoolId(parameterId);
uint32_t index = PIDToArrayIndex(parameterId);
GlobPoolMapIter it = this->globDataPool.find( poolId );
if (it != globDataPool.end()) {
if (it->second->getSize() >= index) {
return true;
}
}
return false;
}
template PoolEntry<uint8_t>* GlobalDataPool::getData<uint8_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint16_t>* GlobalDataPool::getData<uint16_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint32_t>* GlobalDataPool::getData<uint32_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<uint64_t>* GlobalDataPool::getData<uint64_t>(
uint32_t data_pool_id, uint8_t size);
template PoolEntry<int8_t>* GlobalDataPool::getData<int8_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<int16_t>* GlobalDataPool::getData<int16_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<int32_t>* GlobalDataPool::getData<int32_t>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<float>* GlobalDataPool::getData<float>(
uint32_t data_pool_id, uint8_t size );
template PoolEntry<double>* GlobalDataPool::getData<double>(
uint32_t data_pool_id, uint8_t size);

View File

@ -0,0 +1,149 @@
#ifndef GLOBALDATAPOOL_H_
#define GLOBALDATAPOOL_H_
#include "../datapool/PoolEntry.h"
#include "../globalfunctions/Type.h"
#include "../ipc/MutexIF.h"
#include <map>
/**
* @defgroup data_pool Global data pool
* This is the group, where all classes associated with global
* data pool handling belong to.
* This includes classes to access Data Pool variables.
*/
/**
* Typedefs for the global pool representations
*/
using GlobPoolMap = std::map<uint32_t, PoolEntryIF*>;
using GlobPoolMapIter = GlobPoolMap::iterator;
/**
* @brief This class represents the OBSW global data-pool.
*
* @details
* All variables are registered and space is allocated in an initialization
* function, which is passed do the constructor. Space for the variables is
* allocated on the heap (with a new call).
*
* The data is found by a data pool id, which uniquely represents a variable.
* Data pool variables should be used with a blackboard logic in mind,
* which means read data is valid (if flagged so),
* but not necessarily up-to-date.
*
* Variables are either single values or arrays.
* @author Bastian Baetz
* @ingroup data_pool
*/
class GlobalDataPool : public HasReturnvaluesIF {
private:
/**
* @brief This is the actual data pool itself.
* @details It is represented by a map with the data pool id as index
* and a pointer to a single PoolEntry as value.
*/
GlobPoolMap globDataPool;
/**
* @brief The mutex is created in the constructor and makes
* access mutual exclusive.
* @details Locking and unlocking the pool is only done by the DataSet class.
*/
MutexIF* mutex;
public:
/**
* @brief In the classes constructor,
* the passed initialization function is called.
* @details
* To enable filling the pool, a pointer to the map is passed,
* allowing direct access to the pool's content.
* On runtime, adding or removing variables is forbidden.
*/
GlobalDataPool( void ( *initFunction )( GlobPoolMap* pool_map ) );
/**
* @brief The destructor iterates through the data_pool map and
* calls all entries destructors to clean up the heap.
*/
~GlobalDataPool();
/**
* @brief This is the default call to access the pool.
* @details
* A pointer to the PoolEntry object is returned.
* The call checks data pool id, type and array size.
* Returns NULL in case of failure.
* @param data_pool_id The data pool id to search.
* @param sizeOrPosition The array size (not byte size!) of the pool entry,
* or the position the user wants to read.
* If smaller than the entry size, everything's ok.
*/
template <typename T> PoolEntry<T>* getData( uint32_t data_pool_id,
uint8_t sizeOrPosition );
/**
* @brief An alternative call to get a data pool entry in case the type is not implicitly known
* (i.e. in Housekeeping Telemetry).
* @details It returns a basic interface and does NOT perform
* a size check. The caller has to assure he does not copy too much data.
* Returns NULL in case the entry is not found.
* @param data_pool_id The data pool id to search.
*/
PoolEntryIF* getRawData( uint32_t data_pool_id );
/**
* @brief This is a small helper function to facilitate locking the global data pool.
* @details It fetches the pool's mutex id and tries to acquire the mutex.
*/
ReturnValue_t lockDataPool(uint32_t timeoutMs = MutexIF::BLOCKING);
/**
* @brief This is a small helper function to facilitate unlocking the global data pool.
* @details It fetches the pool's mutex id and tries to free the mutex.
*/
ReturnValue_t unlockDataPool();
/**
* @brief The print call is a simple debug method.
* @details It prints the current content of the data pool.
* It iterates through the data_pool map and calls each entry's print() method.
*/
void print();
/**
* Extracts the data pool id from a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The data pool id as used within the OBSW.
*/
static uint32_t PIDToDataPoolId( uint32_t parameter_id );
/**
* Extracts an array index out of a SCOS 2000 PID.
* @param parameter_id The passed Parameter ID.
* @return The index of the corresponding data pool entry.
*/
static uint8_t PIDToArrayIndex( uint32_t parameter_id );
/**
* Retransforms a data pool id and an array index to a SCOS 2000 PID.
*/
static uint32_t poolIdAndPositionToPid( uint32_t poolId, uint8_t index );
/**
* Method to return the type of a pool variable.
* @param parameter_id A parameterID (not pool id) of a DP member.
* @param type Returns the type or TYPE::UNKNOWN_TYPE
* @return RETURN_OK if parameter exists, RETURN_FAILED else.
*/
ReturnValue_t getType( uint32_t parameter_id, Type* type );
/**
* Method to check if a PID exists. Does not lock, as there's no
* possibility to alter the list that is checked during run-time.
* @param parameterId The PID (not pool id!) of a parameter.
* @return true if exists, false else.
*/
bool exists(uint32_t parameterId);
};
//We assume someone globally instantiates a DataPool.
namespace glob {
extern GlobalDataPool dataPool;
}
#endif /* DATAPOOL_H_ */

View File

@ -0,0 +1,48 @@
#include "../datapoolglob/GlobalDataPool.h"
#include "../datapoolglob/GlobalDataSet.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
GlobDataSet::GlobDataSet(): PoolDataSetBase(
reinterpret_cast<PoolVariableIF**>(&registeredVariables),
DATA_SET_MAX_SIZE) {}
// Don't do anything with your variables, they are dead already!
// (Destructor is already called)
GlobDataSet::~GlobDataSet() {}
ReturnValue_t GlobDataSet::commit(bool valid, uint32_t lockTimeout) {
setEntriesValid(valid);
setSetValid(valid);
return commit(lockTimeout);
}
ReturnValue_t GlobDataSet::commit(uint32_t lockTimeout) {
return PoolDataSetBase::commit(lockTimeout);
}
bool GlobDataSet::isValid() const {
return this->valid;
}
ReturnValue_t GlobDataSet::unlockDataPool() {
return glob::dataPool.unlockDataPool();
}
ReturnValue_t GlobDataSet::lockDataPool(uint32_t timeoutMs) {
return glob::dataPool.lockDataPool(timeoutMs);
}
void GlobDataSet::setEntriesValid(bool valid) {
for (uint16_t count = 0; count < fillCount; count++) {
if (registeredVariables[count]->getReadWriteMode()
!= PoolVariableIF::VAR_READ) {
registeredVariables[count]->setValid(valid);
}
}
}
void GlobDataSet::setSetValid(bool valid) {
this->valid = valid;
}

View File

@ -0,0 +1,98 @@
#ifndef FRAMEWORK_DATAPOOLGLOB_DATASET_H_
#define FRAMEWORK_DATAPOOLGLOB_DATASET_H_
#include "../datapool/PoolDataSetBase.h"
/**
* @brief The DataSet class manages a set of locally checked out variables
* for the global data pool.
* @details
* This class uses the read-commit() semantic provided by the DataSetBase class.
* It extends the base class by using the global data pool,
* having a valid state and implementing lock und unlock calls for the global
* datapool.
*
* For more information on how this class works, see the DataSetBase
* documentation.
* @author Bastian Baetz
* @ingroup data_pool
*/
class GlobDataSet: public PoolDataSetBase {
public:
/**
* @brief Creates an empty GlobDataSet. Use registerVariable or
* supply a pointer to this dataset to PoolVariable
* initializations to register pool variables.
*/
GlobDataSet();
/**
* @brief The destructor automatically manages writing the valid
* information of variables.
* @details
* In case the data set was read out, but not committed(indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~GlobDataSet();
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* @return - @c RETURN_OK if all variables were read successfully.
* - @c COMMITING_WITHOUT_READING if set was not read yet and
* contains non write-only variables
*/
ReturnValue_t commit(bool valid, uint32_t lockTimeout = MutexIF::BLOCKING);
ReturnValue_t commit(uint32_t lockTimeout = MutexIF::BLOCKING) override;
/**
* Set all entries
* @param valid
*/
void setSetValid(bool valid);
bool isValid() const override;
/**
* Set the valid information of all variables contained in the set which
* are not read-only
*
* @param valid Validity information from PoolVariableIF.
*/
void setEntriesValid(bool valid);
//!< This definition sets the maximum number of variables to
//! register in one DataSet.
static const uint8_t DATA_SET_MAX_SIZE = 63;
private:
/**
* If the valid state of a dataset is always relevant to the whole
* data set we can use this flag.
*/
bool valid = false;
/**
* @brief This is a small helper function to facilitate locking
* the global data pool.
* @details
* It makes use of the lockDataPool method offered by the DataPool class.
*/
ReturnValue_t lockDataPool(uint32_t timeoutMs) override;
/**
* @brief This is a small helper function to facilitate
* unlocking the global data pool
* @details
* It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
ReturnValue_t unlockDataPool() override;
void handleAlreadyReadDatasetCommit();
ReturnValue_t handleUnreadDatasetCommit();
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
};
#endif /* FRAMEWORK_DATAPOOLGLOB_DATASET_H_ */

View File

@ -0,0 +1,213 @@
#ifndef GLOBALPOOLVARIABLE_H_
#define GLOBALPOOLVARIABLE_H_
#include "../datapool/DataSetIF.h"
#include "../datapoolglob/GlobalDataPool.h"
#include "../datapool/PoolVariableIF.h"
#include "../datapool/PoolEntry.h"
#include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
template<typename T, uint8_t n_var> class PoolVarList;
/**
* @brief This is the access class for non-array data pool entries.
*
* @details
* To ensure safe usage of the data pool, operation is not done directly
* on the data pool entries, but on local copies. This class provides simple
* type-safe access to single data pool entries (i.e. entries with length = 1).
* The class can be instantiated as read-write and read only.
* It provides a commit-and-roll-back semantic, which means that the
* variable's value in the data pool is not changed until the
* commit call is executed.
* @tparam T The template parameter sets the type of the variable.
* Currently, all plain data types are supported, but in principle
* any type is possible.
* @ingroup data_pool
*/
template<typename T>
class GlobPoolVar: public PoolVariableIF {
template<typename U, uint8_t n_var> friend class PoolVarList;
static_assert(not std::is_same<T, bool>::value,
"Do not use boolean for the PoolEntry type, use uint8_t instead!"
"There is no boolean type in CCSDS.");
public:
/**
* @brief In the constructor, the variable can register itself in a
* DataSet (if nullptr is not passed).
* @details
* It DOES NOT fetch the current value from the data pool, but
* sets the value attribute to default (0).
* The value is fetched within the read() operation.
* @param set_id This is the id in the global data pool
* this instance of the access class corresponds to.
* @param dataSet The data set in which the variable shall register
* itself. If NULL, the variable is not registered.
* @param setWritable If this flag is set to true, changes in the value
* attribute can be written back to the data pool, otherwise not.
*/
GlobPoolVar(uint32_t set_id, DataSetIF* dataSet,
ReadWriteMode_t setReadWriteMode);
/**
* @brief This is the local copy of the data pool entry.
* @details The user can work on this attribute
* just like he would on a simple local variable.
*/
T value = 0;
/**
* @brief Copy ctor to copy classes containing Pool Variables.
* (Robin): This only copies member variables, which is done
* by the default copy ctor. maybe we can ommit this ctor?
*/
GlobPoolVar(const GlobPoolVar& rhs);
/**
* @brief The classes destructor is empty.
* @details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~GlobPoolVar() {}
/**
* @brief This is a call to read the value from the global data pool.
* @details
* When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The read call is protected with a lock.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t read(uint32_t lockTimeout) override;
/**
* @brief The commit call writes back the variable's value to the data pool.
* @details
* It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The operation does NOT provide any mutual exclusive protection by itself.
* The commit call is protected with a lock.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t commit(uint32_t lockTimeout) override;
protected:
/**
* @brief Like #read, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t readWithoutLock() override;
/**
* @brief Like #commit, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t commitWithoutLock() override;
/**
* @brief To access the correct data pool entry on read and commit calls,
* the data pool is stored.
*/
uint32_t dataPoolId;
/**
* @brief The valid information as it was stored in the data pool is
* copied to this attribute.
*/
uint8_t valid;
/**
* @brief The information whether the class is read-write or read-only
* is stored here.
*/
pool_rwm_t readWriteMode;
/**
* Empty ctor for List initialization
*/
GlobPoolVar();
public:
/**
* \brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const override;
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const override;
/**
* This operation sets the data pool id of the variable.
* The method is necessary to set id's of data pool member variables with bad initialization.
*/
void setDataPoolId(uint32_t poolId);
/**
* \brief With this call, the valid information of the variable is returned.
*/
bool isValid() const override;
uint8_t getValid();
void setValid(bool valid) override;
operator T() {
return value;
}
operator T() const {
return value;
}
GlobPoolVar<T> &operator=(T newValue) {
value = newValue;
return *this;
}
GlobPoolVar<T> &operator=(GlobPoolVar<T> newPoolVariable) {
value = newPoolVariable.value;
return *this;
}
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t max_size,
SerializeIF::Endianness streamEndianness) const override {
return SerializeAdapter::serialize(&value, buffer, size, max_size,
streamEndianness);
}
virtual size_t getSerializedSize() const {
return SerializeAdapter::getSerializedSize(&value);
}
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
SerializeIF::Endianness streamEndianness) {
return SerializeAdapter::deSerialize(&value, buffer, size,
streamEndianness);
}
};
#include "../datapoolglob/GlobalPoolVariable.tpp"
typedef GlobPoolVar<uint8_t> gp_bool_t;
typedef GlobPoolVar<uint8_t> gp_uint8_t;
typedef GlobPoolVar<uint16_t> gp_uint16_t;
typedef GlobPoolVar<uint32_t> gp_uint32_t;
typedef GlobPoolVar<int8_t> gp_int8_t;
typedef GlobPoolVar<int16_t> gp_int16_t;
typedef GlobPoolVar<int32_t> gp_int32_t;
typedef GlobPoolVar<float> gp_float_t;
typedef GlobPoolVar<double> gp_double_t;
#endif /* POOLVARIABLE_H_ */

View File

@ -0,0 +1,117 @@
#ifndef GLOBALPOOLVARIABLE_TPP_
#define GLOBALPOOLVARIABLE_TPP_
template <class T>
inline GlobPoolVar<T>::GlobPoolVar(uint32_t set_id,
DataSetIF* dataSet, ReadWriteMode_t setReadWriteMode):
dataPoolId(set_id), valid(PoolVariableIF::INVALID),
readWriteMode(setReadWriteMode)
{
if (dataSet != nullptr) {
dataSet->registerVariable(this);
}
}
template<typename T>
inline ReturnValue_t GlobPoolVar<T>::read(uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = readWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
template<typename T>
inline ReturnValue_t GlobPoolVar<T>::commit(uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = commitWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
template <class T>
inline ReturnValue_t GlobPoolVar<T>::readWithoutLock() {
PoolEntry<T>* read_out = glob::dataPool.getData<T>(dataPoolId, 1);
if (read_out != NULL) {
valid = read_out->valid;
value = *(read_out->address);
return HasReturnvaluesIF::RETURN_OK;
} else {
value = 0;
valid = false;
sif::error << "PoolVariable: read of DP Variable 0x" << std::hex
<< dataPoolId << std::dec << " failed." << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template <class T>
inline ReturnValue_t GlobPoolVar<T>::commitWithoutLock() {
PoolEntry<T>* write_back = glob::dataPool.getData<T>(dataPoolId, 1);
if ((write_back != NULL) && (readWriteMode != VAR_READ)) {
write_back->valid = valid;
*(write_back->address) = value;
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template <class T>
inline GlobPoolVar<T>::GlobPoolVar():
dataPoolId(PoolVariableIF::NO_PARAMETER),
valid(PoolVariableIF::INVALID),
readWriteMode(VAR_READ), value(0) {}
template <class T>
inline GlobPoolVar<T>::GlobPoolVar(const GlobPoolVar& rhs) :
dataPoolId(rhs.dataPoolId), valid(rhs.valid), readWriteMode(
rhs.readWriteMode), value(rhs.value) {}
template <class T>
inline pool_rwm_t GlobPoolVar<T>::getReadWriteMode() const {
return readWriteMode;
}
template <class T>
inline uint32_t GlobPoolVar<T>::getDataPoolId() const {
return dataPoolId;
}
template <class T>
inline void GlobPoolVar<T>::setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
template <class T>
inline bool GlobPoolVar<T>::isValid() const {
if (valid)
return true;
else
return false;
}
template <class T>
inline uint8_t GlobPoolVar<T>::getValid() {
return valid;
}
template <class T>
inline void GlobPoolVar<T>::setValid(bool valid) {
this->valid = valid;
}
#endif

View File

@ -0,0 +1,185 @@
#ifndef FSFW_DATAPOOLGLOB_GLOBALPOOLVECTOR_H_
#define FSFW_DATAPOOLGLOB_GLOBALPOOLVECTOR_H_
#include "../datapool/DataSetIF.h"
#include "../datapool/PoolEntry.h"
#include "../datapool/PoolVariableIF.h"
#include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
/**
* @brief This is the access class for array-type data pool entries.
*
* @details
* To ensure safe usage of the data pool, operation is not done directly on the
* data pool entries, but on local copies. This class provides simple type-
* and length-safe access to vector-style data pool entries (i.e. entries with
* length > 1). The class can be instantiated as read-write and read only.
*
* It provides a commit-and-roll-back semantic, which means that no array
* entry in the data pool is changed until the commit call is executed.
* There are two template parameters:
* @tparam T
* This template parameter specifies the data type of an array entry. Currently,
* all plain data types are supported, but in principle any type is possible.
* @tparam vector_size
* This template parameter specifies the vector size of this entry. Using a
* template parameter for this is not perfect, but avoids
* dynamic memory allocation.
* @ingroup data_pool
*/
template<typename T, uint16_t vectorSize>
class GlobPoolVector: public PoolVariableIF {
public:
/**
* @brief In the constructor, the variable can register itself in a
* DataSet (if no nullptr is passed).
* @details
* It DOES NOT fetch the current value from the data pool, but sets the
* value attribute to default (0). The value is fetched within the
* read() operation.
* @param set_id
* This is the id in the global data pool this instance of the access
* class corresponds to.
* @param dataSet
* The data set in which the variable shall register itself. If nullptr,
* the variable is not registered.
* @param setWritable
* If this flag is set to true, changes in the value attribute can be
* written back to the data pool, otherwise not.
*/
GlobPoolVector(uint32_t set_id, DataSetIF* set,
ReadWriteMode_t setReadWriteMode);
/**
* @brief This is the local copy of the data pool entry.
* @details The user can work on this attribute
* just like he would on a local array of this type.
*/
T value[vectorSize];
/**
* @brief The classes destructor is empty.
* @details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~GlobPoolVector() {};
/**
* @brief The operation returns the number of array entries
* in this variable.
*/
uint8_t getSize() {
return vectorSize;
}
/**
* @brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const {
return dataPoolId;
}
/**
* @brief This operation sets the data pool id of the variable.
* @details
* The method is necessary to set id's of data pool member variables
* with bad initialization.
*/
void setDataPoolId(uint32_t poolId) {
dataPoolId = poolId;
}
/**
* This method returns if the variable is write-only, read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const {
return readWriteMode;
}
/**
* @brief With this call, the valid information of the variable is returned.
*/
bool isValid() const {
if (valid != INVALID)
return true;
else
return false;
}
void setValid(bool valid) {this->valid = valid;}
uint8_t getValid() {return valid;}
T &operator [](int i) {return value[i];}
const T &operator [](int i) const {return value[i];}
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
size_t max_size, Endianness streamEndianness) const override;
virtual size_t getSerializedSize() const override;
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override;
/**
* @brief This is a call to read the array's values
* from the global data pool.
* @details
* When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies all array values
* and the valid information to its local attributes.
* In case of a failure (wrong type, size or pool id not found), the
* variable is set to zero and invalid.
* The read call is protected by a lock of the global data pool.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t read(uint32_t lockTimeout = MutexIF::BLOCKING) override;
/**
* @brief The commit call copies the array values back to the data pool.
* @details
* It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The commit call is protected by a lock of the global data pool.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t commit(uint32_t lockTimeout = MutexIF::BLOCKING) override;
protected:
/**
* @brief Like #read, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t readWithoutLock() override;
/**
* @brief Like #commit, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t commitWithoutLock() override;
private:
/**
* @brief To access the correct data pool entry on read and commit calls,
* the data pool id is stored.
*/
uint32_t dataPoolId;
/**
* @brief The valid information as it was stored in the data pool
* is copied to this attribute.
*/
uint8_t valid;
/**
* @brief The information whether the class is read-write or
* read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
};
#include "../datapoolglob/GlobalPoolVector.tpp"
template<typename T, uint16_t vectorSize>
using gp_vec_t = GlobPoolVector<T, vectorSize>;
#endif /* FSFW_DATAPOOLGLOB_GLOBALPOOLVECTOR_H_ */

View File

@ -0,0 +1,117 @@
#ifndef FSFW_DATAPOOLGLOB_GLOBALPOOLVECTOR_TPP_
#define FSFW_DATAPOOLGLOB_GLOBALPOOLVECTOR_TPP_
template<typename T, uint16_t vectorSize>
inline GlobPoolVector<T, vectorSize>::GlobPoolVector(uint32_t set_id,
DataSetIF* set, ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), valid(false), readWriteMode(setReadWriteMode) {
memset(this->value, 0, vectorSize * sizeof(T));
if (set != nullptr) {
set->registerVariable(this);
}
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::read(uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = readWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::commit(
uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = commitWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::readWithoutLock() {
PoolEntry<T>* read_out = glob::dataPool.getData<T>(this->dataPoolId,
vectorSize);
if (read_out != nullptr) {
this->valid = read_out->valid;
memcpy(this->value, read_out->address, read_out->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
memset(this->value, 0, vectorSize * sizeof(T));
sif::error << "PoolVector: Read of DP Variable 0x" << std::hex
<< std::setw(8) << std::setfill('0') << dataPoolId <<
std::dec << " failed." << std::endl;
this->valid = INVALID;
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::commitWithoutLock() {
PoolEntry<T>* writeBack = glob::dataPool.getData<T>(this->dataPoolId,
vectorSize);
if ((writeBack != nullptr) && (this->readWriteMode != VAR_READ)) {
writeBack->valid = valid;
memcpy(writeBack->address, this->value, writeBack->getByteSize());
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::serialize(uint8_t** buffer,
size_t* size, size_t max_size,
SerializeIF::Endianness streamEndianness) const {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vectorSize; i++) {
result = SerializeAdapter::serialize(&(value[i]), buffer, size,
max_size, streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
template<typename T, uint16_t vectorSize>
inline size_t GlobPoolVector<T, vectorSize>::getSerializedSize() const {
return vectorSize * SerializeAdapter::getSerializedSize(value);
}
template<typename T, uint16_t vectorSize>
inline ReturnValue_t GlobPoolVector<T, vectorSize>::deSerialize(
const uint8_t** buffer, size_t* size,
SerializeIF::Endianness streamEndianness) {
uint16_t i;
ReturnValue_t result;
for (i = 0; i < vectorSize; i++) {
result = SerializeAdapter::deSerialize(&(value[i]), buffer, size,
streamEndianness);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
}
return result;
}
#endif

View File

@ -1,9 +1,9 @@
#ifndef PIDREADER_H_ #ifndef PIDREADER_H_
#define PIDREADER_H_ #define PIDREADER_H_
#include "DataPool.h" #include "../datapool/DataSetIF.h"
#include "DataSetIF.h" #include "../datapoolglob/GlobalDataPool.h"
#include "PoolEntry.h" #include "../datapool/PoolEntry.h"
#include "PoolVariableIF.h" #include "../datapool/PoolVariableIF.h"
#include "../serialize/SerializeAdapter.h" #include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterfaceStream.h" #include "../serviceinterface/ServiceInterfaceStream.h"
@ -15,10 +15,10 @@ class PIDReader: public PoolVariableIF {
protected: protected:
uint32_t parameterId; uint32_t parameterId;
uint8_t valid; uint8_t valid;
ReturnValue_t read() { ReturnValue_t readWithoutLock() {
uint8_t arrayIndex = DataPool::PIDToArrayIndex(parameterId); uint8_t arrayIndex = GlobalDataPool::PIDToArrayIndex(parameterId);
PoolEntry<T> *read_out = ::dataPool.getData<T>( PoolEntry<T> *read_out = glob::dataPool.getData<T>(
DataPool::PIDToDataPoolId(parameterId), arrayIndex); GlobalDataPool::PIDToDataPoolId(parameterId), arrayIndex);
if (read_out != NULL) { if (read_out != NULL) {
valid = read_out->valid; valid = read_out->valid;
value = read_out->address[arrayIndex]; value = read_out->address[arrayIndex];
@ -36,9 +36,13 @@ protected:
* Reason is the possibility to access a single DP vector element, but if we commit, * Reason is the possibility to access a single DP vector element, but if we commit,
* we set validity of the whole vector. * we set validity of the whole vector.
*/ */
ReturnValue_t commit() { ReturnValue_t commit(uint32_t lockTimeout) override {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t commitWithoutLock() override {
return HasReturnvaluesIF::RETURN_FAILED;
}
/** /**
* Empty ctor for List initialization * Empty ctor for List initialization
*/ */
@ -72,6 +76,19 @@ public:
} }
} }
ReturnValue_t read(uint32_t lockTimeout) override {
ReturnValue_t result = glob::dataPool.lockDataPool();
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = readWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "PIDReader::read: Could not unlock data pool!"
<< std::endl;
}
return result;
}
/** /**
* Copy ctor to copy classes containing Pool Variables. * Copy ctor to copy classes containing Pool Variables.
*/ */
@ -89,7 +106,7 @@ public:
* \brief This operation returns the data pool id of the variable. * \brief This operation returns the data pool id of the variable.
*/ */
uint32_t getDataPoolId() const { uint32_t getDataPoolId() const {
return DataPool::PIDToDataPoolId(parameterId); return GlobalDataPool::PIDToDataPoolId(parameterId);
} }
uint32_t getParameterId() const { uint32_t getParameterId() const {
return parameterId; return parameterId;
@ -114,7 +131,7 @@ public:
return valid; return valid;
} }
void setValid(uint8_t valid) { void setValid(bool valid) {
this->valid = valid; this->valid = valid;
} }

View File

@ -1,8 +1,8 @@
#ifndef FRAMEWORK_DATAPOOL_PIDREADERLIST_H_ #ifndef FRAMEWORK_DATAPOOLGLOB_PIDREADERLIST_H_
#define FRAMEWORK_DATAPOOL_PIDREADERLIST_H_ #define FRAMEWORK_DATAPOOLGLOB_PIDREADERLIST_H_
#include "PIDReader.h" #include "../datapool/PoolVariableIF.h"
#include "PoolVariableIF.h" #include "../datapoolglob/PIDReader.h"
template <class T, uint8_t n_var> template <class T, uint8_t n_var>
class PIDReaderList { class PIDReaderList {
private: private:
@ -24,4 +24,4 @@ public:
#endif /* FRAMEWORK_DATAPOOL_PIDREADERLIST_H_ */ #endif /* FRAMEWORK_DATAPOOLGLOB_PIDREADERLIST_H_ */

View File

@ -0,0 +1,239 @@
#include "../datapoolglob/GlobalDataPool.h"
#include "../datapoolglob/PoolRawAccess.h"
#include "../serviceinterface/ServiceInterfaceStream.h"
#include "../serialize/EndianConverter.h"
#include <cstring>
PoolRawAccess::PoolRawAccess(uint32_t set_id, uint8_t setArrayEntry,
DataSetIF* dataSet, ReadWriteMode_t setReadWriteMode) :
dataPoolId(set_id), arrayEntry(setArrayEntry), valid(false),
type(Type::UNKNOWN_TYPE), typeSize(0), arraySize(0), sizeTillEnd(0),
readWriteMode(setReadWriteMode) {
memset(value, 0, sizeof(value));
if (dataSet != nullptr) {
dataSet->registerVariable(this);
}
}
PoolRawAccess::~PoolRawAccess() {}
ReturnValue_t PoolRawAccess::read(uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = readWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
ReturnValue_t PoolRawAccess::readWithoutLock() {
ReturnValue_t result = RETURN_FAILED;
PoolEntryIF* readOut = glob::dataPool.getRawData(dataPoolId);
if (readOut != nullptr) {
result = handleReadOut(readOut);
if(result == RETURN_OK) {
return result;
}
} else {
result = READ_ENTRY_NON_EXISTENT;
}
handleReadError(result);
return result;
}
ReturnValue_t PoolRawAccess::handleReadOut(PoolEntryIF* readOut) {
ReturnValue_t result = RETURN_FAILED;
valid = readOut->getValid();
if (readOut->getSize() > arrayEntry) {
arraySize = readOut->getSize();
typeSize = readOut->getByteSize() / readOut->getSize();
type = readOut->getType();
if (typeSize <= sizeof(value)) {
uint16_t arrayPosition = arrayEntry * typeSize;
sizeTillEnd = readOut->getByteSize() - arrayPosition;
uint8_t* ptr = &((uint8_t*) readOut->getRawData())[arrayPosition];
memcpy(value, ptr, typeSize);
return RETURN_OK;
} else {
result = READ_TYPE_TOO_LARGE;
}
} else {
//debug << "PoolRawAccess: Size: " << (int)read_out->getSize() << std::endl;
result = READ_INDEX_TOO_LARGE;
}
return result;
}
void PoolRawAccess::handleReadError(ReturnValue_t result) {
sif::error << "PoolRawAccess: read of DP Variable 0x" << std::hex << dataPoolId
<< std::dec << " failed, ";
if(result == READ_TYPE_TOO_LARGE) {
sif::error << "type too large." << std::endl;
}
else if(result == READ_INDEX_TOO_LARGE) {
sif::error << "index too large." << std::endl;
}
else if(result == READ_ENTRY_NON_EXISTENT) {
sif::error << "entry does not exist." << std::endl;
}
valid = INVALID;
typeSize = 0;
sizeTillEnd = 0;
memset(value, 0, sizeof(value));
}
ReturnValue_t PoolRawAccess::commit(uint32_t lockTimeout) {
ReturnValue_t result = glob::dataPool.lockDataPool(lockTimeout);
if(result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
result = commitWithoutLock();
ReturnValue_t unlockResult = glob::dataPool.unlockDataPool();
if(unlockResult != HasReturnvaluesIF::RETURN_OK) {
sif::error << "GlobPoolVar::read: Could not unlock global data pool"
<< std::endl;
}
return result;
}
ReturnValue_t PoolRawAccess::commitWithoutLock() {
PoolEntryIF* write_back = glob::dataPool.getRawData(dataPoolId);
if ((write_back != NULL) && (readWriteMode != VAR_READ)) {
write_back->setValid(valid);
uint8_t array_position = arrayEntry * typeSize;
uint8_t* ptr = &((uint8_t*) write_back->getRawData())[array_position];
memcpy(ptr, value, typeSize);
return HasReturnvaluesIF::RETURN_OK;
} else {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
uint8_t* PoolRawAccess::getEntry() {
return value;
}
ReturnValue_t PoolRawAccess::getEntryEndianSafe(uint8_t* buffer,
size_t* writtenBytes, size_t max_size) {
uint8_t* data_ptr = getEntry();
// debug << "PoolRawAccess::getEntry: Array position: " <<
// index * size_of_type << " Size of T: " << (int)size_of_type <<
// " ByteSize: " << byte_size << " Position: " << *size << std::endl;
if (typeSize == 0)
return DATA_POOL_ACCESS_FAILED;
if (typeSize > max_size)
return INCORRECT_SIZE;
EndianConverter::convertBigEndian(buffer, data_ptr, typeSize);
*writtenBytes = typeSize;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t PoolRawAccess::serialize(uint8_t** buffer, size_t* size,
size_t maxSize, Endianness streamEndianness) const {
if (typeSize + *size <= maxSize) {
switch(streamEndianness) {
case(Endianness::BIG):
EndianConverter::convertBigEndian(*buffer, value, typeSize);
break;
case(Endianness::LITTLE):
EndianConverter::convertLittleEndian(*buffer, value, typeSize);
break;
case(Endianness::MACHINE):
default:
memcpy(*buffer, value, typeSize);
break;
}
*size += typeSize;
(*buffer) += typeSize;
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
Type PoolRawAccess::getType() {
return type;
}
size_t PoolRawAccess::getSizeOfType() {
return typeSize;
}
size_t PoolRawAccess::getArraySize(){
return arraySize;
}
uint32_t PoolRawAccess::getDataPoolId() const {
return dataPoolId;
}
PoolVariableIF::ReadWriteMode_t PoolRawAccess::getReadWriteMode() const {
return readWriteMode;
}
ReturnValue_t PoolRawAccess::setEntryFromBigEndian(const uint8_t *buffer,
size_t setSize) {
if (typeSize == setSize) {
EndianConverter::convertBigEndian(value, buffer, typeSize);
return HasReturnvaluesIF::RETURN_OK;
} else {
sif::error << "PoolRawAccess::setEntryFromBigEndian: Illegal sizes: "
"Internal" << (uint32_t) typeSize << ", Requested: " << setSize
<< std::endl;
return INCORRECT_SIZE;
}
}
bool PoolRawAccess::isValid() const {
if (valid != INVALID)
return true;
else
return false;
}
void PoolRawAccess::setValid(bool valid) {
this->valid = valid;
}
size_t PoolRawAccess::getSizeTillEnd() const {
return sizeTillEnd;
}
size_t PoolRawAccess::getSerializedSize() const {
return typeSize;
}
ReturnValue_t PoolRawAccess::deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) {
if (*size >= typeSize) {
switch(streamEndianness) {
case(Endianness::BIG):
EndianConverter::convertBigEndian(value, *buffer, typeSize);
break;
case(Endianness::LITTLE):
EndianConverter::convertLittleEndian(value, *buffer, typeSize);
break;
case(Endianness::MACHINE):
default:
memcpy(value, *buffer, typeSize);
break;
}
*size -= typeSize;
*buffer += typeSize;
return HasReturnvaluesIF::RETURN_OK;
}
else {
return SerializeIF::STREAM_TOO_SHORT;
}
}

View File

@ -0,0 +1,220 @@
#ifndef POOLRAWACCESS_H_
#define POOLRAWACCESS_H_
#include "../datapool/DataSetIF.h"
#include "../datapool/PoolEntryIF.h"
#include "../datapool/PoolVariableIF.h"
#include "../globalfunctions/Type.h"
/**
* @brief This class allows accessing Data Pool variables as raw bytes.
* @details
* This is necessary to have an access method for HK data, as the PID's alone
* do not provide type information. Please note that the the raw pool access
* read() and commit() calls are not thread-safe.
*
* Please supply a data set and use the data set read(), commit() calls for
* thread-safe data pool access.
* @ingroup data_pool
*/
class PoolRawAccess: public PoolVariableIF, HasReturnvaluesIF {
public:
/**
* This constructor is used to access a data pool entry with a
* given ID if the target type is not known. A DataSet object is supplied
* and the data pool entry with the given ID is registered to that data set.
* Please note that a pool raw access buffer only has a buffer
* with a size of double. As such, for vector entries which have
* @param data_pool_id Target data pool entry ID
* @param arrayEntry
* @param data_set Dataset to register data pool entry to
* @param setReadWriteMode
* @param registerVectors If set to true, the constructor checks if
* there are multiple vector entries to registers
* and registers all of them recursively into the data_set
*
*/
PoolRawAccess(uint32_t data_pool_id, uint8_t arrayEntry,
DataSetIF* data_set, ReadWriteMode_t setReadWriteMode =
PoolVariableIF::VAR_READ);
/**
* @brief This operation returns a pointer to the entry fetched.
* @details Return pointer to the buffer containing the raw data
* Size and number of data can be retrieved by other means.
*/
uint8_t* getEntry();
/**
* @brief This operation returns the fetched entry from the data pool and
* flips the bytes, if necessary.
* @details It makes use of the getEntry call of this function, but additionally flips the
* bytes to big endian, which is the default for external communication (as House-
* keeping telemetry). To achieve this, the data is copied directly to the passed
* buffer, if it fits in the given max_size.
* @param buffer A pointer to a buffer to write to
* @param writtenBytes The number of bytes written is returned with this value.
* @param max_size The maximum size that the function may write to buffer.
* @return - @c RETURN_OK if entry could be acquired
* - @c RETURN_FAILED else.
*/
ReturnValue_t getEntryEndianSafe(uint8_t *buffer, size_t *size,
size_t maxSize);
/**
* @brief Serialize raw pool entry into provided buffer directly
* @param buffer Provided buffer. Raw pool data will be copied here
* @param size [out] Increment provided size value by serialized size
* @param max_size Maximum allowed serialization size
* @param bigEndian Specify endianess
* @return - @c RETURN_OK if serialization was successfull
* - @c SerializeIF::BUFFER_TOO_SHORT if range check failed
*/
ReturnValue_t serialize(uint8_t **buffer, size_t *size,
size_t maxSize, Endianness streamEndianness) const override;
size_t getSerializedSize() const override;
ReturnValue_t deSerialize(const uint8_t **buffer, size_t *size,
Endianness streamEndianness) override;
/**
* With this method, the content can be set from a big endian buffer safely.
* @param buffer Pointer to the data to set
* @param size Size of the data to write. Must fit this->size.
* @return - @c RETURN_OK on success
* - @c RETURN_FAILED on failure
*/
ReturnValue_t setEntryFromBigEndian(const uint8_t* buffer,
size_t setSize);
/**
* @brief This operation returns the type of the entry currently stored.
*/
Type getType();
/**
* @brief This operation returns the size of the entry currently stored.
*/
size_t getSizeOfType();
/**
*
* @return the size of the datapool array
*/
size_t getArraySize();
/**
* @brief This operation returns the data pool id of the variable.
*/
uint32_t getDataPoolId() const;
static const uint8_t INTERFACE_ID = CLASS_ID::POOL_RAW_ACCESS_CLASS;
static const ReturnValue_t INCORRECT_SIZE = MAKE_RETURN_CODE(0x01);
static const ReturnValue_t DATA_POOL_ACCESS_FAILED = MAKE_RETURN_CODE(0x02);
static const ReturnValue_t READ_TYPE_TOO_LARGE = MAKE_RETURN_CODE(0x03);
static const ReturnValue_t READ_INDEX_TOO_LARGE = MAKE_RETURN_CODE(0x04);
static const ReturnValue_t READ_ENTRY_NON_EXISTENT = MAKE_RETURN_CODE(0x05);
static const uint8_t RAW_MAX_SIZE = sizeof(double);
uint8_t value[RAW_MAX_SIZE];
/**
* @brief The classes destructor is empty. If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~PoolRawAccess();
/**
* This method returns if the variable is read-write or read-only.
*/
ReadWriteMode_t getReadWriteMode() const;
/**
* @brief With this call, the valid information of the variable is returned.
*/
bool isValid() const;
void setValid(bool valid);
/**
* Getter for the remaining size.
*/
size_t getSizeTillEnd() const;
/**
* @brief This is a call to read the value from the global data pool.
* @details
* When executed, this operation tries to fetch the pool entry with matching
* data pool id from the global data pool and copies the value and the valid
* information to its local attributes. In case of a failure (wrong type or
* pool id not found), the variable is set to zero and invalid.
* The call is protected by a lock of the global data pool.
* @return -@c RETURN_OK Read successfull
* -@c READ_TYPE_TOO_LARGE
* -@c READ_INDEX_TOO_LARGE
* -@c READ_ENTRY_NON_EXISTENT
*/
ReturnValue_t read(uint32_t lockTimeout = MutexIF::BLOCKING) override;
/**
* @brief The commit call writes back the variable's value to the data pool.
* @details
* It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the valid flag is automatically set to "valid".
* The call is protected by a lock of the global data pool.
*
*/
ReturnValue_t commit(uint32_t lockTimeout = MutexIF::BLOCKING) override;
protected:
/**
* @brief Like #read, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t readWithoutLock() override;
/**
* @brief Like #commit, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t commitWithoutLock() override;
ReturnValue_t handleReadOut(PoolEntryIF* read_out);
void handleReadError(ReturnValue_t result);
private:
/**
* @brief To access the correct data pool entry on read and commit calls, the data pool id
* is stored.
*/
uint32_t dataPoolId;
/**
* @brief The array entry that is fetched from the data pool.
*/
uint8_t arrayEntry;
/**
* @brief The valid information as it was stored in the data pool is copied to this attribute.
*/
uint8_t valid;
/**
* @brief This value contains the type of the data pool entry.
*/
Type type;
/**
* @brief This value contains the size of the data pool entry type in bytes.
*/
size_t typeSize;
/**
* The size of the DP array (single values return 1)
*/
size_t arraySize;
/**
* The size (in bytes) from the selected entry till the end of this DataPool variable.
*/
size_t sizeTillEnd;
/**
* @brief The information whether the class is read-write or read-only is stored here.
*/
ReadWriteMode_t readWriteMode;
};
#endif /* POOLRAWACCESS_H_ */