define FSFW_DISABLE_PRINTOUT in any case #42

Merged
meierj merged 2 commits from mueller/define-fsfw-disabled-printout into eive/develop 2022-03-08 10:11:45 +01:00
898 changed files with 56806 additions and 51539 deletions
Showing only changes of commit cc3210f366 - Show all commits

7
.clang-format Normal file
View File

@ -0,0 +1,7 @@
---
BasedOnStyle: Google
IndentWidth: 2
---
Language: Cpp
ColumnLimit: 100
---

175
CHANGELOG
View File

@ -1,175 +0,0 @@
# Changed from ASTP 1.1.0 to 1.2.0
## API Changes
### FSFW Architecture
- New src folder which contains all source files except the HAL, contributed code and test code
- External and internal API mostly stayed the same
- Folder names are now all smaller case: internalError was renamed to internalerror and
FreeRTOS was renamed to freertos
- Warning if optional headers are used but the modules was not added to the source files to compile
### HAL
- HAL added back into FSFW. It is tightly bound to the FSFW, and compiling it as a static library
made using it more complicated than necessary
## Bugfixes
### FreeRTOS QueueMapManager
- Fixed a bug which causes the first generated Queue ID to be invalid
## Enhancements
### FSFW Architecture
- See API changes chapter. This change will keep the internal API consistent in the future
# Changes from ASTP 1.0.0 to 1.1.0
## API Changes
### PUS
- Added PUS C support
- SUBSYSTEM_IDs added for PUS Services
- Added new Parameter which must be defined in config: fsfwconfig::FSFW_MAX_TM_PACKET_SIZE
### ObjectManager
- ObjectManager is now a singelton
### Configuration
- Additional configuration option fsfwconfig::FSFW_MAX_TM_PACKET_SIZE which
need to be specified in FSFWConfig.h
### CMake
- Changed Cmake FSFW_ADDITIONAL_INC_PATH to FSFW_ADDITIONAL_INC_PATHS
## Bugfixes
- timemanager/TimeStamperIF.h: Timestamp config was not used correctly, leading to different timestamp sizes than configured in fsfwconfig::FSFW_MISSION_TIMESTAMP_SIZE
- TCP server fixes
## Enhancements
### FreeRTOS Queue Handles
- Fixed an internal issue how FreeRTOS MessageQueues were handled
### Linux OSAL
- Better printf error messages
### CMake
- Check for C++11 as mininimum required Version
### Debug Output
- Changed Warning color to magenta, which is well readable on both dark and light mode IDEs
# Changes from ASTP 0.0.1 to 1.0.0
### Host OSAL
- Bugfix in MessageQueue, which caused the sender not to be set properly
### FreeRTOS OSAL
- vRequestContextSwitchFromISR is declared extern "C" so it can be defined in
a C file without issues
### PUS Services
- It is now possible to change the message queue depth for the telecommand verification service (PUS1)
- The same is possible for the event reporting service (PUS5)
- PUS Health Service added, which allows to command and retrieve health via PUS packets
### EnhancedControllerBase
- New base class for a controller which also implements HasActionsIF and HasLocalDataPoolIF
### Local Pool
- Interface of LocalPools has changed. LocalPool is not a template anymore. Instead the size and
bucket number of the pools per page and the number of pages are passed to the ctor instead of
two ctor arguments and a template parameter
### Parameter Service
- The API of the parameter service has been changed to prevent inconsistencies
between documentation and actual code and to clarify usage.
- The parameter ID now consists of:
1. Domain ID (1 byte)
2. Unique Identifier (1 byte)
3. Linear Index (2 bytes)
The linear index can be used for arrays as well as matrices.
The parameter load command now explicitely expects the ECSS PTC and PFC
information as well as the rows and column number. Rows and column will
default to one, which is equivalent to one scalar parameter (the most
important use-case)
### File System Interface
- A new interfaces specifies the functions for a software object which exposes the file system of
a given hardware to use message based file handling (e.g. PUS commanding)
### Internal Error Reporter
- The new internal error reporter uses the local data pools. The pool IDs for
the exisiting three error values and the new error set will be hardcoded for
now, the the constructor for the internal error reporter just takes an object
ID for now.
### Device Handler Base
- There is an additional `PERFORM_OPERATION` step for the device handler base. It is important
that DHB users adapt their polling sequence tables to perform this step. This steps allows for
a clear distinction between operation and communication steps
- setNormalDatapoolEntriesInvalid is not an abstract method and a default implementation was provided
- getTransitionDelayMs is now an abstract method
### DeviceHandlerIF
- Typo for UNKNOWN_DEVICE_REPLY
### Events
- makeEvent function: Now takes three input parameters instead of two and
allows setting a unique ID. Event.cpp source file removed, functions now
defined in header directly. Namespaces renamed. Functions declared `constexpr`
now
### Commanding Service Base
- CSB uses the new fsfwconfig::FSFW_CSB_FIFO_DEPTH variable to determine the FIFO depth for each
CSB instance. This variable has to be set in the FSFWConfig.h file
### Service Interface
- Proper printf support contained in ServiceInterfacePrinter.h
- CPP ostream support now optional (can reduce executable size by 150 - 250 kB)
- Amalagated header which determines automatically which service interface to use depending on FSFWConfig.h configuration.
Users can just use #include <fsfw/serviceinterface/ServiceInterface.h>
- If CPP streams are excluded, sif:: calls won't work anymore and need to be replaced by their printf counterparts.
For the fsfw, this can be done by checking the processor define FSFW_CPP_OSTREAM_ENABLED from FSFWConfig.h.
For mission code, developers need to replace sif:: calls by the printf counterparts, but only if the CPP stream are excluded.
If this is not the case, everything should work as usual.
### ActionHelper and ActionMessage
- ActionHelper finish function and ActionMessage::setCompletionReply now expects explicit
information whether to report a success or failure message instead of deriving it implicitely
from returnvalue
### PUS Parameter Service 20
Added PUS parameter service 20 (only custom subservices available).

404
CHANGELOG.md Normal file
View File

@ -0,0 +1,404 @@
Change Log
=======
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/)
and this project adheres to [Semantic Versioning](http://semver.org/).
# [unreleased]
# [v5.0.0]
## Changes
- GPIO HAL: Renamed entries of enumerations to avoid nameclashes with Windows defines.
`IN` and `OUT` in `Direction` changed to `DIR_IN` and `DIR_OUT`.
`CALLBACK` in `GpioTypes` changed to `TYPE_CALLBACK`
- HAL Devicehandlers: Periodic printout is run-time configurable now
- `oneShotAction` flag in the `TestTask` class is not static anymore
## Removed
- Removed the `HkSwitchHelper`. This module should not be needed anymore, now that the local
datapools have been implemented
## Additions
- Linux HAL: Add wiretapping option for I2C. Enabled with `FSFW_HAL_I2C_WIRETAPPING` defined to 1
# [v4.0.0]
## Additions
- CFDP Packet Stack and related tests added. It also refactors the existing TMTC infastructure to
allow sending of CFDP packets to the CCSDS handlers.
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/528
- added virtual function to print datasets
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/544
- doSendRead Hook
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/545
- Dockumentation for DHB
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/551
### HAL additions
- Linux Command Executor, which can execute shell commands in blocking and non-blocking mode
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/536
- uio Mapper
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/543
## Changes
- Applied the `clang-format` auto-formatter to all source code
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/534
- Updated Catch2 to v3.0.0-preview4
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/538
- Changed CI to use prebuilt docker image
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/549
## Bugfix
- CMake fixes in PR https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/533 , was problematic
if the uppermost user `CMakeLists.txt` did not have the include paths set up properly, which
could lead to compile errors that `#include "fsfw/FSFW.h"` was not found.
- Fix for build regression in Catch2 v3.0.0-preview4
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/548
- Fix in unittest which failed on CI
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/552
- Fix in helper script
PR: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/pulls/553
## API Changes
- Aforementioned changes to existing TMTC stack
## Known bugs
-
# [v3.0.1]
## API Changes
*
## Bugfixes
* Version number was not updated for v3.0.0 #542
## Enhancement
*
## Known bugs
*
# [v3.0.0]
## API Changes
#### TCP Socket Changes
* Keep Open TCP Implementation #496
* The socket will now kept open after disconnect. This allows reconnecting.
* Only one connection is allowed
* No internal influence but clients need to change their Code.
### GPIO IF
* Add feature to open GPIO by line name #506
### Bitutil
* Unittests for Op Divider and Bitutility #510
### Filesystem IF changed
* Filesystem Base Interface: Use IF instead of void pointer #511
### STM32
* STM32 SPI Updates #518
## Bugfixes
* Small bugfix for LIS3 handler #504
* Spelling fixed for function names #509
* CMakeLists fixes #517
* Out of bound reads and writes in unittests #519
* Bug in TmPacketStoredPusC (#478)
* Windows ifdef fixed #529
## Enhancement
* FSFW.h.in more default values #491
* Minor updates for PUS services #498
* HasReturnvaluesIF naming for parameter #499
* Tests can now be built as part of FSFW and versioning moved to CMake #500
* Added integration test code #508
* More printouts for rejected TC packets #505
* Arrayprinter format improvements #514
* Adding code for CI with docker and jenkins #520
* Added new function in SerializeAdapter #513
* Enables simple deSerialize if you keep track of the buffer position yourself
* `` static ReturnValue_t deSerialize(T *object, const uint8_t* buffer,
size_t* deserSize, SerializeIF::Endianness streamEndianness) ``
* Unittest helper scripts has a new Parameter to open the coverage html in the webrowser #525
* ``'-o', '--open', Open coverage data in webbrowser``
* Documentation updated. Sphinx Documentation can now be build with python script #526
## Known bugs
* Version number was not updated for v3.0.0 #542
All Pull Requests:
Milestone: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/milestone/19
# [v2.0.0]
## API Changes
### File Structure changed to fit more common structure
* See pull request (#445)
* HAL is now part of the main project
* **See Instructions below:**
#### Instruction how to update existing / user code
* Changes in `#include`:
* Rename `internalError` in includes to `internalerror`
* Rename `fsfw/hal` to `fsfw_hal`
* Rename `fsfw/tests` to `fsfw_tests`
* Rename `osal/FreeRTOS` to `osal/freertos`
* Changes in `CMakeLists.txt`:
* Rename `OS_FSFW` to `FSFW_OSAL`
* Changes in `DleEncoder.cpp`
* Create an instance of the `DleEncoder` first before calling the `encode` and `decode` functions
### Removed osal/linux/Timer (#486)
* Was redundant to timemanager/Countdown
#### Instruction how to update existing / user code
* Use timemanager/Countdown instead
## Bugfixes
### TM Stack
* Increased TM stack robustness by introducing `nullptr` checks and more printouts (#483)
#### Host OSAL / FreeRTOS
* QueueMapManager Bugfix (NO_QUEUE was used as MessageQueueId) (#444)
#### Events
* Event output is now consistent (#447)
#### DLE Encoder
* Fixed possible out of bounds access in DLE Encoder (#492)
## Enhancment
* HAL as major new feature, also includes three MEMS devicehandlers as part of #481
* Linux HAL updates (#456)
* FreeRTOS Header cleaning update and Cmake tweaks (#442)
* Printer updates (#453)
* New returnvalue for for empty PST (#485)
* TMTC Bridge: Increase limit of packets stored (#484)
## Known bugs
* Bug in TmPacketStoredPusC (#478)
All Pull Requests:
Milestone: https://egit.irs.uni-stuttgart.de/fsfw/fsfw/milestone/5
# [v1.2.0]
## API Changes
### FSFW Architecture
- New src folder which contains all source files except the HAL, contributed code and test code
- External and internal API mostly stayed the same
- Folder names are now all smaller case: internalError was renamed to internalerror and
FreeRTOS was renamed to freertos
- Warning if optional headers are used but the modules was not added to the source files to compile
### HAL
- HAL added back into FSFW. It is tightly bound to the FSFW, and compiling it as a static library
made using it more complicated than necessary
## Bugfixes
### FreeRTOS QueueMapManager
- Fixed a bug which causes the first generated Queue ID to be invalid
## Enhancements
### FSFW Architecture
- See API changes chapter. This change will keep the internal API consistent in the future
# [v1.1.0]
## API Changes
### PUS
- Added PUS C support
- SUBSYSTEM_IDs added for PUS Services
- Added new Parameter which must be defined in config: fsfwconfig::FSFW_MAX_TM_PACKET_SIZE
### ObjectManager
- ObjectManager is now a singelton
### Configuration
- Additional configuration option fsfwconfig::FSFW_MAX_TM_PACKET_SIZE which
need to be specified in FSFWConfig.h
### CMake
- Changed Cmake FSFW_ADDITIONAL_INC_PATH to FSFW_ADDITIONAL_INC_PATHS
## Bugfixes
- timemanager/TimeStamperIF.h: Timestamp config was not used correctly, leading to different timestamp sizes than configured in fsfwconfig::FSFW_MISSION_TIMESTAMP_SIZE
- TCP server fixes
## Enhancements
### FreeRTOS Queue Handles
- Fixed an internal issue how FreeRTOS MessageQueues were handled
### Linux OSAL
- Better printf error messages
### CMake
- Check for C++11 as mininimum required Version
### Debug Output
- Changed Warning color to magenta, which is well readable on both dark and light mode IDEs
# Changes from ASTP 0.0.1 to 1.0.0
### Host OSAL
- Bugfix in MessageQueue, which caused the sender not to be set properly
### FreeRTOS OSAL
- vRequestContextSwitchFromISR is declared extern "C" so it can be defined in
a C file without issues
### PUS Services
- It is now possible to change the message queue depth for the telecommand verification service (PUS1)
- The same is possible for the event reporting service (PUS5)
- PUS Health Service added, which allows to command and retrieve health via PUS packets
### EnhancedControllerBase
- New base class for a controller which also implements HasActionsIF and HasLocalDataPoolIF
### Local Pool
- Interface of LocalPools has changed. LocalPool is not a template anymore. Instead the size and
bucket number of the pools per page and the number of pages are passed to the ctor instead of
two ctor arguments and a template parameter
### Parameter Service
- The API of the parameter service has been changed to prevent inconsistencies
between documentation and actual code and to clarify usage.
- The parameter ID now consists of:
1. Domain ID (1 byte)
2. Unique Identifier (1 byte)
3. Linear Index (2 bytes)
The linear index can be used for arrays as well as matrices.
The parameter load command now explicitely expects the ECSS PTC and PFC
information as well as the rows and column number. Rows and column will
default to one, which is equivalent to one scalar parameter (the most
important use-case)
### File System Interface
- A new interfaces specifies the functions for a software object which exposes the file system of
a given hardware to use message based file handling (e.g. PUS commanding)
### Internal Error Reporter
- The new internal error reporter uses the local data pools. The pool IDs for
the exisiting three error values and the new error set will be hardcoded for
now, the the constructor for the internal error reporter just takes an object
ID for now.
### Device Handler Base
- There is an additional `PERFORM_OPERATION` step for the device handler base. It is important
that DHB users adapt their polling sequence tables to perform this step. This steps allows for
a clear distinction between operation and communication steps
- setNormalDatapoolEntriesInvalid is not an abstract method and a default implementation was provided
- getTransitionDelayMs is now an abstract method
### DeviceHandlerIF
- Typo for UNKNOWN_DEVICE_REPLY
### Events
- makeEvent function: Now takes three input parameters instead of two and
allows setting a unique ID. Event.cpp source file removed, functions now
defined in header directly. Namespaces renamed. Functions declared `constexpr`
now
### Commanding Service Base
- CSB uses the new fsfwconfig::FSFW_CSB_FIFO_DEPTH variable to determine the FIFO depth for each
CSB instance. This variable has to be set in the FSFWConfig.h file
### Service Interface
- Proper printf support contained in ServiceInterfacePrinter.h
- CPP ostream support now optional (can reduce executable size by 150 - 250 kB)
- Amalagated header which determines automatically which service interface to use depending on FSFWConfig.h configuration.
Users can just use #include <fsfw/serviceinterface/ServiceInterface.h>
- If CPP streams are excluded, sif:: calls won't work anymore and need to be replaced by their printf counterparts.
For the fsfw, this can be done by checking the processor define FSFW_CPP_OSTREAM_ENABLED from FSFWConfig.h.
For mission code, developers need to replace sif:: calls by the printf counterparts, but only if the CPP stream are excluded.
If this is not the case, everything should work as usual.
### ActionHelper and ActionMessage
- ActionHelper finish function and ActionMessage::setCompletionReply now expects explicit
information whether to report a success or failure message instead of deriving it implicitely
from returnvalue
### PUS Parameter Service 20
Added PUS parameter service 20 (only custom subservices available).

View File

@ -1,9 +1,12 @@
cmake_minimum_required(VERSION 3.13) cmake_minimum_required(VERSION 3.13)
set(FSFW_VERSION 2) set(FSFW_VERSION 4)
set(FSFW_SUBVERSION 0) set(FSFW_SUBVERSION 0)
set(FSFW_REVISION 0) set(FSFW_REVISION 0)
# Add the cmake folder so the FindSphinx module is found
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
option(FSFW_GENERATE_SECTIONS option(FSFW_GENERATE_SECTIONS
"Generate function and data sections. Required to remove unused code" ON "Generate function and data sections. Required to remove unused code" ON
) )
@ -12,6 +15,7 @@ if(FSFW_GENERATE_SECTIONS)
endif() endif()
option(FSFW_BUILD_UNITTESTS "Build unittest binary in addition to static library" OFF) option(FSFW_BUILD_UNITTESTS "Build unittest binary in addition to static library" OFF)
option(FSFW_BUILD_DOCS "Build documentation with Sphinx and Doxygen" OFF)
if(FSFW_BUILD_UNITTESTS) if(FSFW_BUILD_UNITTESTS)
option(FSFW_TESTS_GEN_COV "Generate coverage data for unittests" ON) option(FSFW_TESTS_GEN_COV "Generate coverage data for unittests" ON)
endif() endif()
@ -36,7 +40,9 @@ option(FSFW_ADD_SGP4_PROPAGATOR "Add SGP4 propagator code" OFF)
set(LIB_FSFW_NAME fsfw) set(LIB_FSFW_NAME fsfw)
set(FSFW_TEST_TGT fsfw-tests) set(FSFW_TEST_TGT fsfw-tests)
set(FSFW_DUMMY_TGT fsfw-dummy)
project(${LIB_FSFW_NAME})
add_library(${LIB_FSFW_NAME}) add_library(${LIB_FSFW_NAME})
if(FSFW_BUILD_UNITTESTS) if(FSFW_BUILD_UNITTESTS)
@ -50,16 +56,17 @@ if(FSFW_BUILD_UNITTESTS)
FetchContent_Declare( FetchContent_Declare(
Catch2 Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v3.0.0-preview3 GIT_TAG v3.0.0-preview4
) )
FetchContent_MakeAvailable(Catch2) FetchContent_MakeAvailable(Catch2)
#fixes regression -preview4, to be confirmed in later releases
set_target_properties(Catch2 PROPERTIES DEBUG_POSTFIX "")
endif() endif()
set(FSFW_CONFIG_PATH tests/src/fsfw_tests/unit/testcfg) set(FSFW_CONFIG_PATH tests/src/fsfw_tests/unit/testcfg)
configure_file(tests/src/fsfw_tests/unit/testcfg/FSFWConfig.h.in FSFWConfig.h) configure_file(tests/src/fsfw_tests/unit/testcfg/FSFWConfig.h.in FSFWConfig.h)
configure_file(tests/src/fsfw_tests/unit/testcfg/TestsConfig.h.in tests/TestsConfig.h) configure_file(tests/src/fsfw_tests/unit/testcfg/TestsConfig.h.in tests/TestsConfig.h)
configure_file(tests/src/fsfw_tests/unit/testcfg/OBSWConfig.h.in OBSWConfig.h)
project(${FSFW_TEST_TGT} CXX C) project(${FSFW_TEST_TGT} CXX C)
add_executable(${FSFW_TEST_TGT}) add_executable(${FSFW_TEST_TGT})
@ -85,7 +92,7 @@ set(FSFW_CORE_INC_PATH "inc")
set_property(CACHE FSFW_OSAL PROPERTY STRINGS host linux rtems freertos) set_property(CACHE FSFW_OSAL PROPERTY STRINGS host linux rtems freertos)
# Configure Files # For configure files
target_include_directories(${LIB_FSFW_NAME} PRIVATE target_include_directories(${LIB_FSFW_NAME} PRIVATE
${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_BINARY_DIR}
) )
@ -147,13 +154,8 @@ else()
set(OS_FSFW "host") set(OS_FSFW "host")
endif() endif()
if(FSFW_BUILD_UNITTESTS) configure_file(src/fsfw/FSFW.h.in fsfw/FSFW.h)
configure_file(src/fsfw/FSFW.h.in fsfw/FSFW.h) configure_file(src/fsfw/FSFWVersion.h.in fsfw/FSFWVersion.h)
configure_file(src/fsfw/FSFWVersion.h.in fsfw/FSFWVersion.h)
else()
configure_file(src/fsfw/FSFW.h.in FSFW.h)
configure_file(src/fsfw/FSFWVersion.h.in FSFWVersion.h)
endif()
message(STATUS "Compiling FSFW for the ${FSFW_OS_NAME} operating system.") message(STATUS "Compiling FSFW for the ${FSFW_OS_NAME} operating system.")
@ -163,6 +165,9 @@ if(FSFW_ADD_HAL)
add_subdirectory(hal) add_subdirectory(hal)
endif() endif()
add_subdirectory(contrib) add_subdirectory(contrib)
if(FSFW_BUILD_DOCS)
add_subdirectory(docs)
endif()
if(FSFW_BUILD_UNITTESTS) if(FSFW_BUILD_UNITTESTS)
if(FSFW_TESTS_GEN_COV) if(FSFW_TESTS_GEN_COV)
@ -189,13 +194,13 @@ if(FSFW_BUILD_UNITTESTS)
"--exclude-unreachable-branches" "--exclude-unreachable-branches"
) )
set(COVERAGE_EXCLUDES set(COVERAGE_EXCLUDES
"/c/msys64/mingw64/*" "/c/msys64/mingw64/*" "*/fsfw_hal/*"
) )
elseif(UNIX) elseif(UNIX)
set(COVERAGE_EXCLUDES set(COVERAGE_EXCLUDES
"/usr/include/*" "/usr/bin/*" "Catch2/*" "/usr/include/*" "/usr/bin/*" "Catch2/*"
"/usr/local/include/*" "*/fsfw_tests/*" "/usr/local/include/*" "*/fsfw_tests/*"
"*/catch2-src/*" "*/catch2-src/*" "*/fsfw_hal/*"
) )
endif() endif()
@ -234,9 +239,11 @@ endif()
# The project CMakeLists file has to set the FSFW_CONFIG_PATH and add it. # The project CMakeLists file has to set the FSFW_CONFIG_PATH and add it.
# If this is not given, we include the default configuration and emit a warning. # If this is not given, we include the default configuration and emit a warning.
if(NOT FSFW_CONFIG_PATH) if(NOT FSFW_CONFIG_PATH)
message(WARNING "Flight Software Framework configuration path not set!")
set(DEF_CONF_PATH misc/defaultcfg/fsfwconfig) set(DEF_CONF_PATH misc/defaultcfg/fsfwconfig)
message(WARNING "Setting default configuration from ${DEF_CONF_PATH} ..") if(NOT FSFW_BUILD_DOCS)
message(WARNING "Flight Software Framework configuration path not set!")
message(WARNING "Setting default configuration from ${DEF_CONF_PATH} ..")
endif()
add_subdirectory(${DEF_CONF_PATH}) add_subdirectory(${DEF_CONF_PATH})
set(FSFW_CONFIG_PATH ${DEF_CONF_PATH}) set(FSFW_CONFIG_PATH ${DEF_CONF_PATH})
endif() endif()
@ -274,6 +281,24 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
-Wimplicit-fallthrough=1 -Wimplicit-fallthrough=1
-Wno-unused-parameter -Wno-unused-parameter
-Wno-psabi -Wno-psabi
-Wduplicated-cond # check for duplicate conditions
-Wduplicated-branches # check for duplicate branches
-Wlogical-op # Search for bitwise operations instead of logical
-Wnull-dereference # Search for NULL dereference
-Wundef # Warn if undefind marcos are used
-Wformat=2 # Format string problem detection
-Wformat-overflow=2 # Formatting issues in printf
-Wformat-truncation=2 # Formatting issues in printf
-Wformat-security # Search for dangerous printf operations
-Wstrict-overflow=3 # Warn if integer overflows might happen
-Warray-bounds=2 # Some array bounds violations will be found
-Wshift-overflow=2 # Search for bit left shift overflows (<c++14)
-Wcast-qual # Warn if the constness is cast away
-Wstringop-overflow=4
# -Wstack-protector # Emits a few false positives for low level access
# -Wconversion # Creates many false positives
# -Warith-conversion # Use with Wconversion to find more implicit conversions
# -fanalyzer # Should be used to look through problems
) )
endif() endif()

View File

@ -42,7 +42,7 @@ There are some functions like `printChar` which are different depending on the t
and need to be implemented by the mission developer. and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](doc/README-config.md#top) provides more specific a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options. information about the possible options.
## Adding the library ## Adding the library
@ -71,9 +71,9 @@ add and link against the FSFW library in general.
4. Link against the FSFW library 4. Link against the FSFW library
```cmake ```cmake
target_link_libraries(<YourProjectName> PRIVATE fsfw) target_link_libraries(${YourProjectName} PRIVATE fsfw)
``` ```
5. It should now be possible use the FSFW as a static library from the user code. 5. It should now be possible use the FSFW as a static library from the user code.
@ -91,7 +91,7 @@ You can use the following commands inside the `fsfw` folder to set up the build
```sh ```sh
mkdir build-Unittest && cd build-Unittest mkdir build-Unittest && cd build-Unittest
cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host .. cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host -DCMAKE_BUILD_TYPE=Debug ..
``` ```
You can also use `-DFSFW_OSAL=linux` on Linux systems. You can also use `-DFSFW_OSAL=linux` on Linux systems.
@ -107,16 +107,58 @@ cmake --build . -- fsfw-tests_coverage -j
The `coverage.py` script located in the `script` folder can also be used to do this conveniently. The `coverage.py` script located in the `script` folder can also be used to do this conveniently.
## Building the documentations
The FSFW documentation is built using the tools Sphinx, doxygen and breathe based on the
instructions provided in [this blogpost](https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/). If you
want to do this locally, set up the prerequisites first. This requires a ``python3``
installation as well. Example here is for Ubuntu.
```sh
sudo apt-get install doxygen graphviz
```
And the following Python packages
```sh
python3 -m pip install sphinx breathe
```
You can set up a documentation build system using the following commands
```sh
mkdir build-docs && cd build-docs
cmake -DFSFW_BUILD_DOCS=ON -DFSFW_OSAL=host ..
```
Then you can generate the documentation using
```sh
cmake --build . -j
```
You can find the generated documentation inside the `docs/sphinx` folder inside the build
folder. Simply open the `index.html` in the webbrowser of your choice.
The `helper.py` script located in the script` folder can also be used to create, build
and open the documentation conveniently. Try `helper.py -h for more information.
## Formatting the sources
The formatting is done by the `clang-format` tool. The configuration is contained within the
`.clang-format` file in the repository root. As long as `clang-format` is installed, you
can run the `apply-clang-format.sh` helper script to format all source files consistently.
## Index ## Index
[1. High-level overview](doc/README-highlevel.md#top) <br> [1. High-level overview](docs/README-highlevel.md#top) <br>
[2. Core components](doc/README-core.md#top) <br> [2. Core components](docs/README-core.md#top) <br>
[3. Configuration](doc/README-config.md#top) <br> [3. Configuration](docs/README-config.md#top) <br>
[4. OSAL overview](doc/README-osal.md#top) <br> [4. OSAL overview](docs/README-osal.md#top) <br>
[5. PUS services](doc/README-pus.md#top) <br> [5. PUS services](docs/README-pus.md#top) <br>
[6. Device Handler overview](doc/README-devicehandlers.md#top) <br> [6. Device Handler overview](docs/README-devicehandlers.md#top) <br>
[7. Controller overview](doc/README-controllers.md#top) <br> [7. Controller overview](docs/README-controllers.md#top) <br>
[8. Local Data Pools](doc/README-localpools.md#top) <br> [8. Local Data Pools](docs/README-localpools.md#top) <br>

View File

@ -5,4 +5,4 @@ RUN apt-get --yes upgrade
#tzdata is a dependency, won't install otherwise #tzdata is a dependency, won't install otherwise
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get --yes install gcc g++ cmake make lcov git valgrind nano RUN apt-get --yes install gcc g++ cmake make lcov git valgrind nano iputils-ping

View File

@ -1,28 +1,17 @@
pipeline { pipeline {
agent any
environment { environment {
BUILDDIR = 'build-unittests' BUILDDIR = 'build-tests'
}
agent {
docker { image 'fsfw-ci:d1'}
} }
stages { stages {
stage('Create Docker') { stage('Clean') {
agent {
dockerfile {
dir 'automation'
additionalBuildArgs '--no-cache'
reuseNode true
}
}
steps { steps {
sh 'rm -rf $BUILDDIR' sh 'rm -rf $BUILDDIR'
} }
} }
stage('Configure') { stage('Configure') {
agent {
dockerfile {
dir 'automation'
reuseNode true
}
}
steps { steps {
dir(BUILDDIR) { dir(BUILDDIR) {
sh 'cmake -DFSFW_OSAL=host -DFSFW_BUILD_UNITTESTS=ON ..' sh 'cmake -DFSFW_OSAL=host -DFSFW_BUILD_UNITTESTS=ON ..'
@ -30,38 +19,20 @@ pipeline {
} }
} }
stage('Build') { stage('Build') {
agent {
dockerfile {
dir 'automation'
reuseNode true
}
}
steps { steps {
dir(BUILDDIR) { dir(BUILDDIR) {
sh 'cmake --build . -j' sh 'cmake --build . -j4'
} }
} }
} }
stage('Unittests') { stage('Unittests') {
agent {
dockerfile {
dir 'automation'
reuseNode true
}
}
steps { steps {
dir(BUILDDIR) { dir(BUILDDIR) {
sh 'cmake --build . -- fsfw-tests_coverage -j' sh 'cmake --build . -- fsfw-tests_coverage -j4'
} }
} }
} }
stage('Valgrind') { stage('Valgrind') {
agent {
dockerfile {
dir 'automation'
reuseNode true
}
}
steps { steps {
dir(BUILDDIR) { dir(BUILDDIR) {
sh 'valgrind --leak-check=full --error-exitcode=1 ./fsfw-tests' sh 'valgrind --leak-check=full --error-exitcode=1 ./fsfw-tests'

13
cmake/FindSphinx.cmake Normal file
View File

@ -0,0 +1,13 @@
# Look for an executable called sphinx-build
find_program(SPHINX_EXECUTABLE
NAMES sphinx-build
DOC "Path to sphinx-build executable")
include(FindPackageHandleStandardArgs)
# Handle standard arguments to find_package like REQUIRED and QUIET
find_package_handle_standard_args(
Sphinx
"Failed to find sphinx-build executable"
SPHINX_EXECUTABLE
)

1
docs/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/_build

66
docs/CMakeLists.txt Normal file
View File

@ -0,0 +1,66 @@
# This is based on this excellent posting provided by Sy:
# https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
find_package(Doxygen REQUIRED)
find_package(Sphinx REQUIRED)
get_target_property(LIB_FSFW_PUBLIC_HEADER_DIRS ${LIB_FSFW_NAME} INTERFACE_INCLUDE_DIRECTORIES)
# TODO: Add HAL as well
file(GLOB_RECURSE LIB_FSFW_PUBLIC_HEADERS ${PROJECT_SOURCE_DIR}/src/*.h)
file(GLOB_RECURSE RST_DOC_FILES ${PROJECT_SOURCE_DIR}/docs/*.rst)
set(DOXYGEN_INPUT_DIR ${PROJECT_SOURCE_DIR}/src)
set(DOXYGEN_OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/doxygen)
set(DOXYGEN_INDEX_FILE ${DOXYGEN_OUTPUT_DIR}/xml/index.xml)
set(DOXYFILE_IN ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in)
set(DOXYFILE_OUT ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile)
# Replace variables inside @@ with the current values
configure_file(${DOXYFILE_IN} ${DOXYFILE_OUT} @ONLY)
# Doxygen won't create this for us
file(MAKE_DIRECTORY ${DOXYGEN_OUTPUT_DIR})
# Only regenerate Doxygen when the Doxyfile or public headers change
add_custom_command(
OUTPUT ${DOXYGEN_INDEX_FILE}
DEPENDS ${LIB_FSFW_PUBLIC_HEADERS}
COMMAND ${DOXYGEN_EXECUTABLE} ${DOXYFILE_OUT}
MAIN_DEPENDENCY ${DOXYFILE_OUT} ${DOXYFILE_IN}
COMMENT "Generating docs"
VERBATIM
)
# Nice named target so we can run the job easily
add_custom_target(Doxygen ALL DEPENDS ${DOXYGEN_INDEX_FILE})
set(SPHINX_SOURCE ${CMAKE_CURRENT_SOURCE_DIR})
set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR}/sphinx)
set(SPHINX_INDEX_FILE ${SPHINX_BUILD}/index.html)
# Only regenerate Sphinx when:
# - Doxygen has rerun
# - Our doc files have been updated
# - The Sphinx config has been updated
add_custom_command(
OUTPUT ${SPHINX_INDEX_FILE}
COMMAND
${SPHINX_EXECUTABLE} -b html
# Tell Breathe where to find the Doxygen output
-Dbreathe_projects.fsfw=${DOXYGEN_OUTPUT_DIR}/xml
${SPHINX_SOURCE} ${SPHINX_BUILD}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS
# Other docs files you want to track should go here (or in some variable)
${RST_DOC_FILES}
${DOXYGEN_INDEX_FILE}
MAIN_DEPENDENCY ${SPHINX_SOURCE}/conf.py
COMMENT "Generating documentation with Sphinx"
)
# Nice named target so we can run the job easily
add_custom_target(Sphinx ALL DEPENDS ${SPHINX_INDEX_FILE})
# Add an install target to install the docs
include(GNUInstallDirs)
install(DIRECTORY ${SPHINX_BUILD}
DESTINATION ${CMAKE_INSTALL_DOCDIR})

7
docs/Doxyfile.in Normal file
View File

@ -0,0 +1,7 @@
INPUT = "@DOXYGEN_INPUT_DIR@"
RECURSIVE = YES
OUTPUT_DIRECTORY = "@DOXYGEN_OUTPUT_DIR@"
GENERATE_XML = YES

20
docs/Makefile Normal file
View File

@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -31,7 +31,9 @@ cohesive pool variables. These sets simply iterator over the list of variables a
`read` and `commit` functions of each variable. The following diagram shows the `read` and `commit` functions of each variable. The following diagram shows the
high-level architecture of the local data pools. high-level architecture of the local data pools.
<img align="center" src="./images/PoolArchitecture.png" width="50%"> <br> .. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
An example is shown for using the local data pools with a Gyroscope. An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken For example, the following code shows an implementation to access data from a Gyroscope taken

16
docs/api.rst Normal file
View File

@ -0,0 +1,16 @@
API
====
.. toctree::
:maxdepth: 4
api/objectmanager
api/task
api/ipc
api/returnvalue
api/event
api/modes
api/health
api/action
api/devicehandler
api/controller

15
docs/api/action.rst Normal file
View File

@ -0,0 +1,15 @@
Action Module API
=================
``ActionHelper``
-----------------
.. doxygenclass:: ActionHelper
:members:
``HasActionsIF``
-----------------
.. doxygenclass:: HasActionsIF
:members:
:protected-members:

16
docs/api/controller.rst Normal file
View File

@ -0,0 +1,16 @@
Controller API
=================
``ControllerBase``
-------------------------
.. doxygenclass:: ControllerBase
:members:
:protected-members:
``ExtendedControllerBase``
-----------------------------
.. doxygenclass:: ExtendedControllerBase
:members:
:protected-members:

View File

@ -0,0 +1,16 @@
Device Handler Base API
=========================
``DeviceHandlerBase``
-----------------------
.. doxygenclass:: DeviceHandlerBase
:members:
:protected-members:
``DeviceHandlerIF``
-----------------------
.. doxygenclass:: DeviceHandlerIF
:members:
:protected-members:

6
docs/api/event.rst Normal file
View File

@ -0,0 +1,6 @@
.. _eventapi:
Event API
============
.. doxygenfile:: Event.h

9
docs/api/health.rst Normal file
View File

@ -0,0 +1,9 @@
Health API
===========
``HasHealthIF``
------------------
.. doxygenclass:: HasHealthIF
:members:
:protected-members:

9
docs/api/ipc.rst Normal file
View File

@ -0,0 +1,9 @@
IPC Module API
=================
``MessageQueueIF``
-------------------
.. doxygenclass:: MessageQueueIF
:members:
:protected-members:

10
docs/api/modes.rst Normal file
View File

@ -0,0 +1,10 @@
Modes API
=========
``HasModesIF``
---------------
.. doxygenclass:: HasModesIF
:members:
:protected-members:

View File

@ -0,0 +1,30 @@
Object Manager API
=========================
``SystemObject``
--------------------
.. doxygenclass:: SystemObject
:members:
:protected-members:
``ObjectManager``
-----------------------
.. doxygenclass:: ObjectManager
:members:
:protected-members:
``SystemObjectIF``
--------------------
.. doxygenclass:: SystemObjectIF
:members:
:protected-members:
``ObjectManagerIF``
-----------------------
.. doxygenclass:: ObjectManagerIF
:members:
:protected-members:

10
docs/api/returnvalue.rst Normal file
View File

@ -0,0 +1,10 @@
.. _retvalapi:
Returnvalue API
==================
.. doxygenfile:: HasReturnvaluesIF.h
.. _fwclassids:
.. doxygenfile:: FwClassIds.h

8
docs/api/task.rst Normal file
View File

@ -0,0 +1,8 @@
Task API
=========
``ExecutableObjectIF``
-----------------------
.. doxygenclass:: ExecutableObjectIF
:members:

56
docs/conf.py Normal file
View File

@ -0,0 +1,56 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'Flight Software Framework'
copyright = '2021, Institute of Space Systems (IRS)'
author = 'Institute of Space Systems (IRS)'
# The full version, including alpha/beta/rc tags
release = '2.0.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [ "breathe" ]
breathe_default_project = "fsfw"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []

41
docs/config.rst Normal file
View File

@ -0,0 +1,41 @@
Configuring the FSFW
=====================
The FSFW can be configured via the ``fsfwconfig`` folder. A template folder has been provided in
``misc/defaultcfg`` to have a starting point for this. The folder should be added
to the include path. The primary configuration file is the ``FSFWConfig.h`` folder. Some
of the available options will be explained in more detail here.
Auto-Translation of Events
----------------------------
The FSFW allows the automatic translation of events, which allows developers to track triggered
events directly via console output. Using this feature requires:
1. ``FSFW_OBJ_EVENT_TRANSLATION`` set to 1 in the configuration file.
2. Special auto-generated translation files which translate event IDs and object IDs into
human readable strings. These files can be generated using the
`fsfwgen Python scripts <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-gen>`_.
3. The generated translation files for the object IDs should be named ``translatesObjects.cpp``
and ``translateObjects.h`` and should be copied to the ``fsfwconfig/objects`` folder
4. The generated translation files for the event IDs should be named ``translateEvents.cpp`` and
``translateEvents.h`` and should be copied to the ``fsfwconfig/events`` folder
An example implementations of these translation file generators can be found as part
of the `SOURCE project here <https://git.ksat-stuttgart.de/source/sourceobsw/-/tree/develop/generators>`_
or the `FSFW example <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/generators>`_
Configuring the Event Manager
----------------------------------
The number of allowed subscriptions can be modified with the following
parameters:
.. code-block:: cpp
namespace fsfwconfig {
//! Configure the allocated pool sizes for the event manager.
static constexpr size_t FSFW_EVENTMGMR_MATCHTREE_NODES = 240;
static constexpr size_t FSFW_EVENTMGMT_EVENTIDMATCHERS = 120;
static constexpr size_t FSFW_EVENTMGMR_RANGEMATCHERS = 120;
}

2
docs/controllers.rst Normal file
View File

@ -0,0 +1,2 @@
Controllers
=============

70
docs/core.rst Normal file
View File

@ -0,0 +1,70 @@
.. _core:
Core Modules
=============
The core modules provide the most important functionalities of the Flight Software Framework.
Clock
------
- This is a class of static functions that can be used at anytime
- Leap Seconds must be set if any time conversions from UTC to other times is used
Object Manager
---------------
- Must be created during program startup
- The component which handles all references. All :cpp:class:`SystemObject`\s register at this
component.
- All :cpp:class:`SystemObject`\s needs to have a unique Object ID. Those can be managed like
framework objects.
- A reference to an object can be retrieved by calling the ``get`` function of
:cpp:class:`ObjectManagerIF`. The target type must be specified as a template argument.
A ``nullptr`` check of the returning pointer must be done. This function is based on
run-time type information.
.. code-block:: cpp
template <typename T> T* ObjectManagerIF::get(object_id_t id);
- A typical way to create all objects on startup is a handing a static produce function to the
ObjectManager on creation. By calling ``ObjectManager::instance()->initialize(produceFunc)`` the
produce function will be called and all :cpp:class:`SystemObject`\s will be initialized
afterwards.
Event Manager
---------------
- Component which allows routing of events
- Other objects can subscribe to specific events, ranges of events or all events of an object.
- Subscriptions can be done during runtime but should be done during initialization
- Amounts of allowed subscriptions can be configured in ``FSFWConfig.h``
Health Table
---------------
- A component which holds every health state
- Provides a thread safe way to access all health states without the need of message exchanges
Stores
--------------
- The message based communication can only exchange a few bytes of information inside the message
itself. Therefore, additional information can be exchanged with Stores. With this, only the
store address must be exchanged in the message.
- Internally, the FSFW uses an IPC Store to exchange data between processes. For incoming TCs a TC
Store is used. For outgoing TM a TM store is used.
- All of them should use the Thread Safe Class storagemanager/PoolManager
Tasks
---------
There are two different types of tasks:
- The PeriodicTask just executes objects that are of type ExecutableObjectIF in the order of the
insertion to the Tasks.
- FixedTimeslotTask executes a list of calls in the order of the given list. This is intended for
DeviceHandlers, where polling should be in a defined order. An example can be found in
``defaultcfg/fsfwconfig/pollingSequence`` folder

110
docs/devicehandlers.rst Normal file
View File

@ -0,0 +1,110 @@
.. _dhb-prim-doc:
Device Handlers
==================
Device handler components represent, control and monitor equipment, for example sensors or actuators
of a spacecraft or the payload.
Most device handlers have the same common functionality or
requirements, which are fulfilled by implementing certain interfaces:
- The handler/device needs to be commandable: :cpp:class:`HasActionsIF`
- The handler needs to communicate with the physical device via a dedicated
communication bus, for example SpaceWire, UART or SPI: :cpp:class:`DeviceCommunicationIF`
- The handler has housekeeping data which has to be exposed to the operator and/or other software
components: :cpp:class:`HasLocalDataPoolIF`
- The handler has configurable parameters: :cpp:class:`ReceivesParameterMessagesIF` which
also implements :cpp:class:`HasParametersIF`
- The handler has health states, for example to indicate a broken device:
:cpp:class:`HasHealthIF`
- The handler has modes. For example there are the core modes `MODE_ON`, `MODE_OFF`
and `MODE_NORMAL` provided by the FSFW. `MODE_ON` means that a device is physically powered
but that it is not periodically polling data from the
physical device, `MODE_NORMAL` means that it is able to do that: :cpp:class:`HasModesIF`
The device handler base therefore provides abstractions for a lot of common
functionality, which can potentially avoid high amounts or logic and code duplication.
Template Device Handler Base File
----------------------------------
This is an example template device handler header file with all necessary
functions implemented:
.. code-block:: cpp
#ifndef __TESTDEVICEHANDLER_H_
#define __TESTDEVICEHANDLER_H_
#include <fsfw/devicehandlers/DeviceHandlerBase.h>
class TestDeviceHandler: DeviceHandlerBase {
public:
TestDeviceHandler(object_id_t objectId, object_id_t comIF, CookieIF* cookie);
private:
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t* id) override;
ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t* id) override;
void fillCommandAndReplyMap() override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t* commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t* start, size_t remainingSize, DeviceCommandId_t* foundId,
size_t* foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t* packet) override;
uint32_t getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) override;
};
#endif /* __TESTDEVICEHANDLER_H_ */
and the respective source file with sensible default return values:
.. code-block:: cpp
#include "TestDeviceHandler.h"
TestDeviceHandler::TestDeviceHandler(object_id_t objectId, object_id_t comIF, CookieIF* cookie)
: DeviceHandlerBase(objectId, comIF, cookie) {}
void TestDeviceHandler::doStartUp() {}
void TestDeviceHandler::doShutDown() {}
ReturnValue_t TestDeviceHandler::buildNormalDeviceCommand(DeviceCommandId_t* id) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestDeviceHandler::buildTransitionDeviceCommand(DeviceCommandId_t* id) {
return HasReturnvaluesIF::RETURN_OK;
}
void TestDeviceHandler::fillCommandAndReplyMap() {}
ReturnValue_t TestDeviceHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t* commandData,
size_t commandDataLen) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestDeviceHandler::scanForReply(const uint8_t* start, size_t remainingSize,
DeviceCommandId_t* foundId, size_t* foundLen) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t TestDeviceHandler::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t* packet) {
return HasReturnvaluesIF::RETURN_OK;
}
uint32_t TestDeviceHandler::getTransitionDelayMs(Mode_t modeFrom, Mode_t modeTo) {
return 10000;
}
ReturnValue_t TestDeviceHandler::initializeLocalDataPool(localpool::DataPool& localDataPoolMap,
LocalDataPoolManager& poolManager) {
return HasReturnvaluesIF::RETURN_OK;
}

136
docs/getting_started.rst Normal file
View File

@ -0,0 +1,136 @@
Getting Started
================
Getting started
----------------
The `Hosted FSFW example`_ provides a good starting point and a demo to see the FSFW capabilities.
It is recommended to get started by building and playing around with the demo application.
There are also other examples provided for all OSALs using the popular embedded platforms
Raspberry Pi, Beagle Bone Black and STM32H7.
Generally, the FSFW is included in a project by providing
a configuration folder, building the static library and linking against it.
There are some functions like ``printChar`` which are different depending on the target architecture
and need to be implemented by the mission developer.
A template configuration folder was provided and can be copied into the project root to have
a starting point. The [configuration section](docs/README-config.md#top) provides more specific
information about the possible options.
Adding the library
-------------------
The following steps show how to add and use FSFW components. It is still recommended to
try out the example mentioned above to get started, but the following steps show how to
add and link against the FSFW library in general.
1. Add this repository as a submodule
.. code-block:: console
git submodule add https://egit.irs.uni-stuttgart.de/fsfw/fsfw.git fsfw
2. Add the following directive inside the uppermost ``CMakeLists.txt`` file of your project
.. code-block:: cmake
add_subdirectory(fsfw)
3. Make sure to provide a configuration folder and supply the path to that folder with
the `FSFW_CONFIG_PATH` CMake variable from the uppermost `CMakeLists.txt` file.
It is also necessary to provide the `printChar` function. You can find an example
implementation for a hosted build
`here <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted/src/branch/master/bsp_hosted/utility/printChar.c>`_.
4. Link against the FSFW library
.. code-block:: cmake
target_link_libraries(<YourProjectName> PRIVATE fsfw)
5. It should now be possible use the FSFW as a static library from the user code.
Building the unittests
-------------------------
The FSFW also has unittests which use the `Catch2 library`_.
These are built by setting the CMake option ``FSFW_BUILD_UNITTESTS`` to ``ON`` or `TRUE`
from your project `CMakeLists.txt` file or from the command line.
The fsfw-tests binary will be built as part of the static library and dropped alongside it.
If the unittests are built, the library and the tests will be built with coverage information by
default. This can be disabled by setting the `FSFW_TESTS_COV_GEN` option to `OFF` or `FALSE`.
You can use the following commands inside the ``fsfw`` folder to set up the build system
.. code-block:: console
mkdir build-tests && cd build-tests
cmake -DFSFW_BUILD_UNITTESTS=ON -DFSFW_OSAL=host ..
You can also use ``-DFSFW_OSAL=linux`` on Linux systems.
Coverage data in HTML format can be generated using the `Code coverage`_ CMake module.
To build the unittests, run them and then generare the coverage data in this format,
the following command can be used inside the build directory after the build system was set up
.. code-block:: console
cmake --build . -- fsfw-tests_coverage -j
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the unittests conveniently. Try ``helper.py -h`` for more information.
Building the documentation
----------------------------
The FSFW documentation is built using the tools Sphinx, doxygen and breathe based on the
instructions provided in `this blogpost <https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/>`_. If you
want to do this locally, set up the prerequisites first. This requires a ``python3``
installation as well. Example here is for Ubuntu.
.. code-block:: console
sudo apt-get install doxygen graphviz
And the following Python packages
.. code-block:: console
python3 -m pip install sphinx breathe
You can set up a documentation build system using the following commands
.. code-block:: bash
mkdir build-docs && cd build-docs
cmake -DFSFW_BUILD_DOCS=ON -DFSFW_OSAL=host ..
Then you can generate the documentation using
.. code-block:: bash
cmake --build . -j
You can find the generated documentation inside the ``docs/sphinx`` folder inside the build
folder. Simply open the ``index.html`` in the webbrowser of your choice.
The ``helper.py`` script located in the ``script`` folder can also be used to create, build
and open the documentation conveniently. Try ``helper.py -h`` for more information.
Formatting the source
-----------------------
The formatting is done by the ``clang-format`` tool. The configuration is contained within the
``.clang-format`` file in the repository root. As long as ``clang-format`` is installed, you
can run the ``apply-clang-format.sh`` helper script to format all source files consistently.
.. _`Hosted FSFW example`: https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted
.. _`Catch2 library`: https://github.com/catchorg/Catch2
.. _`Code coverage`: https://github.com/bilke/cmake-modules/tree/master

149
docs/highlevel.rst Normal file
View File

@ -0,0 +1,149 @@
.. _highlevel:
High-level overview
===================
Structure
----------
The general structure is driven by the usage of interfaces provided by objects.
The FSFW uses C++11 as baseline. The intention behind this is that this C++ Standard should be
widely available, even with older compilers.
The FSFW uses dynamic allocation during the initialization but provides static containers during runtime.
This simplifies the instantiation of objects and allows the usage of some standard containers.
Dynamic Allocation after initialization is discouraged and different solutions are provided in the
FSFW to achieve that. The fsfw uses run-time type information but exceptions are not allowed.
Failure Handling
-----------------
Functions should return a defined :cpp:type:`ReturnValue_t` to signal to the caller that something has
gone wrong. Returnvalues must be unique. For this the function :cpp:func:`HasReturnvaluesIF::makeReturnCode`
or the :ref:`macro MAKE_RETURN_CODE <retvalapi>` can be used. The ``CLASS_ID`` is a unique ID for that type of object.
See the :ref:`FSFW Class IDs file <fwclassids>`. The user can add custom ``CLASS_ID``\s via the
``fsfwconfig`` folder.
OSAL
------------
The FSFW provides operation system abstraction layers for Linux, FreeRTOS and RTEMS.
The OSAL provides periodic tasks, message queues, clocks and semaphores as well as mutexes.
The :ref:`OSAL README <osal>` provides more detailed information on provided components
and how to use them.
Core Components
----------------
The FSFW has following core components. More detailed informations can be found in the
:ref:`core component section <core>`:
1. Tasks: Abstraction for different (periodic) task types like periodic tasks or tasks
with fixed timeslots
2. ObjectManager: This module stores all `SystemObjects` by mapping a provided unique object ID
to the object handles.
3. Static Stores: Different stores are provided to store data of variable size (like telecommands
or small telemetry) in a pool structure without using dynamic memory allocation.
These pools are allocated up front.
4. Clock: This module provided common time related functions
5. EventManager: This module allows routing of events generated by `SystemObjects`
6. HealthTable: A component which stores the health states of objects
Static IDs in the framework
--------------------------------
Some parts of the framework use a static routing address for communication.
An example setup of IDs can be found in the example config in ``misc/defaultcfg/fsfwconfig/objects``
inside the function ``Factory::setStaticFrameworkObjectIds``.
Events
----------------
Events are tied to objects. EventIds can be generated by calling the
:ref:`macro MAKE_EVENT <eventapi>` or the function :cpp:func:`event::makeEvent`.
This works analog to the returnvalues. Every object that needs own Event IDs has to get a
unique ``SUBSYSTEM_ID``. Every :cpp:class:`SystemObject` can call
:cpp:func:`SystemObject::triggerEvent` from the parent class.
Therefore, event messages contain the specific EventId and the objectId of the object that
has triggered.
Internal Communication
-------------------------
Components communicate mostly via Messages through Queues.
Those queues are created by calling the singleton ``QueueFactory::instance()->create`` which
will create `MessageQueue` instances for the used OSAL.
External Communication
--------------------------
The external communication with the mission control system is mostly up to the user implementation.
The FSFW provides PUS Services which can be used to but don't need to be used.
The services can be seen as a conversion from a TC to a message based communication and back.
TMTC Communication
~~~~~~~~~~~~~~~~~~~
The FSFW provides some components to facilitate TMTC handling via the PUS commands.
For example, a UDP or TCP PUS server socket can be opened on a specific port using the
files located in ``osal/common``. The FSFW example uses this functionality to allow sending
telecommands and receiving telemetry using the
`TMTC commander application <https://github.com/robamu-org/tmtccmd>`_.
Simple commands like the PUS Service 17 ping service can be tested by simply running the
``tmtc_client_cli.py`` or ``tmtc_client_gui.py`` utility in
the `example tmtc folder <https://egit.irs.uni-stuttgart.de/fsfw/fsfw_example_public/src/branch/master/tmtc>`_
while the `fsfw_example` application is running.
More generally, any class responsible for handling incoming telecommands and sending telemetry
can implement the generic ``TmTcBridge`` class located in ``tmtcservices``. Many applications
also use a dedicated polling task for reading telecommands which passes telecommands
to the ``TmTcBridge`` implementation.
CCSDS Frames, CCSDS Space Packets and PUS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the communication is based on CCSDS Frames and Space Packets, several classes can be used to
distributed the packets to the corresponding services. Those can be found in ``tcdistribution``.
If Space Packets are used, a timestamper has to be provided by the user.
An example can be found in the ``timemanager`` folder, which uses ``CCSDSTime::CDS_short``.
Device Handlers
--------------------------
DeviceHandlers are another important component of the FSFW. The idea is, to have a software
counterpart of every physical device to provide a simple mode, health and commanding interface.
By separating the underlying Communication Interface with
``DeviceCommunicationIF``, a device handler (DH) can be tested on different hardware.
The DH has mechanisms to monitor the communication with the physical device which allow
for FDIR reaction. Device Handlers can be created by implementing ``DeviceHandlerBase``.
A standard FDIR component for the DH will be created automatically but can
be overwritten by the user. More information on DeviceHandlers can be found in the
related :ref:`documentation section <dhb-prim-doc>`.
Modes and Health
--------------------
The two interfaces ``HasModesIF`` and ``HasHealthIF`` provide access for commanding and monitoring
of components. On-board mode management is implement in hierarchy system.
- Device handlers and controllers are the lowest part of the hierarchy.
- The next layer are assemblies. Those assemblies act as a component which handle
redundancies of handlers. Assemblies share a common core with the top level subsystem components
- The top level subsystem components are used to group assemblies, controllers and device handlers.
For example, a spacecraft can have a atttitude control subsystem and a power subsystem.
Those assemblies are intended to act as auto-generated components from a database which describes
the subsystem modes. The definitions contain transition and target tables which contain the DH,
Assembly and Controller Modes to be commanded.
Transition tables contain as many steps as needed to reach the mode from any other mode, e.g. a
switch into any higher AOCS mode might first turn on the sensors, than the actuators and the
controller as last component.
The target table is used to describe the state that is checked continuously by the subsystem.
All of this allows System Modes to be generated as Subsystem object as well from the same database.
This System contains list of subsystem modes in the transition and target tables.
Therefore, it allows a modular system to create system modes and easy commanding of those, because
only the highest components must be commanded.
The health state represents if the component is able to perform its tasks.
This can be used to signal the system to avoid using this component instead of a redundant one.
The on-board FDIR uses the health state for isolation and recovery.

View File

After

Width:  |  Height:  |  Size: 52 KiB

69
docs/index.rst Normal file
View File

@ -0,0 +1,69 @@
.. Flight Software Framework documentation master file, created by
sphinx-quickstart on Tue Nov 30 10:56:03 2021.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Flight Software Framework (FSFW) documentation
================================================
.. image:: ../misc/logo/FSFW_Logo_V3_bw.png
:alt: FSFW Logo
The Flight Software Framework is a C++ Object Oriented Framework for unmanned,
automated systems like Satellites.
The initial version of the Flight Software Framework was developed during
the Flying Laptop Project by the University of Stuttgart in cooperation
with Airbus Defence and Space GmbH.
Quick facts
---------------
The framework is designed for systems, which communicate with external devices, perform control
loops, receive telecommands and send telemetry, and need to maintain a high level of availability.
Therefore, a mode and health system provides control over the states of the software and the
controlled devices. In addition, a simple mechanism of event based fault detection, isolation and
recovery is implemented as well.
The FSFW provides abstraction layers for operating systems to provide a uniform operating system
abstraction layer (OSAL). Some components of this OSAL are required internally by the FSFW but is
also very useful for developers to implement the same application logic on different operating
systems with a uniform interface.
Currently, the FSFW provides the following OSALs:
- Linux
- Host
- FreeRTOS
- RTEMS
The recommended hardware is a microprocessor with more than 1 MB of RAM and 1 MB of non-volatile
memory. For reference, current applications use a Cobham Gaisler UT699 (LEON3FT), a
ISISPACE IOBC or a Zynq-7020 SoC. The ``fsfw`` was also successfully run on the
STM32H743ZI-Nucleo board and on a Raspberry Pi and is currently running on the active
satellite mission Flying Laptop.
Index
-------
.. toctree::
:maxdepth: 2
:caption: Contents:
getting_started
highlevel
core
config
osal
pus
devicehandlers
controllers
localpools
api
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

181
docs/localpools.rst Normal file
View File

@ -0,0 +1,181 @@
Local Data Pools
=========================================
The following text is targeted towards mission software developers which would like
to use the local data pools provided by the FSFW to store data like sensor values so they can be
used by other software objects like controllers as well. If a custom class should have a local
pool which can be used by other software objects as well, following steps have to be performed:
1. Create a ``LocalDataPoolManager`` member object in the custom class
2. Implement the ``HasLocalDataPoolIF`` with specifies the interface between the local pool
manager and the class owning the local pool.
The local data pool manager is also able to process housekeeping service requests in form
of messages, generate periodic housekeeping packet, generate notification and snapshots of changed
variables and datasets and process notifications and snapshots coming from other objects.
The two former tasks are related to the external interface using telemetry and telecommands (TMTC)
while the later two are related to data consumers like controllers only acting on data change
detected by the data creator instead of checking the data manually each cycle. Two important
framework classes ``DeviceHandlerBase`` and ``ExtendedControllerBase`` already perform the two steps
shown above so the steps required are altered slightly.
Storing and Accessing pool data
-------------------------------------
The pool manager is responsible for thread-safe access of the pool data, but the actual
access to the pool data from the point of view of a mission software developer happens via proxy
classes like pool variable classes. These classes store a copy
of the pool variable with the matching datatype and copy the actual data from the local pool
on a ``read`` call. Changed variables can then be written to the local pool with a ``commit`` call.
The ``read`` and ``commit`` calls are thread-safe and can be called concurrently from data creators
and data consumers. Generally, a user will create a dataset class which in turn groups all
cohesive pool variables. These sets simply iterator over the list of variables and call the
``read`` and ``commit`` functions of each variable. The following diagram shows the
high-level architecture of the local data pools.
.. image:: ../docs/images/PoolArchitecture.png
:alt: Pool Architecture
An example is shown for using the local data pools with a Gyroscope.
For example, the following code shows an implementation to access data from a Gyroscope taken
from the SOURCE CubeSat project:
.. code-block:: cpp
class GyroPrimaryDataset: public StaticLocalDataSet<3 * sizeof(float)> {
public:
/**
* Constructor for data users
* @param gyroId
*/
GyroPrimaryDataset(object_id_t gyroId):
StaticLocalDataSet(sid_t(gyroId, gyrodefs::GYRO_DATA_SET_ID)) {
setAllVariablesReadOnly();
}
lp_var_t<float> angVelocityX = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_X, this);
lp_var_t<float> angVelocityY = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Y, this);
lp_var_t<float> angVelocityZ = lp_var_t<float>(sid.objectId,
gyrodefs::ANGULAR_VELOCITY_Z, this);
private:
friend class GyroHandler;
/**
* Constructor for data creator
* @param hkOwner
*/
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, gyrodefs::GYRO_DATA_SET_ID) {}
};
There is a public constructor for users which sets all variables to read-only and there is a
constructor for the GyroHandler data creator by marking it private and declaring the ``GyroHandler``
as a friend class. Both the atittude controller and the ``GyroHandler`` can now
use the same class definition to access the pool variables with ``read`` and ``commit`` semantics
in a thread-safe way. Generally, each class requiring access will have the set class as a member
class. The data creator will also be generally a ``DeviceHandlerBase`` subclass and some additional
steps are necessary to expose the set for housekeeping purposes.
Using the local data pools in a ``DeviceHandlerBase`` subclass
--------------------------------------------------------------
It is very common to store data generated by devices like a sensor into a pool which can
then be used by other objects. Therefore, the ``DeviceHandlerBase`` already has a
local pool. Using the aforementioned example, the ``GyroHandler`` will now have the set class
as a member:
.. code-block:: cpp
class GyroHandler: ... {
public:
...
private:
...
GyroPrimaryDataset gyroData;
...
};
The constructor used for the creators expects the owner class as a parameter, so we initialize
the object in the `GyroHandler` constructor like this:
.. code-block:: cpp
GyroHandler::GyroHandler(object_id_t objectId, object_id_t comIF,
CookieIF *comCookie, uint8_t switchId):
DeviceHandlerBase(objectId, comIF, comCookie), switchId(switchId),
gyroData(this) {}
We need to assign the set to a reply ID used in the ``DeviceHandlerBase``.
The combination of the ``GyroHandler`` object ID and the reply ID will be the 64-bit structure ID
``sid_t`` and is used to globally identify the set, for example when requesting housekeeping data or
generating update messages. We need to assign our custom set class in some way so that the local
pool manager can access the custom data sets as well.
By default, the ``getDataSetHandle`` will take care of this tasks. The default implementation for a
``DeviceHandlerBase`` subclass will use the internal command map to retrieve
a handle to a dataset from a given reply ID. Therefore,
we assign the set in the ``fillCommandAndReplyMap`` function:
.. code-block:: cpp
void GyroHandler::fillCommandAndReplyMap() {
...
this->insertInCommandAndReplyMap(gyrodefs::GYRO_DATA, 3, &gyroData);
...
}
Now, we need to create the actual pool entries as well, using the ``initializeLocalDataPool``
function. Here, we also immediately subscribe for periodic housekeeping packets
with an interval of 4 seconds. They are still disabled in this example and can be enabled
with a housekeeping service command.
.. code-block:: cpp
ReturnValue_t GyroHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_X,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Y,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::ANGULAR_VELOCITY_Z,
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(gyrodefs::GENERAL_CONFIG_REG42,
new PoolEntry<uint8_t>({0}));
localDataPoolMap.emplace(gyrodefs::RANGE_CONFIG_REG43,
new PoolEntry<uint8_t>({0}));
poolManager.subscribeForPeriodicPacket(gyroData.getSid(), false, 4.0, false);
return HasReturnvaluesIF::RETURN_OK;
}
Now, if we receive some sensor data and converted them into the right format,
we can write it into the pool like this, using a guard class to ensure the set is commited back
in any case:
.. code-block:: cpp
PoolReadGuard readHelper(&gyroData);
if(readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(not gyroData.isValid()) {
gyroData.setValidity(true, true);
}
gyroData.angVelocityX = angularVelocityX;
gyroData.angVelocityY = angularVelocityY;
gyroData.angVelocityZ = angularVelocityZ;
}
The guard class will commit the changed data on destruction automatically.
Using the local data pools in a ``ExtendedControllerBase`` subclass
----------------------------------------------------------------------
Coming soon

35
docs/make.bat Normal file
View File

@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=.
set BUILDDIR=_build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

63
docs/osal.rst Normal file
View File

@ -0,0 +1,63 @@
.. _osal:
Operating System Abstraction Layer (OSAL)
============================================
Some specific information on the provided OSALs are provided.
Linux
-------
This OSAL can be used to compile for Linux host systems like Ubuntu 20.04 or for
embedded Linux targets like the Raspberry Pi. This OSAL generally requires threading support
and real-time functionalities. For most UNIX systems, this is done by adding ``-lrt`` and
``-lpthread`` to the linked libraries in the compilation process. The CMake build support provided
will do this automatically for the ``fsfw`` target. It should be noted that most UNIX systems need
to be configured specifically to allow the real-time functionalities required by the FSFW.
Hosted OSAL
-------------------
This is the newest OSAL. Support for Semaphores has not been implemented yet and will propably be
implemented as soon as C++20 with Semaphore support has matured. This OSAL can be used to run the
FSFW on any host system, but currently has only been tested on Windows 10 and Ubuntu 20.04. Unlike
the other OSALs, it uses dynamic memory allocation (e.g. for the message queue implementation).
Cross-platform serial port (USB) support might be added soon.
FreeRTOS OSAL
------------------
FreeRTOS is not included and the developer needs to take care of compiling the FreeRTOS sources and
adding the ``FreeRTOSConfig.h`` file location to the include path. This OSAL has only been tested
extensively with the pre-emptive scheduler configuration so far but it should in principle also be
possible to use a cooperative scheduler. It is recommended to use the `heap_4` allocation scheme.
When using newlib (nano), it is also recommended to add ``#define configUSE_NEWLIB_REENTRANT`` to
the FreeRTOS configuration file to ensure thread-safety.
When using this OSAL, developers also need to provide an implementation for the
``vRequestContextSwitchFromISR`` function. This has been done because the call to request a context
switch from an ISR is generally located in the ``portmacro.h`` header and is different depending on
the target architecture or device.
RTEMS OSAL
---------------
The RTEMS OSAL was the first implemented OSAL which is also used on the active satellite Flying Laptop.
TCP/IP socket abstraction
------------------------------
The Linux and Host OSAL provide abstraction layers for the socket API. Currently, only UDP sockets
have been imlemented. This is very useful to test TMTC handling either on the host computer
directly (targeting localhost with a TMTC application) or on embedded Linux devices, sending
TMTC packets via Ethernet.
Example Applications
----------------------
There are example applications available for each OSAL
- `Hosted OSAL <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-hosted>`_
- `Linux OSAL for MCUs <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-linux-mcu>`_
- `FreeRTOS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-freertos>`_
- `RTEMS OSAL on the STM32H743ZIT <https://egit.irs.uni-stuttgart.de/fsfw/fsfw-example-stm32h7-rtems>`_

2
docs/pus.rst Normal file
View File

@ -0,0 +1,2 @@
PUS Services
==============

View File

@ -3,7 +3,14 @@ cmake_minimum_required(VERSION 3.13)
# Can also be changed by upper CMakeLists.txt file # Can also be changed by upper CMakeLists.txt file
find_library(LIB_FSFW_NAME fsfw REQUIRED) find_library(LIB_FSFW_NAME fsfw REQUIRED)
option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Required gpiod library" OFF) option(FSFW_HAL_ADD_LINUX "Add the Linux HAL to the sources. Requires gpiod library" OFF)
# On by default for now because I did not have an issue including and compiling those files
# and libraries on a Desktop Linux system and the primary target of the FSFW is still embedded
# Linux. The only exception from this is the gpiod library which requires a dedicated installation,
# but CMake is able to determine whether this library is installed with find_library.
option(FSFW_HAL_LINUX_ADD_PERIPHERAL_DRIVERS "Add peripheral drivers for embedded Linux" ON)
option(FSFW_HAL_LINUX_ADD_LIBGPIOD "Target implements libgpiod" ON)
option(FSFW_HAL_ADD_RASPBERRY_PI "Add Raspberry Pi specific code to the sources" OFF) option(FSFW_HAL_ADD_RASPBERRY_PI "Add Raspberry Pi specific code to the sources" OFF)
option(FSFW_HAL_ADD_STM32H7 "Add the STM32H7 HAL to the sources" OFF) option(FSFW_HAL_ADD_STM32H7 "Add the STM32H7 HAL to the sources" OFF)
option(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON) option(FSFW_HAL_WARNING_SHADOW_LOCAL_GCC "Enable -Wshadow=local warning in GCC" ON)

View File

@ -1,7 +1,7 @@
add_subdirectory(devicehandlers) add_subdirectory(devicehandlers)
add_subdirectory(common) add_subdirectory(common)
if(FSFW_HAL_ADD_LINUX) if(UNIX)
add_subdirectory(linux) add_subdirectory(linux)
endif() endif()

View File

@ -1,50 +1,48 @@
#include "fsfw_hal/common/gpio/GpioCookie.h" #include "fsfw_hal/common/gpio/GpioCookie.h"
#include "fsfw/serviceinterface/ServiceInterface.h" #include "fsfw/serviceinterface/ServiceInterface.h"
GpioCookie::GpioCookie() { GpioCookie::GpioCookie() {}
}
ReturnValue_t GpioCookie::addGpio(gpioId_t gpioId, GpioBase* gpioConfig) { ReturnValue_t GpioCookie::addGpio(gpioId_t gpioId, GpioBase* gpioConfig) {
if (gpioConfig == nullptr) { if (gpioConfig == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: gpioConfig is nullpointer" << std::endl; sif::warning << "GpioCookie::addGpio: gpioConfig is nullpointer" << std::endl;
#else #else
sif::printWarning("GpioCookie::addGpio: gpioConfig is nullpointer\n"); sif::printWarning("GpioCookie::addGpio: gpioConfig is nullpointer\n");
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
auto gpioMapIter = gpioMap.find(gpioId);
if(gpioMapIter == gpioMap.end()) {
auto statusPair = gpioMap.emplace(gpioId, gpioConfig);
if (statusPair.second == false) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: Failed to add GPIO " << gpioId <<
" to GPIO map" << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: Failed to add GPIO %d to GPIO map\n", gpioId);
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: GPIO already exists in GPIO map " << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: GPIO already exists in GPIO map\n");
#endif
#endif #endif
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
auto gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) {
auto statusPair = gpioMap.emplace(gpioId, gpioConfig);
if (statusPair.second == false) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: Failed to add GPIO " << gpioId << " to GPIO map"
<< std::endl;
#else
sif::printWarning("GpioCookie::addGpio: Failed to add GPIO %d to GPIO map\n", gpioId);
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GpioCookie::addGpio: GPIO already exists in GPIO map " << std::endl;
#else
sif::printWarning("GpioCookie::addGpio: GPIO already exists in GPIO map\n");
#endif
#endif
return HasReturnvaluesIF::RETURN_FAILED;
} }
GpioMap GpioCookie::getGpioMap() const { GpioMap GpioCookie::getGpioMap() const { return gpioMap; }
return gpioMap;
}
GpioCookie::~GpioCookie() { GpioCookie::~GpioCookie() {
for(auto& config: gpioMap) { for (auto& config : gpioMap) {
delete(config.second); delete (config.second);
} }
} }

View File

@ -1,12 +1,12 @@
#ifndef COMMON_GPIO_GPIOCOOKIE_H_ #ifndef COMMON_GPIO_GPIOCOOKIE_H_
#define COMMON_GPIO_GPIOCOOKIE_H_ #define COMMON_GPIO_GPIOCOOKIE_H_
#include "GpioIF.h"
#include "gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h> #include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h> #include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "GpioIF.h"
#include "gpioDefinitions.h"
/** /**
* @brief Cookie for the GpioIF. Allows the GpioIF to determine which * @brief Cookie for the GpioIF. Allows the GpioIF to determine which
* GPIOs to initialize and whether they should be configured as in- or * GPIOs to initialize and whether they should be configured as in- or
@ -17,25 +17,24 @@
* *
* @author J. Meier * @author J. Meier
*/ */
class GpioCookie: public CookieIF { class GpioCookie : public CookieIF {
public: public:
GpioCookie();
GpioCookie(); virtual ~GpioCookie();
virtual ~GpioCookie(); ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig);
ReturnValue_t addGpio(gpioId_t gpioId, GpioBase* gpioConfig); /**
* @brief Get map with registered GPIOs.
*/
GpioMap getGpioMap() const;
/** private:
* @brief Get map with registered GPIOs. /**
*/ * Returns a copy of the internal GPIO map.
GpioMap getGpioMap() const; */
GpioMap gpioMap;
private:
/**
* Returns a copy of the internal GPIO map.
*/
GpioMap gpioMap;
}; };
#endif /* COMMON_GPIO_GPIOCOOKIE_H_ */ #endif /* COMMON_GPIO_GPIOCOOKIE_H_ */

View File

@ -1,9 +1,10 @@
#ifndef COMMON_GPIO_GPIOIF_H_ #ifndef COMMON_GPIO_GPIOIF_H_
#define COMMON_GPIO_GPIOIF_H_ #define COMMON_GPIO_GPIOIF_H_
#include "gpioDefinitions.h"
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <fsfw/devicehandlers/CookieIF.h> #include <fsfw/devicehandlers/CookieIF.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "gpioDefinitions.h"
class GpioCookie; class GpioCookie;
@ -13,42 +14,41 @@ class GpioCookie;
* @author J. Meier * @author J. Meier
*/ */
class GpioIF : public HasReturnvaluesIF { class GpioIF : public HasReturnvaluesIF {
public: public:
virtual ~GpioIF(){};
virtual ~GpioIF() {}; /**
* @brief Called by the GPIO using object.
* @param cookie Cookie specifying informations of the GPIOs required
* by a object.
*/
virtual ReturnValue_t addGpios(GpioCookie* cookie) = 0;
/** /**
* @brief Called by the GPIO using object. * @brief By implementing this function a child must provide the
* @param cookie Cookie specifying informations of the GPIOs required * functionality to pull a certain GPIO to high logic level.
* by a object. *
*/ * @param gpioId A unique number which specifies the GPIO to drive.
virtual ReturnValue_t addGpios(GpioCookie* cookie) = 0; * @return Returns RETURN_OK for success. This should never return RETURN_FAILED.
*/
virtual ReturnValue_t pullHigh(gpioId_t gpioId) = 0;
/** /**
* @brief By implementing this function a child must provide the * @brief By implementing this function a child must provide the
* functionality to pull a certain GPIO to high logic level. * functionality to pull a certain GPIO to low logic level.
* *
* @param gpioId A unique number which specifies the GPIO to drive. * @param gpioId A unique number which specifies the GPIO to drive.
* @return Returns RETURN_OK for success. This should never return RETURN_FAILED. */
*/ virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0;
virtual ReturnValue_t pullHigh(gpioId_t gpioId) = 0;
/** /**
* @brief By implementing this function a child must provide the * @brief This function requires a child to implement the functionality to read the state of
* functionality to pull a certain GPIO to low logic level. * an ouput or input gpio.
* *
* @param gpioId A unique number which specifies the GPIO to drive. * @param gpioId A unique number which specifies the GPIO to read.
*/ * @param gpioState State of GPIO will be written to this pointer.
virtual ReturnValue_t pullLow(gpioId_t gpioId) = 0; */
virtual ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) = 0;
/**
* @brief This function requires a child to implement the functionality to read the state of
* an ouput or input gpio.
*
* @param gpioId A unique number which specifies the GPIO to read.
* @param gpioState State of GPIO will be written to this pointer.
*/
virtual ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) = 0;
}; };
#endif /* COMMON_GPIO_GPIOIF_H_ */ #endif /* COMMON_GPIO_GPIOIF_H_ */

View File

@ -1,44 +1,34 @@
#ifndef COMMON_GPIO_GPIODEFINITIONS_H_ #ifndef COMMON_GPIO_GPIODEFINITIONS_H_
#define COMMON_GPIO_GPIODEFINITIONS_H_ #define COMMON_GPIO_GPIODEFINITIONS_H_
#include <map>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <map>
using gpioId_t = uint16_t; using gpioId_t = uint16_t;
namespace gpio { namespace gpio {
enum Levels: uint8_t { enum class Levels : int { LOW = 0, HIGH = 1, NONE = 99 };
LOW = 0,
HIGH = 1,
NONE = 99
};
enum Direction: uint8_t { enum class Direction : int { IN = 0, OUT = 1 };
IN = 0,
OUT = 1
};
enum GpioOperation { enum class GpioOperation { READ, WRITE };
READ,
WRITE
};
enum class GpioTypes { enum class GpioTypes {
NONE, NONE,
GPIO_REGULAR_BY_CHIP, GPIO_REGULAR_BY_CHIP,
GPIO_REGULAR_BY_LABEL, GPIO_REGULAR_BY_LABEL,
GPIO_REGULAR_BY_LINE_NAME, GPIO_REGULAR_BY_LINE_NAME,
CALLBACK CALLBACK
}; };
static constexpr gpioId_t NO_GPIO = -1; static constexpr gpioId_t NO_GPIO = -1;
using gpio_cb_t = void (*) (gpioId_t gpioId, gpio::GpioOperation gpioOp, gpio::Levels value, using gpio_cb_t = void (*)(gpioId_t gpioId, gpio::GpioOperation gpioOp, gpio::Levels value,
void* args); void* args);
} } // namespace gpio
/** /**
* @brief Struct containing information about the GPIO to use. This is * @brief Struct containing information about the GPIO to use. This is
@ -55,78 +45,71 @@ using gpio_cb_t = void (*) (gpioId_t gpioId, gpio::GpioOperation gpioOp, gpio::L
* pointer. * pointer.
*/ */
class GpioBase { class GpioBase {
public: public:
GpioBase() = default;
GpioBase() = default; GpioBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
gpio::Levels initValue)
: gpioType(gpioType), consumer(consumer), direction(direction), initValue(initValue) {}
GpioBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction, virtual ~GpioBase(){};
gpio::Levels initValue):
gpioType(gpioType), consumer(consumer),direction(direction), initValue(initValue) {}
virtual~ GpioBase() {}; // Can be used to cast GpioBase to a concrete child implementation
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE;
// Can be used to cast GpioBase to a concrete child implementation std::string consumer;
gpio::GpioTypes gpioType = gpio::GpioTypes::NONE; gpio::Direction direction = gpio::Direction::IN;
std::string consumer; gpio::Levels initValue = gpio::Levels::NONE;
gpio::Direction direction = gpio::Direction::IN;
gpio::Levels initValue = gpio::Levels::NONE;
}; };
class GpiodRegularBase: public GpioBase { class GpiodRegularBase : public GpioBase {
public: public:
GpiodRegularBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction, GpiodRegularBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
gpio::Levels initValue, int lineNum): gpio::Levels initValue, int lineNum)
GpioBase(gpioType, consumer, direction, initValue), lineNum(lineNum) { : GpioBase(gpioType, consumer, direction, initValue), lineNum(lineNum) {}
}
// line number will be configured at a later point for the open by line name configuration // line number will be configured at a later point for the open by line name configuration
GpiodRegularBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction, GpiodRegularBase(gpio::GpioTypes gpioType, std::string consumer, gpio::Direction direction,
gpio::Levels initValue): GpioBase(gpioType, consumer, direction, initValue) { gpio::Levels initValue)
} : GpioBase(gpioType, consumer, direction, initValue) {}
int lineNum = 0; int lineNum = 0;
struct gpiod_line* lineHandle = nullptr; struct gpiod_line* lineHandle = nullptr;
}; };
class GpiodRegularByChip: public GpiodRegularBase { class GpiodRegularByChip : public GpiodRegularBase {
public: public:
GpiodRegularByChip() : GpiodRegularByChip()
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, std::string(), gpio::Direction::IN,
std::string(), gpio::Direction::IN, gpio::LOW, 0) { gpio::Levels::LOW, 0) {}
}
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_, GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_,
gpio::Direction direction_, gpio::Levels initValue_) : gpio::Direction direction_, gpio::Levels initValue_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, consumer_, direction_, initValue_,
consumer_, direction_, initValue_, lineNum_), lineNum_),
chipname(chipname_){ chipname(chipname_) {}
}
GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_) : GpiodRegularByChip(std::string chipname_, int lineNum_, std::string consumer_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, consumer_, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP, consumer_, gpio::Direction::IN,
gpio::Direction::IN, gpio::LOW, lineNum_), gpio::Levels::LOW, lineNum_),
chipname(chipname_) { chipname(chipname_) {}
}
std::string chipname; std::string chipname;
}; };
class GpiodRegularByLabel: public GpiodRegularBase { class GpiodRegularByLabel : public GpiodRegularBase {
public: public:
GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_, GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_,
gpio::Direction direction_, gpio::Levels initValue_) : gpio::Direction direction_, gpio::Levels initValue_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_, direction_, initValue_,
direction_, initValue_, lineNum_), lineNum_),
label(label_) { label(label_) {}
}
GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_) : GpiodRegularByLabel(std::string label_, int lineNum_, std::string consumer_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL, consumer_, gpio::Direction::IN,
gpio::Direction::IN, gpio::LOW, lineNum_), gpio::Levels::LOW, lineNum_),
label(label_) { label(label_) {}
}
std::string label; std::string label;
}; };
/** /**
@ -134,34 +117,34 @@ public:
* line name. This line name can be set in the device tree and must be unique. Otherwise * line name. This line name can be set in the device tree and must be unique. Otherwise
* the driver will open the first line with the given name. * the driver will open the first line with the given name.
*/ */
class GpiodRegularByLineName: public GpiodRegularBase { class GpiodRegularByLineName : public GpiodRegularBase {
public: public:
GpiodRegularByLineName(std::string lineName_, std::string consumer_, gpio::Direction direction_, GpiodRegularByLineName(std::string lineName_, std::string consumer_, gpio::Direction direction_,
gpio::Levels initValue_) : gpio::Levels initValue_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME, consumer_, direction_, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME, consumer_, direction_,
initValue_), lineName(lineName_) { initValue_),
} lineName(lineName_) {}
GpiodRegularByLineName(std::string lineName_, std::string consumer_) : GpiodRegularByLineName(std::string lineName_, std::string consumer_)
GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME, consumer_, : GpiodRegularBase(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME, consumer_, gpio::Direction::IN,
gpio::Direction::IN, gpio::LOW), lineName(lineName_) { gpio::Levels::LOW),
} lineName(lineName_) {}
std::string lineName; std::string lineName;
}; };
class GpioCallback: public GpioBase { class GpioCallback : public GpioBase {
public: public:
GpioCallback(std::string consumer, gpio::Direction direction_, gpio::Levels initValue_, GpioCallback(std::string consumer, gpio::Direction direction_, gpio::Levels initValue_,
gpio::gpio_cb_t callback, void* callbackArgs): gpio::gpio_cb_t callback, void* callbackArgs)
GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_), : GpioBase(gpio::GpioTypes::CALLBACK, consumer, direction_, initValue_),
callback(callback), callbackArgs(callbackArgs) {} callback(callback),
callbackArgs(callbackArgs) {}
gpio::gpio_cb_t callback = nullptr; gpio::gpio_cb_t callback = nullptr;
void* callbackArgs = nullptr; void* callbackArgs = nullptr;
}; };
using GpioMap = std::map<gpioId_t, GpioBase*>; using GpioMap = std::map<gpioId_t, GpioBase*>;
using GpioUnorderedMap = std::unordered_map<gpioId_t, GpioBase*>; using GpioUnorderedMap = std::unordered_map<gpioId_t, GpioBase*>;
using GpioMapIter = GpioMap::iterator; using GpioMapIter = GpioMap::iterator;

View File

@ -5,12 +5,7 @@
namespace spi { namespace spi {
enum SpiModes: uint8_t { enum SpiModes : uint8_t { MODE_0, MODE_1, MODE_2, MODE_3 };
MODE_0,
MODE_1,
MODE_2,
MODE_3
};
} }

View File

@ -1,287 +1,275 @@
#include "GyroL3GD20Handler.h" #include "GyroL3GD20Handler.h"
#include "fsfw/datapool/PoolReadGuard.h"
#include <cmath> #include <cmath>
#include "fsfw/datapool/PoolReadGuard.h"
GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication, GyroHandlerL3GD20H::GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication,
CookieIF *comCookie, uint32_t transitionDelayMs): CookieIF *comCookie, uint32_t transitionDelayMs)
DeviceHandlerBase(objectId, deviceCommunication, comCookie), : DeviceHandlerBase(objectId, deviceCommunication, comCookie),
transitionDelayMs(transitionDelayMs), dataset(this) { transitionDelayMs(transitionDelayMs),
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1 dataset(this) {}
debugDivider = new PeriodicOperationDivider(3);
#endif
}
GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {} GyroHandlerL3GD20H::~GyroHandlerL3GD20H() {}
void GyroHandlerL3GD20H::doStartUp() { void GyroHandlerL3GD20H::doStartUp() {
if(internalState == InternalState::NONE) { if (internalState == InternalState::NONE) {
internalState = InternalState::CONFIGURE; internalState = InternalState::CONFIGURE;
} }
if(internalState == InternalState::CONFIGURE) { if (internalState == InternalState::CONFIGURE) {
if(commandExecuted) { if (commandExecuted) {
internalState = InternalState::CHECK_REGS; internalState = InternalState::CHECK_REGS;
commandExecuted = false; commandExecuted = false;
}
} }
}
if(internalState == InternalState::CHECK_REGS) { if (internalState == InternalState::CHECK_REGS) {
if(commandExecuted) { if (commandExecuted) {
internalState = InternalState::NORMAL; internalState = InternalState::NORMAL;
if(goNormalModeImmediately) { if (goNormalModeImmediately) {
setMode(MODE_NORMAL); setMode(MODE_NORMAL);
} } else {
else { setMode(_MODE_TO_ON);
setMode(_MODE_TO_ON); }
} commandExecuted = false;
commandExecuted = false;
}
} }
}
} }
void GyroHandlerL3GD20H::doShutDown() { void GyroHandlerL3GD20H::doShutDown() { setMode(_MODE_POWER_DOWN); }
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) { ReturnValue_t GyroHandlerL3GD20H::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
switch(internalState) { switch (internalState) {
case(InternalState::NONE): case (InternalState::NONE):
case(InternalState::NORMAL): { case (InternalState::NORMAL): {
return NOTHING_TO_SEND; return NOTHING_TO_SEND;
} }
case(InternalState::CONFIGURE): { case (InternalState::CONFIGURE): {
*id = L3GD20H::CONFIGURE_CTRL_REGS; *id = L3GD20H::CONFIGURE_CTRL_REGS;
uint8_t command [5]; uint8_t command[5];
command[0] = L3GD20H::CTRL_REG_1_VAL; command[0] = L3GD20H::CTRL_REG_1_VAL;
command[1] = L3GD20H::CTRL_REG_2_VAL; command[1] = L3GD20H::CTRL_REG_2_VAL;
command[2] = L3GD20H::CTRL_REG_3_VAL; command[2] = L3GD20H::CTRL_REG_3_VAL;
command[3] = L3GD20H::CTRL_REG_4_VAL; command[3] = L3GD20H::CTRL_REG_4_VAL;
command[4] = L3GD20H::CTRL_REG_5_VAL; command[4] = L3GD20H::CTRL_REG_5_VAL;
return buildCommandFromCommand(*id, command, 5); return buildCommandFromCommand(*id, command, 5);
} }
case(InternalState::CHECK_REGS): { case (InternalState::CHECK_REGS): {
*id = L3GD20H::READ_REGS; *id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0); return buildCommandFromCommand(*id, nullptr, 0);
} }
default: default:
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
/* Might be a configuration error. */ /* Might be a configuration error. */
sif::warning << "GyroL3GD20Handler::buildTransitionDeviceCommand: " sif::warning << "GyroL3GD20Handler::buildTransitionDeviceCommand: "
"Unknown internal state!" << std::endl; "Unknown internal state!"
<< std::endl;
#else #else
sif::printDebug("GyroL3GD20Handler::buildTransitionDeviceCommand: " sif::printDebug(
"Unknown internal state!\n"); "GyroL3GD20Handler::buildTransitionDeviceCommand: "
"Unknown internal state!\n");
#endif #endif
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) { ReturnValue_t GyroHandlerL3GD20H::buildNormalDeviceCommand(DeviceCommandId_t *id) {
*id = L3GD20H::READ_REGS; *id = L3GD20H::READ_REGS;
return buildCommandFromCommand(*id, nullptr, 0); return buildCommandFromCommand(*id, nullptr, 0);
} }
ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand( ReturnValue_t GyroHandlerL3GD20H::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
DeviceCommandId_t deviceCommand, const uint8_t *commandData, const uint8_t *commandData,
size_t commandDataLen) { size_t commandDataLen) {
switch(deviceCommand) { switch (deviceCommand) {
case(L3GD20H::READ_REGS): { case (L3GD20H::READ_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK; commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN); std::memset(commandBuffer + 1, 0, L3GD20H::READ_LEN);
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = L3GD20H::READ_LEN + 1; rawPacketLen = L3GD20H::READ_LEN + 1;
break; break;
} }
case(L3GD20H::CONFIGURE_CTRL_REGS): { case (L3GD20H::CONFIGURE_CTRL_REGS): {
commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK; commandBuffer[0] = L3GD20H::CTRL_REG_1 | L3GD20H::AUTO_INCREMENT_MASK;
if(commandData == nullptr or commandDataLen != 5) { if (commandData == nullptr or commandDataLen != 5) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
} }
ctrlReg1Value = commandData[0]; ctrlReg1Value = commandData[0];
ctrlReg2Value = commandData[1]; ctrlReg2Value = commandData[1];
ctrlReg3Value = commandData[2]; ctrlReg3Value = commandData[2];
ctrlReg4Value = commandData[3]; ctrlReg4Value = commandData[3];
ctrlReg5Value = commandData[4]; ctrlReg5Value = commandData[4];
bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1; bool fsH = ctrlReg4Value & L3GD20H::SET_FS_1;
bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0; bool fsL = ctrlReg4Value & L3GD20H::SET_FS_0;
if(not fsH and not fsL) { if (not fsH and not fsL) {
sensitivity = L3GD20H::SENSITIVITY_00; sensitivity = L3GD20H::SENSITIVITY_00;
} } else if (not fsH and fsL) {
else if(not fsH and fsL) { sensitivity = L3GD20H::SENSITIVITY_01;
sensitivity = L3GD20H::SENSITIVITY_01; } else {
} sensitivity = L3GD20H::SENSITIVITY_11;
else { }
sensitivity = L3GD20H::SENSITIVITY_11;
}
commandBuffer[1] = ctrlReg1Value; commandBuffer[1] = ctrlReg1Value;
commandBuffer[2] = ctrlReg2Value; commandBuffer[2] = ctrlReg2Value;
commandBuffer[3] = ctrlReg3Value; commandBuffer[3] = ctrlReg3Value;
commandBuffer[4] = ctrlReg4Value; commandBuffer[4] = ctrlReg4Value;
commandBuffer[5] = ctrlReg5Value; commandBuffer[5] = ctrlReg5Value;
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 6; rawPacketLen = 6;
break; break;
} }
case(L3GD20H::READ_CTRL_REGS): { case (L3GD20H::READ_CTRL_REGS): {
commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | commandBuffer[0] = L3GD20H::READ_START | L3GD20H::AUTO_INCREMENT_MASK | L3GD20H::READ_MASK;
L3GD20H::READ_MASK;
std::memset(commandBuffer + 1, 0, 5); std::memset(commandBuffer + 1, 0, 5);
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 6; rawPacketLen = 6;
break; break;
} }
default: default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len, ReturnValue_t GyroHandlerL3GD20H::scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) { DeviceCommandId_t *foundId, size_t *foundLen) {
// For SPI, the ID will always be the one of the last sent command // For SPI, the ID will always be the one of the last sent command
*foundId = this->getPendingCommand(); *foundId = this->getPendingCommand();
*foundLen = this->rawPacketLen; *foundLen = this->rawPacketLen;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id, ReturnValue_t GyroHandlerL3GD20H::interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) { const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) { switch (id) {
case(L3GD20H::CONFIGURE_CTRL_REGS): { case (L3GD20H::CONFIGURE_CTRL_REGS): {
commandExecuted = true;
break;
}
case (L3GD20H::READ_CTRL_REGS): {
if (packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and
packet[5] == ctrlReg5Value) {
commandExecuted = true; commandExecuted = true;
break; } else {
// Attempt reconfiguration
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
} }
case(L3GD20H::READ_CTRL_REGS): { case (L3GD20H::READ_REGS): {
if(packet[1] == ctrlReg1Value and packet[2] == ctrlReg2Value and if (packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] == ctrlReg3Value and packet[4] == ctrlReg4Value and packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] == ctrlReg5Value) { packet[5] != ctrlReg5Value) {
commandExecuted = true; return DeviceHandlerIF::DEVICE_REPLY_INVALID;
} } else {
else { if (internalState == InternalState::CHECK_REGS) {
// Attempt reconfiguration commandExecuted = true;
internalState = InternalState::CONFIGURE;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(L3GD20H::READ_REGS): {
if(packet[1] != ctrlReg1Value and packet[2] != ctrlReg2Value and
packet[3] != ctrlReg3Value and packet[4] != ctrlReg4Value and
packet[5] != ctrlReg5Value) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
else {
if(internalState == InternalState::CHECK_REGS) {
commandExecuted = true;
}
} }
}
statusReg = packet[L3GD20H::STATUS_IDX]; statusReg = packet[L3GD20H::STATUS_IDX];
int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L]; int16_t angVelocXRaw = packet[L3GD20H::OUT_X_H] << 8 | packet[L3GD20H::OUT_X_L];
int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L]; int16_t angVelocYRaw = packet[L3GD20H::OUT_Y_H] << 8 | packet[L3GD20H::OUT_Y_L];
int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L]; int16_t angVelocZRaw = packet[L3GD20H::OUT_Z_H] << 8 | packet[L3GD20H::OUT_Z_L];
float angVelocX = angVelocXRaw * sensitivity; float angVelocX = angVelocXRaw * sensitivity;
float angVelocY = angVelocYRaw * sensitivity; float angVelocY = angVelocYRaw * sensitivity;
float angVelocZ = angVelocZRaw * sensitivity; float angVelocZ = angVelocZRaw * sensitivity;
int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX]; int8_t temperaturOffset = (-1) * packet[L3GD20H::TEMPERATURE_IDX];
float temperature = 25.0 + temperaturOffset; float temperature = 25.0 + temperaturOffset;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1 if (periodicPrintout) {
if(debugDivider->checkAndIncrement()) { if (debugDivider.checkAndIncrement()) {
/* Set terminal to utf-8 if there is an issue with micro printout. */ /* Set terminal to utf-8 if there is an issue with micro printout. */
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "GyroHandlerL3GD20H: Angular velocities (deg/s):" << std::endl; sif::info << "GyroHandlerL3GD20H: Angular velocities (deg/s):" << std::endl;
sif::info << "X: " << angVelocX << std::endl; sif::info << "X: " << angVelocX << std::endl;
sif::info << "Y: " << angVelocY << std::endl; sif::info << "Y: " << angVelocY << std::endl;
sif::info << "Z: " << angVelocZ << std::endl; sif::info << "Z: " << angVelocZ << std::endl;
#else #else
sif::printInfo("GyroHandlerL3GD20H: Angular velocities (deg/s):\n"); sif::printInfo("GyroHandlerL3GD20H: Angular velocities (deg/s):\n");
sif::printInfo("X: %f\n", angVelocX); sif::printInfo("X: %f\n", angVelocX);
sif::printInfo("Y: %f\n", angVelocY); sif::printInfo("Y: %f\n", angVelocY);
sif::printInfo("Z: %f\n", angVelocZ); sif::printInfo("Z: %f\n", angVelocZ);
#endif #endif
} }
#endif }
PoolReadGuard readSet(&dataset); PoolReadGuard readSet(&dataset);
if(readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) { if (readSet.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(std::abs(angVelocX) < this->absLimitX) { if (std::abs(angVelocX) < this->absLimitX) {
dataset.angVelocX = angVelocX; dataset.angVelocX = angVelocX;
dataset.angVelocX.setValid(true); dataset.angVelocX.setValid(true);
} } else {
else { dataset.angVelocX.setValid(false);
dataset.angVelocX.setValid(false);
}
if(std::abs(angVelocY) < this->absLimitY) {
dataset.angVelocY = angVelocY;
dataset.angVelocY.setValid(true);
}
else {
dataset.angVelocY.setValid(false);
}
if(std::abs(angVelocZ) < this->absLimitZ) {
dataset.angVelocZ = angVelocZ;
dataset.angVelocZ.setValid(true);
}
else {
dataset.angVelocZ.setValid(false);
}
dataset.temperature = temperature;
dataset.temperature.setValid(true);
} }
break;
if (std::abs(angVelocY) < this->absLimitY) {
dataset.angVelocY = angVelocY;
dataset.angVelocY.setValid(true);
} else {
dataset.angVelocY.setValid(false);
}
if (std::abs(angVelocZ) < this->absLimitZ) {
dataset.angVelocZ = angVelocZ;
dataset.angVelocZ.setValid(true);
} else {
dataset.angVelocZ.setValid(false);
}
dataset.temperature = temperature;
dataset.temperature.setValid(true);
}
break;
} }
default: default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
} }
return result; return result;
} }
uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) { uint32_t GyroHandlerL3GD20H::getTransitionDelayMs(Mode_t from, Mode_t to) {
return this->transitionDelayMs; return this->transitionDelayMs;
} }
void GyroHandlerL3GD20H::setToGoToNormalMode(bool enable) { void GyroHandlerL3GD20H::setToGoToNormalMode(bool enable) { this->goNormalModeImmediately = true; }
this->goNormalModeImmediately = true;
}
ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool( ReturnValue_t GyroHandlerL3GD20H::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_X, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Y, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(L3GD20H::ANG_VELOC_Z, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(L3GD20H::TEMPERATURE, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(L3GD20H::TEMPERATURE, new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
void GyroHandlerL3GD20H::fillCommandAndReplyMap() { void GyroHandlerL3GD20H::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset); insertInCommandAndReplyMap(L3GD20H::READ_REGS, 1, &dataset);
insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1); insertInCommandAndReplyMap(L3GD20H::CONFIGURE_CTRL_REGS, 1);
insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1); insertInCommandAndReplyMap(L3GD20H::READ_CTRL_REGS, 1);
} }
void GyroHandlerL3GD20H::modeChanged() { void GyroHandlerL3GD20H::modeChanged() { internalState = InternalState::NONE; }
internalState = InternalState::NONE;
}
void GyroHandlerL3GD20H::setAbsoluteLimits(float limitX, float limitY, float limitZ) { void GyroHandlerL3GD20H::setAbsoluteLimits(float limitX, float limitY, float limitZ) {
this->absLimitX = limitX; this->absLimitX = limitX;
this->absLimitY = limitY; this->absLimitY = limitY;
this->absLimitZ = limitZ; this->absLimitZ = limitZ;
}
void GyroHandlerL3GD20H::enablePeriodicPrintouts(bool enable, uint8_t divider) {
periodicPrintout = enable;
debugDivider.setDivider(divider);
} }

View File

@ -1,12 +1,11 @@
#ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_ #ifndef MISSION_DEVICES_GYROL3GD20HANDLER_H_
#define MISSION_DEVICES_GYROL3GD20HANDLER_H_ #define MISSION_DEVICES_GYROL3GD20HANDLER_H_
#include "fsfw/FSFW.h"
#include "devicedefinitions/GyroL3GD20Definitions.h"
#include <fsfw/devicehandlers/DeviceHandlerBase.h> #include <fsfw/devicehandlers/DeviceHandlerBase.h>
#include <fsfw/globalfunctions/PeriodicOperationDivider.h> #include <fsfw/globalfunctions/PeriodicOperationDivider.h>
#include "devicedefinitions/GyroL3GD20Definitions.h"
/** /**
* @brief Device Handler for the L3GD20H gyroscope sensor * @brief Device Handler for the L3GD20H gyroscope sensor
* (https://www.st.com/en/mems-and-sensors/l3gd20h.html) * (https://www.st.com/en/mems-and-sensors/l3gd20h.html)
@ -16,84 +15,74 @@
* *
* Data is read big endian with the smallest possible range of 245 degrees per second. * Data is read big endian with the smallest possible range of 245 degrees per second.
*/ */
class GyroHandlerL3GD20H: public DeviceHandlerBase { class GyroHandlerL3GD20H : public DeviceHandlerBase {
public: public:
GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication, GyroHandlerL3GD20H(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie,
CookieIF* comCookie, uint32_t transitionDelayMs); uint32_t transitionDelayMs);
virtual ~GyroHandlerL3GD20H(); virtual ~GyroHandlerL3GD20H();
/** void enablePeriodicPrintouts(bool enable, uint8_t divider);
* Set the absolute limit for the values on the axis in degrees per second.
* The dataset values will be marked as invalid if that limit is exceeded
* @param xLimit
* @param yLimit
* @param zLimit
*/
void setAbsoluteLimits(float limitX, float limitY, float limitZ);
/** /**
* @brief Configure device handler to go to normal mode immediately * Set the absolute limit for the values on the axis in degrees per second.
*/ * The dataset values will be marked as invalid if that limit is exceeded
void setToGoToNormalMode(bool enable); * @param xLimit
protected: * @param yLimit
* @param zLimit
*/
void setAbsoluteLimits(float limitX, float limitY, float limitZ);
/* DeviceHandlerBase overrides */ /**
ReturnValue_t buildTransitionDeviceCommand( * @brief Configure device handler to go to normal mode immediately
DeviceCommandId_t *id) override; */
void doStartUp() override; void setToGoToNormalMode(bool enable);
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override; protected:
void modeChanged() override; /* DeviceHandlerBase overrides */
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override; ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap, void doStartUp() override;
LocalDataPoolManager &poolManager) override; void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId,
size_t *foundLen) override;
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) override;
private: void fillCommandAndReplyMap() override;
uint32_t transitionDelayMs = 0; void modeChanged() override;
GyroPrimaryDataset dataset; virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
float absLimitX = L3GD20H::RANGE_DPS_00; private:
float absLimitY = L3GD20H::RANGE_DPS_00; uint32_t transitionDelayMs = 0;
float absLimitZ = L3GD20H::RANGE_DPS_00; GyroPrimaryDataset dataset;
enum class InternalState { float absLimitX = L3GD20H::RANGE_DPS_00;
NONE, float absLimitY = L3GD20H::RANGE_DPS_00;
CONFIGURE, float absLimitZ = L3GD20H::RANGE_DPS_00;
CHECK_REGS,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t statusReg = 0; enum class InternalState { NONE, CONFIGURE, CHECK_REGS, NORMAL };
bool goNormalModeImmediately = false; InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL; uint8_t statusReg = 0;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL; bool goNormalModeImmediately = false;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
uint8_t commandBuffer[L3GD20H::READ_LEN + 1]; uint8_t ctrlReg1Value = L3GD20H::CTRL_REG_1_VAL;
uint8_t ctrlReg2Value = L3GD20H::CTRL_REG_2_VAL;
uint8_t ctrlReg3Value = L3GD20H::CTRL_REG_3_VAL;
uint8_t ctrlReg4Value = L3GD20H::CTRL_REG_4_VAL;
uint8_t ctrlReg5Value = L3GD20H::CTRL_REG_5_VAL;
// Set default value uint8_t commandBuffer[L3GD20H::READ_LEN + 1];
float sensitivity = L3GD20H::SENSITIVITY_00;
#if FSFW_HAL_L3GD20_GYRO_DEBUG == 1 // Set default value
PeriodicOperationDivider* debugDivider = nullptr; float sensitivity = L3GD20H::SENSITIVITY_00;
#endif
bool periodicPrintout = false;
PeriodicOperationDivider debugDivider = PeriodicOperationDivider(3);
}; };
#endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */ #endif /* MISSION_DEVICES_GYROL3GD20HANDLER_H_ */

View File

@ -8,513 +8,483 @@
#include <cmath> #include <cmath>
MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCommunication, MgmLIS3MDLHandler::MgmLIS3MDLHandler(object_id_t objectId, object_id_t deviceCommunication,
CookieIF* comCookie, uint32_t transitionDelay): CookieIF *comCookie, uint32_t transitionDelay)
DeviceHandlerBase(objectId, deviceCommunication, comCookie), : DeviceHandlerBase(objectId, deviceCommunication, comCookie),
dataset(this), transitionDelay(transitionDelay) { dataset(this),
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1 transitionDelay(transitionDelay) {
debugDivider = new PeriodicOperationDivider(3); // Set to default values right away
#endif registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT;
// Set to default values right away registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT;
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT;
registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT; registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT; registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
}
MgmLIS3MDLHandler::~MgmLIS3MDLHandler() {
} }
MgmLIS3MDLHandler::~MgmLIS3MDLHandler() {}
void MgmLIS3MDLHandler::doStartUp() { void MgmLIS3MDLHandler::doStartUp() {
switch (internalState) { switch (internalState) {
case(InternalState::STATE_NONE): { case (InternalState::STATE_NONE): {
internalState = InternalState::STATE_FIRST_CONTACT; internalState = InternalState::STATE_FIRST_CONTACT;
break; break;
} }
case(InternalState::STATE_FIRST_CONTACT): { case (InternalState::STATE_FIRST_CONTACT): {
/* Will be set by checking device ID (WHO AM I register) */ /* Will be set by checking device ID (WHO AM I register) */
if(commandExecuted) { if (commandExecuted) {
commandExecuted = false; commandExecuted = false;
internalState = InternalState::STATE_SETUP; internalState = InternalState::STATE_SETUP;
}
break;
}
case (InternalState::STATE_SETUP): {
internalState = InternalState::STATE_CHECK_REGISTERS;
break;
}
case (InternalState::STATE_CHECK_REGISTERS): {
/* Set up cached registers which will be used to configure the MGM. */
if (commandExecuted) {
commandExecuted = false;
if (goToNormalMode) {
setMode(MODE_NORMAL);
} else {
setMode(_MODE_TO_ON);
} }
break; }
} break;
case(InternalState::STATE_SETUP): {
internalState = InternalState::STATE_CHECK_REGISTERS;
break;
}
case(InternalState::STATE_CHECK_REGISTERS): {
/* Set up cached registers which will be used to configure the MGM. */
if(commandExecuted) {
commandExecuted = false;
if(goToNormalMode) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
}
break;
} }
default: default:
break; break;
} }
} }
void MgmLIS3MDLHandler::doShutDown() { void MgmLIS3MDLHandler::doShutDown() { setMode(_MODE_POWER_DOWN); }
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MgmLIS3MDLHandler::buildTransitionDeviceCommand( ReturnValue_t MgmLIS3MDLHandler::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
DeviceCommandId_t *id) { switch (internalState) {
switch (internalState) { case (InternalState::STATE_NONE):
case(InternalState::STATE_NONE): case (InternalState::STATE_NORMAL): {
case(InternalState::STATE_NORMAL): { return DeviceHandlerBase::NOTHING_TO_SEND;
return DeviceHandlerBase::NOTHING_TO_SEND;
} }
case(InternalState::STATE_FIRST_CONTACT): { case (InternalState::STATE_FIRST_CONTACT): {
*id = MGMLIS3MDL::IDENTIFY_DEVICE; *id = MGMLIS3MDL::IDENTIFY_DEVICE;
break; break;
} }
case(InternalState::STATE_SETUP): { case (InternalState::STATE_SETUP): {
*id = MGMLIS3MDL::SETUP_MGM; *id = MGMLIS3MDL::SETUP_MGM;
break; break;
} }
case(InternalState::STATE_CHECK_REGISTERS): { case (InternalState::STATE_CHECK_REGISTERS): {
*id = MGMLIS3MDL::READ_CONFIG_AND_DATA; *id = MGMLIS3MDL::READ_CONFIG_AND_DATA;
break; break;
} }
default: { default: {
/* might be a configuration error. */ /* might be a configuration error. */
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!" << sif::warning << "GyroHandler::buildTransitionDeviceCommand: Unknown internal state!"
std::endl; << std::endl;
#else #else
sif::printWarning("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n"); sif::printWarning("GyroHandler::buildTransitionDeviceCommand: Unknown internal state!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
}
} return buildCommandFromCommand(*id, NULL, 0);
return buildCommandFromCommand(*id, NULL, 0);
} }
uint8_t MgmLIS3MDLHandler::readCommand(uint8_t command, bool continuousCom) { uint8_t MgmLIS3MDLHandler::readCommand(uint8_t command, bool continuousCom) {
command |= (1 << MGMLIS3MDL::RW_BIT); command |= (1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) { if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT); command |= (1 << MGMLIS3MDL::MS_BIT);
} }
return command; return command;
} }
uint8_t MgmLIS3MDLHandler::writeCommand(uint8_t command, bool continuousCom) { uint8_t MgmLIS3MDLHandler::writeCommand(uint8_t command, bool continuousCom) {
command &= ~(1 << MGMLIS3MDL::RW_BIT); command &= ~(1 << MGMLIS3MDL::RW_BIT);
if (continuousCom == true) { if (continuousCom == true) {
command |= (1 << MGMLIS3MDL::MS_BIT); command |= (1 << MGMLIS3MDL::MS_BIT);
} }
return command; return command;
} }
void MgmLIS3MDLHandler::setupMgm() { void MgmLIS3MDLHandler::setupMgm() {
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT;
registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT;
registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT;
registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
registers[0] = MGMLIS3MDL::CTRL_REG1_DEFAULT; prepareCtrlRegisterWrite();
registers[1] = MGMLIS3MDL::CTRL_REG2_DEFAULT;
registers[2] = MGMLIS3MDL::CTRL_REG3_DEFAULT;
registers[3] = MGMLIS3MDL::CTRL_REG4_DEFAULT;
registers[4] = MGMLIS3MDL::CTRL_REG5_DEFAULT;
prepareCtrlRegisterWrite();
} }
ReturnValue_t MgmLIS3MDLHandler::buildNormalDeviceCommand( ReturnValue_t MgmLIS3MDLHandler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
DeviceCommandId_t *id) { // Data/config register will be read in an alternating manner.
// Data/config register will be read in an alternating manner. if (communicationStep == CommunicationStep::DATA) {
if(communicationStep == CommunicationStep::DATA) { *id = MGMLIS3MDL::READ_CONFIG_AND_DATA;
*id = MGMLIS3MDL::READ_CONFIG_AND_DATA; communicationStep = CommunicationStep::TEMPERATURE;
communicationStep = CommunicationStep::TEMPERATURE; return buildCommandFromCommand(*id, NULL, 0);
return buildCommandFromCommand(*id, NULL, 0); } else {
} *id = MGMLIS3MDL::READ_TEMPERATURE;
else { communicationStep = CommunicationStep::DATA;
*id = MGMLIS3MDL::READ_TEMPERATURE; return buildCommandFromCommand(*id, NULL, 0);
communicationStep = CommunicationStep::DATA; }
return buildCommandFromCommand(*id, NULL, 0);
}
} }
ReturnValue_t MgmLIS3MDLHandler::buildCommandFromCommand( ReturnValue_t MgmLIS3MDLHandler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
DeviceCommandId_t deviceCommand, const uint8_t *commandData, const uint8_t *commandData,
size_t commandDataLen) { size_t commandDataLen) {
switch(deviceCommand) { switch (deviceCommand) {
case(MGMLIS3MDL::READ_CONFIG_AND_DATA): { case (MGMLIS3MDL::READ_CONFIG_AND_DATA): {
std::memset(commandBuffer, 0, sizeof(commandBuffer)); std::memset(commandBuffer, 0, sizeof(commandBuffer));
commandBuffer[0] = readCommand(MGMLIS3MDL::CTRL_REG1, true); commandBuffer[0] = readCommand(MGMLIS3MDL::CTRL_REG1, true);
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1; rawPacketLen = MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1;
return RETURN_OK; return RETURN_OK;
} }
case(MGMLIS3MDL::READ_TEMPERATURE): { case (MGMLIS3MDL::READ_TEMPERATURE): {
std::memset(commandBuffer, 0, 3); std::memset(commandBuffer, 0, 3);
commandBuffer[0] = readCommand(MGMLIS3MDL::TEMP_LOWBYTE, true); commandBuffer[0] = readCommand(MGMLIS3MDL::TEMP_LOWBYTE, true);
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 3; rawPacketLen = 3;
return RETURN_OK; return RETURN_OK;
} }
case(MGMLIS3MDL::IDENTIFY_DEVICE): { case (MGMLIS3MDL::IDENTIFY_DEVICE): {
return identifyDevice(); return identifyDevice();
} }
case(MGMLIS3MDL::TEMP_SENSOR_ENABLE): { case (MGMLIS3MDL::TEMP_SENSOR_ENABLE): {
return enableTemperatureSensor(commandData, commandDataLen); return enableTemperatureSensor(commandData, commandDataLen);
} }
case(MGMLIS3MDL::SETUP_MGM): { case (MGMLIS3MDL::SETUP_MGM): {
setupMgm(); setupMgm();
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
case(MGMLIS3MDL::ACCURACY_OP_MODE_SET): { case (MGMLIS3MDL::ACCURACY_OP_MODE_SET): {
return setOperatingMode(commandData, commandDataLen); return setOperatingMode(commandData, commandDataLen);
} }
default: default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
} }
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t MgmLIS3MDLHandler::identifyDevice() { ReturnValue_t MgmLIS3MDLHandler::identifyDevice() {
uint32_t size = 2; uint32_t size = 2;
commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR); commandBuffer[0] = readCommand(MGMLIS3MDL::IDENTIFY_DEVICE_REG_ADDR);
commandBuffer[1] = 0x00; commandBuffer[1] = 0x00;
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = size; rawPacketLen = size;
return RETURN_OK; return RETURN_OK;
} }
ReturnValue_t MgmLIS3MDLHandler::scanForReply(const uint8_t *start, ReturnValue_t MgmLIS3MDLHandler::scanForReply(const uint8_t *start, size_t len,
size_t len, DeviceCommandId_t *foundId, size_t *foundLen) { DeviceCommandId_t *foundId, size_t *foundLen) {
*foundLen = len;
if (len == MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1) {
*foundLen = len; *foundLen = len;
if (len == MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1) { *foundId = MGMLIS3MDL::READ_CONFIG_AND_DATA;
*foundLen = len; // Check validity by checking config registers
*foundId = MGMLIS3MDL::READ_CONFIG_AND_DATA; if (start[1] != registers[0] or start[2] != registers[1] or start[3] != registers[2] or
// Check validity by checking config registers start[4] != registers[3] or start[5] != registers[4]) {
if (start[1] != registers[0] or start[2] != registers[1] or
start[3] != registers[2] or start[4] != registers[3] or
start[5] != registers[4]) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: Invalid registers!" << std::endl; sif::warning << "MGMHandlerLIS3MDL::scanForReply: Invalid registers!" << std::endl;
#else #else
sif::printWarning("MGMHandlerLIS3MDL::scanForReply: Invalid registers!\n"); sif::printWarning("MGMHandlerLIS3MDL::scanForReply: Invalid registers!\n");
#endif #endif
#endif #endif
return DeviceHandlerIF::INVALID_DATA; return DeviceHandlerIF::INVALID_DATA;
} }
if(mode == _MODE_START_UP) { if (mode == _MODE_START_UP) {
commandExecuted = true; commandExecuted = true;
} }
} } else if (len == MGMLIS3MDL::TEMPERATURE_REPLY_LEN) {
else if(len == MGMLIS3MDL::TEMPERATURE_REPLY_LEN) { *foundLen = len;
*foundLen = len; *foundId = MGMLIS3MDL::READ_TEMPERATURE;
*foundId = MGMLIS3MDL::READ_TEMPERATURE; } else if (len == MGMLIS3MDL::SETUP_REPLY_LEN) {
} *foundLen = len;
else if (len == MGMLIS3MDL::SETUP_REPLY_LEN) { *foundId = MGMLIS3MDL::SETUP_MGM;
*foundLen = len; } else if (len == SINGLE_COMMAND_ANSWER_LEN) {
*foundId = MGMLIS3MDL::SETUP_MGM; *foundLen = len;
} *foundId = getPendingCommand();
else if (len == SINGLE_COMMAND_ANSWER_LEN) { if (*foundId == MGMLIS3MDL::IDENTIFY_DEVICE) {
*foundLen = len; if (start[1] != MGMLIS3MDL::DEVICE_ID) {
*foundId = getPendingCommand();
if(*foundId == MGMLIS3MDL::IDENTIFY_DEVICE) {
if(start[1] != MGMLIS3MDL::DEVICE_ID) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "MGMHandlerLIS3MDL::scanForReply: " sif::warning << "MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!" << std::endl; "Device identification failed!"
<< std::endl;
#else #else
sif::printWarning("MGMHandlerLIS3MDL::scanForReply: " sif::printWarning(
"Device identification failed!\n"); "MGMHandlerLIS3MDL::scanForReply: "
"Device identification failed!\n");
#endif #endif
#endif #endif
return DeviceHandlerIF::INVALID_DATA;
}
if(mode == _MODE_START_UP) {
commandExecuted = true;
}
}
}
else {
return DeviceHandlerIF::INVALID_DATA; return DeviceHandlerIF::INVALID_DATA;
} }
/* Data with SPI Interface always has this answer */ if (mode == _MODE_START_UP) {
if (start[0] == 0b11111111) { commandExecuted = true;
return RETURN_OK; }
}
else {
return DeviceHandlerIF::INVALID_DATA;
} }
} else {
return DeviceHandlerIF::INVALID_DATA;
}
/* Data with SPI Interface always has this answer */
if (start[0] == 0b11111111) {
return RETURN_OK;
} else {
return DeviceHandlerIF::INVALID_DATA;
}
} }
ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id, ReturnValue_t MgmLIS3MDLHandler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) {
const uint8_t *packet) { switch (id) {
switch (id) {
case MGMLIS3MDL::IDENTIFY_DEVICE: { case MGMLIS3MDL::IDENTIFY_DEVICE: {
break; break;
} }
case MGMLIS3MDL::SETUP_MGM: { case MGMLIS3MDL::SETUP_MGM: {
break; break;
} }
case MGMLIS3MDL::READ_CONFIG_AND_DATA: { case MGMLIS3MDL::READ_CONFIG_AND_DATA: {
// TODO: Store configuration in new local datasets. // TODO: Store configuration in new local datasets.
float sensitivityFactor = getSensitivityFactor(getSensitivity(registers[2])); float sensitivityFactor = getSensitivityFactor(getSensitivity(registers[2]));
int16_t mgmMeasurementRawX = packet[MGMLIS3MDL::X_HIGHBYTE_IDX] << 8 int16_t mgmMeasurementRawX =
| packet[MGMLIS3MDL::X_LOWBYTE_IDX] ; packet[MGMLIS3MDL::X_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::X_LOWBYTE_IDX];
int16_t mgmMeasurementRawY = packet[MGMLIS3MDL::Y_HIGHBYTE_IDX] << 8 int16_t mgmMeasurementRawY =
| packet[MGMLIS3MDL::Y_LOWBYTE_IDX] ; packet[MGMLIS3MDL::Y_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Y_LOWBYTE_IDX];
int16_t mgmMeasurementRawZ = packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8 int16_t mgmMeasurementRawZ =
| packet[MGMLIS3MDL::Z_LOWBYTE_IDX] ; packet[MGMLIS3MDL::Z_HIGHBYTE_IDX] << 8 | packet[MGMLIS3MDL::Z_LOWBYTE_IDX];
/* Target value in microtesla */ // Target value in microtesla
float mgmX = static_cast<float>(mgmMeasurementRawX) * sensitivityFactor float mgmX = static_cast<float>(mgmMeasurementRawX) * sensitivityFactor *
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
float mgmY = static_cast<float>(mgmMeasurementRawY) * sensitivityFactor float mgmY = static_cast<float>(mgmMeasurementRawY) * sensitivityFactor *
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
float mgmZ = static_cast<float>(mgmMeasurementRawZ) * sensitivityFactor float mgmZ = static_cast<float>(mgmMeasurementRawZ) * sensitivityFactor *
* MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR; MGMLIS3MDL::GAUSS_TO_MICROTESLA_FACTOR;
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1 if (periodicPrintout) {
if(debugDivider->checkAndIncrement()) { if (debugDivider.checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Magnetic field strength in" sif::info << "MGMHandlerLIS3: Magnetic field strength in"
" microtesla:" << std::endl; " microtesla:"
sif::info << "X: " << mgmX << " uT" << std::endl; << std::endl;
sif::info << "Y: " << mgmY << " uT" << std::endl; sif::info << "X: " << mgmX << " uT" << std::endl;
sif::info << "Z: " << mgmZ << " uT" << std::endl; sif::info << "Y: " << mgmY << " uT" << std::endl;
sif::info << "Z: " << mgmZ << " uT" << std::endl;
#else #else
sif::printInfo("MGMHandlerLIS3: Magnetic field strength in microtesla:\n"); sif::printInfo("MGMHandlerLIS3: Magnetic field strength in microtesla:\n");
sif::printInfo("X: %f uT\n", mgmX); sif::printInfo("X: %f uT\n", mgmX);
sif::printInfo("Y: %f uT\n", mgmY); sif::printInfo("Y: %f uT\n", mgmY);
sif::printInfo("Z: %f uT\n", mgmZ); sif::printInfo("Z: %f uT\n", mgmZ);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 0 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 0 */
} }
#endif /* OBSW_VERBOSE_LEVEL >= 1 */ }
PoolReadGuard readHelper(&dataset);
if(readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
if(std::abs(mgmX) < absLimitX) {
dataset.fieldStrengthX = mgmX;
dataset.fieldStrengthX.setValid(true);
}
else {
dataset.fieldStrengthX.setValid(false);
}
if(std::abs(mgmY) < absLimitY) { PoolReadGuard readHelper(&dataset);
dataset.fieldStrengthY = mgmY; if (readHelper.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
dataset.fieldStrengthY.setValid(true); if (std::abs(mgmX) < absLimitX) {
} dataset.fieldStrengthX = mgmX;
else { dataset.fieldStrengthX.setValid(true);
dataset.fieldStrengthY.setValid(false); } else {
} dataset.fieldStrengthX.setValid(false);
if(std::abs(mgmZ) < absLimitZ) {
dataset.fieldStrengthZ = mgmZ;
dataset.fieldStrengthZ.setValid(true);
}
else {
dataset.fieldStrengthZ.setValid(false);
}
} }
break;
if (std::abs(mgmY) < absLimitY) {
dataset.fieldStrengthY = mgmY;
dataset.fieldStrengthY.setValid(true);
} else {
dataset.fieldStrengthY.setValid(false);
}
if (std::abs(mgmZ) < absLimitZ) {
dataset.fieldStrengthZ = mgmZ;
dataset.fieldStrengthZ.setValid(true);
} else {
dataset.fieldStrengthZ.setValid(false);
}
}
break;
} }
case MGMLIS3MDL::READ_TEMPERATURE: { case MGMLIS3MDL::READ_TEMPERATURE: {
int16_t tempValueRaw = packet[2] << 8 | packet[1]; int16_t tempValueRaw = packet[2] << 8 | packet[1];
float tempValue = 25.0 + ((static_cast<float>(tempValueRaw)) / 8.0); float tempValue = 25.0 + ((static_cast<float>(tempValueRaw)) / 8.0);
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1 if (periodicPrintout) {
if(debugDivider->check()) { if (debugDivider.check()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" << sif::info << "MGMHandlerLIS3: Temperature: " << tempValue << " C" << std::endl;
std::endl;
#else #else
sif::printInfo("MGMHandlerLIS3: Temperature: %f C\n"); sif::printInfo("MGMHandlerLIS3: Temperature: %f C\n");
#endif #endif
} }
#endif }
ReturnValue_t result = dataset.read();
if(result == HasReturnvaluesIF::RETURN_OK) { ReturnValue_t result = dataset.read();
dataset.temperature = tempValue; if (result == HasReturnvaluesIF::RETURN_OK) {
dataset.commit(); dataset.temperature = tempValue;
} dataset.commit();
break; }
break;
} }
default: { default: {
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
} }
}
} return RETURN_OK;
return RETURN_OK;
} }
MGMLIS3MDL::Sensitivies MgmLIS3MDLHandler::getSensitivity(uint8_t ctrlRegister2) { MGMLIS3MDL::Sensitivies MgmLIS3MDLHandler::getSensitivity(uint8_t ctrlRegister2) {
bool fs0Set = ctrlRegister2 & (1 << MGMLIS3MDL::FSO); // Checks if FS0 bit is set bool fs0Set = ctrlRegister2 & (1 << MGMLIS3MDL::FSO); // Checks if FS0 bit is set
bool fs1Set = ctrlRegister2 & (1 << MGMLIS3MDL::FS1); // Checks if FS1 bit is set bool fs1Set = ctrlRegister2 & (1 << MGMLIS3MDL::FS1); // Checks if FS1 bit is set
if (fs0Set && fs1Set) if (fs0Set && fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_16; return MGMLIS3MDL::Sensitivies::GAUSS_16;
else if (!fs0Set && fs1Set) else if (!fs0Set && fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_12; return MGMLIS3MDL::Sensitivies::GAUSS_12;
else if (fs0Set && !fs1Set) else if (fs0Set && !fs1Set)
return MGMLIS3MDL::Sensitivies::GAUSS_8; return MGMLIS3MDL::Sensitivies::GAUSS_8;
else else
return MGMLIS3MDL::Sensitivies::GAUSS_4; return MGMLIS3MDL::Sensitivies::GAUSS_4;
} }
float MgmLIS3MDLHandler::getSensitivityFactor(MGMLIS3MDL::Sensitivies sens) { float MgmLIS3MDLHandler::getSensitivityFactor(MGMLIS3MDL::Sensitivies sens) {
switch(sens) { switch (sens) {
case(MGMLIS3MDL::GAUSS_4): { case (MGMLIS3MDL::GAUSS_4): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS; return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS;
} }
case(MGMLIS3MDL::GAUSS_8): { case (MGMLIS3MDL::GAUSS_8): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_8_SENS; return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_8_SENS;
} }
case(MGMLIS3MDL::GAUSS_12): { case (MGMLIS3MDL::GAUSS_12): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_12_SENS; return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_12_SENS;
} }
case(MGMLIS3MDL::GAUSS_16): { case (MGMLIS3MDL::GAUSS_16): {
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_16_SENS; return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_16_SENS;
} }
default: { default: {
// Should never happen // Should never happen
return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS; return MGMLIS3MDL::FIELD_LSB_PER_GAUSS_4_SENS;
}
} }
}
} }
ReturnValue_t MgmLIS3MDLHandler::enableTemperatureSensor(const uint8_t *commandData,
ReturnValue_t MgmLIS3MDLHandler::enableTemperatureSensor( size_t commandDataLen) {
const uint8_t *commandData, size_t commandDataLen) { triggerEvent(CHANGE_OF_SETUP_PARAMETER);
triggerEvent(CHANGE_OF_SETUP_PARAMETER); uint32_t size = 2;
uint32_t size = 2; commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1);
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1); if (commandDataLen > 1) {
if (commandDataLen > 1) { return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; }
} switch (*commandData) {
switch (*commandData) {
case (MGMLIS3MDL::ON): { case (MGMLIS3MDL::ON): {
commandBuffer[1] = registers[0] | (1 << 7); commandBuffer[1] = registers[0] | (1 << 7);
break; break;
} }
case (MGMLIS3MDL::OFF): { case (MGMLIS3MDL::OFF): {
commandBuffer[1] = registers[0] & ~(1 << 7); commandBuffer[1] = registers[0] & ~(1 << 7);
break; break;
} }
default: default:
return INVALID_COMMAND_PARAMETER; return INVALID_COMMAND_PARAMETER;
} }
registers[0] = commandBuffer[1]; registers[0] = commandBuffer[1];
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = size; rawPacketLen = size;
return RETURN_OK; return RETURN_OK;
} }
ReturnValue_t MgmLIS3MDLHandler::setOperatingMode(const uint8_t *commandData, ReturnValue_t MgmLIS3MDLHandler::setOperatingMode(const uint8_t *commandData,
size_t commandDataLen) { size_t commandDataLen) {
triggerEvent(CHANGE_OF_SETUP_PARAMETER); triggerEvent(CHANGE_OF_SETUP_PARAMETER);
if (commandDataLen != 1) { if (commandDataLen != 1) {
return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS; return INVALID_NUMBER_OR_LENGTH_OF_PARAMETERS;
} }
switch (commandData[0]) { switch (commandData[0]) {
case MGMLIS3MDL::LOW: case MGMLIS3MDL::LOW:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0)); registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0)); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) & (~(1 << MGMLIS3MDL::OMZ0));
break; break;
case MGMLIS3MDL::MEDIUM: case MGMLIS3MDL::MEDIUM:
registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0); registers[0] = (registers[0] & (~(1 << MGMLIS3MDL::OM1))) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0); registers[3] = (registers[3] & (~(1 << MGMLIS3MDL::OMZ1))) | (1 << MGMLIS3MDL::OMZ0);
break; break;
case MGMLIS3MDL::HIGH: case MGMLIS3MDL::HIGH:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0)); registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) & (~(1 << MGMLIS3MDL::OM0));
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0)); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) & (~(1 << MGMLIS3MDL::OMZ0));
break; break;
case MGMLIS3MDL::ULTRA: case MGMLIS3MDL::ULTRA:
registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0); registers[0] = (registers[0] | (1 << MGMLIS3MDL::OM1)) | (1 << MGMLIS3MDL::OM0);
registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0); registers[3] = (registers[3] | (1 << MGMLIS3MDL::OMZ1)) | (1 << MGMLIS3MDL::OMZ0);
break; break;
default: default:
break; break;
} }
return prepareCtrlRegisterWrite(); return prepareCtrlRegisterWrite();
} }
void MgmLIS3MDLHandler::fillCommandAndReplyMap() { void MgmLIS3MDLHandler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(MGMLIS3MDL::READ_CONFIG_AND_DATA, 1, &dataset); insertInCommandAndReplyMap(MGMLIS3MDL::READ_CONFIG_AND_DATA, 1, &dataset);
insertInCommandAndReplyMap(MGMLIS3MDL::READ_TEMPERATURE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::READ_TEMPERATURE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1); insertInCommandAndReplyMap(MGMLIS3MDL::SETUP_MGM, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::IDENTIFY_DEVICE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1); insertInCommandAndReplyMap(MGMLIS3MDL::TEMP_SENSOR_ENABLE, 1);
insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1); insertInCommandAndReplyMap(MGMLIS3MDL::ACCURACY_OP_MODE_SET, 1);
} }
void MgmLIS3MDLHandler::setToGoToNormalMode(bool enable) { void MgmLIS3MDLHandler::setToGoToNormalMode(bool enable) { this->goToNormalMode = enable; }
this->goToNormalMode = enable;
}
ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() { ReturnValue_t MgmLIS3MDLHandler::prepareCtrlRegisterWrite() {
commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true); commandBuffer[0] = writeCommand(MGMLIS3MDL::CTRL_REG1, true);
for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) { for (size_t i = 0; i < MGMLIS3MDL::NR_OF_CTRL_REGISTERS; i++) {
commandBuffer[i + 1] = registers[i]; commandBuffer[i + 1] = registers[i];
} }
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS + 1; rawPacketLen = MGMLIS3MDL::NR_OF_CTRL_REGISTERS + 1;
// We dont have to check if this is working because we just did i // We dont have to check if this is working because we just did i
return RETURN_OK; return RETURN_OK;
} }
void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) { void MgmLIS3MDLHandler::doTransition(Mode_t modeFrom, Submode_t subModeFrom) {
DeviceHandlerBase::doTransition(modeFrom, subModeFrom);
} }
uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) { uint32_t MgmLIS3MDLHandler::getTransitionDelayMs(Mode_t from, Mode_t to) { return transitionDelay; }
return transitionDelay;
}
void MgmLIS3MDLHandler::modeChanged(void) { void MgmLIS3MDLHandler::modeChanged(void) { internalState = InternalState::STATE_NONE; }
internalState = InternalState::STATE_NONE;
}
ReturnValue_t MgmLIS3MDLHandler::initializeLocalDataPool( ReturnValue_t MgmLIS3MDLHandler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_X, localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_X, new PoolEntry<float>({0.0}));
new PoolEntry<float>({0.0})); localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Y, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Y, localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Z, new PoolEntry<float>({0.0}));
new PoolEntry<float>({0.0})); localDataPoolMap.emplace(MGMLIS3MDL::TEMPERATURE_CELCIUS, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::FIELD_STRENGTH_Z, return HasReturnvaluesIF::RETURN_OK;
new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(MGMLIS3MDL::TEMPERATURE_CELCIUS,
new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK;
} }
void MgmLIS3MDLHandler::setAbsoluteLimits(float xLimit, float yLimit, float zLimit) { void MgmLIS3MDLHandler::setAbsoluteLimits(float xLimit, float yLimit, float zLimit) {
this->absLimitX = xLimit; this->absLimitX = xLimit;
this->absLimitY = yLimit; this->absLimitY = yLimit;
this->absLimitZ = zLimit; this->absLimitZ = zLimit;
}
void MgmLIS3MDLHandler::enablePeriodicPrintouts(bool enable, uint8_t divider) {
periodicPrintout = enable;
debugDivider.setDivider(divider);
} }

View File

@ -1,11 +1,10 @@
#ifndef MISSION_DEVICES_MGMLIS3MDLHANDLER_H_ #ifndef MISSION_DEVICES_MGMLIS3MDLHANDLER_H_
#define MISSION_DEVICES_MGMLIS3MDLHANDLER_H_ #define MISSION_DEVICES_MGMLIS3MDLHANDLER_H_
#include "fsfw/FSFW.h"
#include "events/subsystemIdRanges.h"
#include "devicedefinitions/MgmLIS3HandlerDefs.h" #include "devicedefinitions/MgmLIS3HandlerDefs.h"
#include "events/subsystemIdRanges.h"
#include "fsfw/devicehandlers/DeviceHandlerBase.h" #include "fsfw/devicehandlers/DeviceHandlerBase.h"
#include "fsfw/globalfunctions/PeriodicOperationDivider.h"
class PeriodicOperationDivider; class PeriodicOperationDivider;
@ -18,169 +17,159 @@ class PeriodicOperationDivider;
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/LIS3MDL_MGM * https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/LIS3MDL_MGM
* @author L. Loidold, R. Mueller * @author L. Loidold, R. Mueller
*/ */
class MgmLIS3MDLHandler: public DeviceHandlerBase { class MgmLIS3MDLHandler : public DeviceHandlerBase {
public: public:
enum class CommunicationStep { enum class CommunicationStep { DATA, TEMPERATURE };
DATA,
TEMPERATURE
};
static const uint8_t INTERFACE_ID = CLASS_ID::MGM_LIS3MDL; static const uint8_t INTERFACE_ID = CLASS_ID::MGM_LIS3MDL;
static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::MGM_LIS3MDL; static const uint8_t SUBSYSTEM_ID = SUBSYSTEM_ID::MGM_LIS3MDL;
//Notifies a command to change the setup parameters // Notifies a command to change the setup parameters
static const Event CHANGE_OF_SETUP_PARAMETER = MAKE_EVENT(0, severity::LOW); static const Event CHANGE_OF_SETUP_PARAMETER = MAKE_EVENT(0, severity::LOW);
MgmLIS3MDLHandler(uint32_t objectId, object_id_t deviceCommunication, CookieIF* comCookie, MgmLIS3MDLHandler(uint32_t objectId, object_id_t deviceCommunication, CookieIF *comCookie,
uint32_t transitionDelay); uint32_t transitionDelay);
virtual ~MgmLIS3MDLHandler(); virtual ~MgmLIS3MDLHandler();
/** void enablePeriodicPrintouts(bool enable, uint8_t divider);
* Set the absolute limit for the values on the axis in microtesla. The dataset values will /**
* be marked as invalid if that limit is exceeded * Set the absolute limit for the values on the axis in microtesla. The dataset values will
* @param xLimit * be marked as invalid if that limit is exceeded
* @param yLimit * @param xLimit
* @param zLimit * @param yLimit
*/ * @param zLimit
void setAbsoluteLimits(float xLimit, float yLimit, float zLimit); */
void setToGoToNormalMode(bool enable); void setAbsoluteLimits(float xLimit, float yLimit, float zLimit);
void setToGoToNormalMode(bool enable);
protected: protected:
/** DeviceHandlerBase overrides */
void doShutDown() override;
void doStartUp() override;
void doTransition(Mode_t modeFrom, Submode_t subModeFrom) override;
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId,
size_t *foundLen) override;
/**
* This implementation is tailored towards space applications and will flag values larger
* than 100 microtesla on X,Y and 150 microtesla on Z as invalid
* @param id
* @param packet
* @return
*/
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged(void) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
/** DeviceHandlerBase overrides */ private:
void doShutDown() override; MGMLIS3MDL::MgmPrimaryDataset dataset;
void doStartUp() override; // Length a single command SPI answer
void doTransition(Mode_t modeFrom, Submode_t subModeFrom) override; static const uint8_t SINGLE_COMMAND_ANSWER_LEN = 2;
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
ReturnValue_t buildCommandFromCommand(
DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t buildTransitionDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t buildNormalDeviceCommand(
DeviceCommandId_t *id) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
/**
* This implementation is tailored towards space applications and will flag values larger
* than 100 microtesla on X,Y and 150 microtesla on Z as invalid
* @param id
* @param packet
* @return
*/
virtual ReturnValue_t interpretDeviceReply(DeviceCommandId_t id,
const uint8_t *packet) override;
void fillCommandAndReplyMap() override;
void modeChanged(void) override;
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
LocalDataPoolManager &poolManager) override;
private: uint32_t transitionDelay;
MGMLIS3MDL::MgmPrimaryDataset dataset; // Single SPI command has 2 bytes, first for adress, second for content
//Length a single command SPI answer size_t singleComandSize = 2;
static const uint8_t SINGLE_COMMAND_ANSWER_LEN = 2; // Has the size for all adresses of the lis3mdl + the continous write bit
uint8_t commandBuffer[MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1];
uint32_t transitionDelay; float absLimitX = 100;
// Single SPI command has 2 bytes, first for adress, second for content float absLimitY = 100;
size_t singleComandSize = 2; float absLimitZ = 150;
// Has the size for all adresses of the lis3mdl + the continous write bit
uint8_t commandBuffer[MGMLIS3MDL::NR_OF_DATA_AND_CFG_REGISTERS + 1];
float absLimitX = 100; /**
float absLimitY = 100; * We want to save the registers we set, so we dont have to read the
float absLimitZ = 150; * registers when we want to change something.
* --> everytime we change set a register we have to save it
*/
uint8_t registers[MGMLIS3MDL::NR_OF_CTRL_REGISTERS];
/** uint8_t statusRegister = 0;
* We want to save the registers we set, so we dont have to read the bool goToNormalMode = false;
* registers when we want to change something.
* --> everytime we change set a register we have to save it
*/
uint8_t registers[MGMLIS3MDL::NR_OF_CTRL_REGISTERS];
uint8_t statusRegister = 0; enum class InternalState {
bool goToNormalMode = false; STATE_NONE,
STATE_FIRST_CONTACT,
STATE_SETUP,
STATE_CHECK_REGISTERS,
STATE_NORMAL
};
enum class InternalState { InternalState internalState = InternalState::STATE_NONE;
STATE_NONE, CommunicationStep communicationStep = CommunicationStep::DATA;
STATE_FIRST_CONTACT, bool commandExecuted = false;
STATE_SETUP,
STATE_CHECK_REGISTERS,
STATE_NORMAL
};
InternalState internalState = InternalState::STATE_NONE; /*------------------------------------------------------------------------*/
CommunicationStep communicationStep = CommunicationStep::DATA; /* Device specific commands and variables */
bool commandExecuted = false; /*------------------------------------------------------------------------*/
/**
* Sets the read bit for the command
* @param single command to set the read-bit at
* @param boolean to select a continuous read bit, default = false
*/
uint8_t readCommand(uint8_t command, bool continuousCom = false);
/*------------------------------------------------------------------------*/ /**
/* Device specific commands and variables */ * Sets the write bit for the command
/*------------------------------------------------------------------------*/ * @param single command to set the write-bit at
/** * @param boolean to select a continuous write bit, default = false
* Sets the read bit for the command */
* @param single command to set the read-bit at uint8_t writeCommand(uint8_t command, bool continuousCom = false);
* @param boolean to select a continuous read bit, default = false
*/
uint8_t readCommand(uint8_t command, bool continuousCom = false);
/** /**
* Sets the write bit for the command * This Method gets the full scale for the measurement range
* @param single command to set the write-bit at * e.g.: +- 4 gauss. See p.25 datasheet.
* @param boolean to select a continuous write bit, default = false * @return The ReturnValue does not contain the sign of the value
*/ */
uint8_t writeCommand(uint8_t command, bool continuousCom = false); MGMLIS3MDL::Sensitivies getSensitivity(uint8_t ctrlReg2);
/** /**
* This Method gets the full scale for the measurement range * The 16 bit value needs to be multiplied with a sensitivity factor
* e.g.: +- 4 gauss. See p.25 datasheet. * which depends on the sensitivity configuration
* @return The ReturnValue does not contain the sign of the value *
*/ * @param sens Configured sensitivity of the LIS3 device
MGMLIS3MDL::Sensitivies getSensitivity(uint8_t ctrlReg2); * @return Multiplication factor to get the sensor value from raw data.
*/
float getSensitivityFactor(MGMLIS3MDL::Sensitivies sens);
/** /**
* The 16 bit value needs to be multiplied with a sensitivity factor * This Command detects the device ID
* which depends on the sensitivity configuration */
* ReturnValue_t identifyDevice();
* @param sens Configured sensitivity of the LIS3 device
* @return Multiplication factor to get the sensor value from raw data.
*/
float getSensitivityFactor(MGMLIS3MDL::Sensitivies sens);
/** virtual void setupMgm();
* This Command detects the device ID
*/
ReturnValue_t identifyDevice();
virtual void setupMgm(); /*------------------------------------------------------------------------*/
/* Non normal commands */
/*------------------------------------------------------------------------*/
/**
* Enables/Disables the integrated Temperaturesensor
* @param commandData On or Off
* @param length of the commandData: has to be 1
*/
virtual ReturnValue_t enableTemperatureSensor(const uint8_t *commandData, size_t commandDataLen);
/*------------------------------------------------------------------------*/ /**
/* Non normal commands */ * Sets the accuracy of the measurement of the axis. The noise is changing.
/*------------------------------------------------------------------------*/ * @param commandData LOW, MEDIUM, HIGH, ULTRA
/** * @param length of the command, has to be 1
* Enables/Disables the integrated Temperaturesensor */
* @param commandData On or Off virtual ReturnValue_t setOperatingMode(const uint8_t *commandData, size_t commandDataLen);
* @param length of the commandData: has to be 1
*/
virtual ReturnValue_t enableTemperatureSensor(const uint8_t *commandData,
size_t commandDataLen);
/** /**
* Sets the accuracy of the measurement of the axis. The noise is changing. * We always update all registers together, so this method updates
* @param commandData LOW, MEDIUM, HIGH, ULTRA * the rawpacket and rawpacketLen, so we just manipulate the local
* @param length of the command, has to be 1 * saved register
*/ *
virtual ReturnValue_t setOperatingMode(const uint8_t *commandData, */
size_t commandDataLen); ReturnValue_t prepareCtrlRegisterWrite();
/** bool periodicPrintout = false;
* We always update all registers together, so this method updates PeriodicOperationDivider debugDivider = PeriodicOperationDivider(3);
* the rawpacket and rawpacketLen, so we just manipulate the local
* saved register
*
*/
ReturnValue_t prepareCtrlRegisterWrite();
#if FSFW_HAL_LIS3MDL_MGM_DEBUG == 1
PeriodicOperationDivider* debugDivider;
#endif
}; };
#endif /* MISSION_DEVICES_MGMLIS3MDLHANDLER_H_ */ #endif /* MISSION_DEVICES_MGMLIS3MDLHANDLER_H_ */

View File

@ -1,376 +1,368 @@
#include "MgmRM3100Handler.h" #include "MgmRM3100Handler.h"
#include "fsfw/datapool/PoolReadGuard.h" #include "fsfw/datapool/PoolReadGuard.h"
#include "fsfw/globalfunctions/bitutility.h"
#include "fsfw/devicehandlers/DeviceHandlerMessage.h" #include "fsfw/devicehandlers/DeviceHandlerMessage.h"
#include "fsfw/globalfunctions/bitutility.h"
#include "fsfw/objectmanager/SystemObjectIF.h" #include "fsfw/objectmanager/SystemObjectIF.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h" #include "fsfw/returnvalues/HasReturnvaluesIF.h"
MgmRM3100Handler::MgmRM3100Handler(object_id_t objectId, object_id_t deviceCommunication,
MgmRM3100Handler::MgmRM3100Handler(object_id_t objectId, CookieIF *comCookie, uint32_t transitionDelay)
object_id_t deviceCommunication, CookieIF* comCookie, uint32_t transitionDelay): : DeviceHandlerBase(objectId, deviceCommunication, comCookie),
DeviceHandlerBase(objectId, deviceCommunication, comCookie), primaryDataset(this),
primaryDataset(this), transitionDelay(transitionDelay) { transitionDelay(transitionDelay) {}
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
debugDivider = new PeriodicOperationDivider(3);
#endif
}
MgmRM3100Handler::~MgmRM3100Handler() {} MgmRM3100Handler::~MgmRM3100Handler() {}
void MgmRM3100Handler::doStartUp() { void MgmRM3100Handler::doStartUp() {
switch(internalState) { switch (internalState) {
case(InternalState::NONE): { case (InternalState::NONE): {
internalState = InternalState::CONFIGURE_CMM; internalState = InternalState::CONFIGURE_CMM;
break; break;
} }
case(InternalState::CONFIGURE_CMM): { case (InternalState::CONFIGURE_CMM): {
internalState = InternalState::READ_CMM; internalState = InternalState::READ_CMM;
break; break;
} }
case(InternalState::READ_CMM): { case (InternalState::READ_CMM): {
if(commandExecuted) { if (commandExecuted) {
internalState = InternalState::STATE_CONFIGURE_TMRC; internalState = InternalState::STATE_CONFIGURE_TMRC;
}
break;
}
case (InternalState::STATE_CONFIGURE_TMRC): {
if (commandExecuted) {
internalState = InternalState::STATE_READ_TMRC;
}
break;
}
case (InternalState::STATE_READ_TMRC): {
if (commandExecuted) {
internalState = InternalState::NORMAL;
if (goToNormalModeAtStartup) {
setMode(MODE_NORMAL);
} else {
setMode(_MODE_TO_ON);
} }
break; }
} break;
case(InternalState::STATE_CONFIGURE_TMRC): {
if(commandExecuted) {
internalState = InternalState::STATE_READ_TMRC;
}
break;
}
case(InternalState::STATE_READ_TMRC): {
if(commandExecuted) {
internalState = InternalState::NORMAL;
if(goToNormalModeAtStartup) {
setMode(MODE_NORMAL);
}
else {
setMode(_MODE_TO_ON);
}
}
break;
} }
default: { default: {
break; break;
}
} }
}
} }
void MgmRM3100Handler::doShutDown() { void MgmRM3100Handler::doShutDown() { setMode(_MODE_POWER_DOWN); }
setMode(_MODE_POWER_DOWN);
}
ReturnValue_t MgmRM3100Handler::buildTransitionDeviceCommand( ReturnValue_t MgmRM3100Handler::buildTransitionDeviceCommand(DeviceCommandId_t *id) {
DeviceCommandId_t *id) { size_t commandLen = 0;
size_t commandLen = 0; switch (internalState) {
switch(internalState) { case (InternalState::NONE):
case(InternalState::NONE): case (InternalState::NORMAL): {
case(InternalState::NORMAL): { return NOTHING_TO_SEND;
return NOTHING_TO_SEND;
} }
case(InternalState::CONFIGURE_CMM): { case (InternalState::CONFIGURE_CMM): {
*id = RM3100::CONFIGURE_CMM; *id = RM3100::CONFIGURE_CMM;
break; break;
} }
case(InternalState::READ_CMM): { case (InternalState::READ_CMM): {
*id = RM3100::READ_CMM; *id = RM3100::READ_CMM;
break; break;
} }
case(InternalState::STATE_CONFIGURE_TMRC): { case (InternalState::STATE_CONFIGURE_TMRC): {
commandBuffer[0] = RM3100::TMRC_DEFAULT_VALUE; commandBuffer[0] = RM3100::TMRC_DEFAULT_VALUE;
commandLen = 1; commandLen = 1;
*id = RM3100::CONFIGURE_TMRC; *id = RM3100::CONFIGURE_TMRC;
break; break;
} }
case(InternalState::STATE_READ_TMRC): { case (InternalState::STATE_READ_TMRC): {
*id = RM3100::READ_TMRC; *id = RM3100::READ_TMRC;
break; break;
} }
default: default:
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
// Might be a configuration error // Might be a configuration error
sif::warning << "MgmRM3100Handler::buildTransitionDeviceCommand: " sif::warning << "MgmRM3100Handler::buildTransitionDeviceCommand: "
"Unknown internal state" << std::endl; "Unknown internal state"
<< std::endl;
#else #else
sif::printWarning("MgmRM3100Handler::buildTransitionDeviceCommand: " sif::printWarning(
"Unknown internal state\n"); "MgmRM3100Handler::buildTransitionDeviceCommand: "
"Unknown internal state\n");
#endif #endif
#endif #endif
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
return buildCommandFromCommand(*id, commandBuffer, commandLen); return buildCommandFromCommand(*id, commandBuffer, commandLen);
} }
ReturnValue_t MgmRM3100Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand, ReturnValue_t MgmRM3100Handler::buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) { const uint8_t *commandData,
switch(deviceCommand) { size_t commandDataLen) {
case(RM3100::CONFIGURE_CMM): { switch (deviceCommand) {
commandBuffer[0] = RM3100::CMM_REGISTER; case (RM3100::CONFIGURE_CMM): {
commandBuffer[1] = RM3100::CMM_VALUE; commandBuffer[0] = RM3100::CMM_REGISTER;
rawPacket = commandBuffer; commandBuffer[1] = RM3100::CMM_VALUE;
rawPacketLen = 2; rawPacket = commandBuffer;
break; rawPacketLen = 2;
break;
} }
case(RM3100::READ_CMM): { case (RM3100::READ_CMM): {
commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK; commandBuffer[0] = RM3100::CMM_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0; commandBuffer[1] = 0;
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 2; rawPacketLen = 2;
break; break;
} }
case(RM3100::CONFIGURE_TMRC): { case (RM3100::CONFIGURE_TMRC): {
return handleTmrcConfigCommand(deviceCommand, commandData, commandDataLen); return handleTmrcConfigCommand(deviceCommand, commandData, commandDataLen);
} }
case(RM3100::READ_TMRC): { case (RM3100::READ_TMRC): {
commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK; commandBuffer[0] = RM3100::TMRC_REGISTER | RM3100::READ_MASK;
commandBuffer[1] = 0; commandBuffer[1] = 0;
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 2; rawPacketLen = 2;
break; break;
} }
case(RM3100::CONFIGURE_CYCLE_COUNT): { case (RM3100::CONFIGURE_CYCLE_COUNT): {
return handleCycleCountConfigCommand(deviceCommand, commandData, commandDataLen); return handleCycleCountConfigCommand(deviceCommand, commandData, commandDataLen);
} }
case(RM3100::READ_CYCLE_COUNT): { case (RM3100::READ_CYCLE_COUNT): {
commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER | RM3100::READ_MASK; commandBuffer[0] = RM3100::CYCLE_COUNT_START_REGISTER | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 6); std::memset(commandBuffer + 1, 0, 6);
rawPacket = commandBuffer; rawPacket = commandBuffer;
rawPacketLen = 7; rawPacketLen = 7;
break; break;
} }
case(RM3100::READ_DATA): { case (RM3100::READ_DATA): {
commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK; commandBuffer[0] = RM3100::MEASUREMENT_REG_START | RM3100::READ_MASK;
std::memset(commandBuffer + 1, 0, 9); std::memset(commandBuffer + 1, 0, 9);
rawPacketLen = 10; rawPacketLen = 10;
break; break;
} }
default: default:
return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED; return DeviceHandlerIF::COMMAND_NOT_IMPLEMENTED;
} }
return RETURN_OK; return RETURN_OK;
} }
ReturnValue_t MgmRM3100Handler::buildNormalDeviceCommand( ReturnValue_t MgmRM3100Handler::buildNormalDeviceCommand(DeviceCommandId_t *id) {
DeviceCommandId_t *id) { *id = RM3100::READ_DATA;
*id = RM3100::READ_DATA; return buildCommandFromCommand(*id, nullptr, 0);
return buildCommandFromCommand(*id, nullptr, 0);
} }
ReturnValue_t MgmRM3100Handler::scanForReply(const uint8_t *start, ReturnValue_t MgmRM3100Handler::scanForReply(const uint8_t *start, size_t len,
size_t len, DeviceCommandId_t *foundId, DeviceCommandId_t *foundId, size_t *foundLen) {
size_t *foundLen) { // For SPI, ID will always be the one of the last sent command
*foundId = this->getPendingCommand();
// For SPI, ID will always be the one of the last sent command *foundLen = len;
*foundId = this->getPendingCommand(); return HasReturnvaluesIF::RETURN_OK;
*foundLen = len;
return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t MgmRM3100Handler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) { ReturnValue_t MgmRM3100Handler::interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
switch(id) { switch (id) {
case(RM3100::CONFIGURE_CMM): case (RM3100::CONFIGURE_CMM):
case(RM3100::CONFIGURE_CYCLE_COUNT): case (RM3100::CONFIGURE_CYCLE_COUNT):
case(RM3100::CONFIGURE_TMRC): { case (RM3100::CONFIGURE_TMRC): {
// We can only check whether write was successful with read operation // We can only check whether write was successful with read operation
if(mode == _MODE_START_UP) { if (mode == _MODE_START_UP) {
commandExecuted = true; commandExecuted = true;
} }
break; break;
} }
case(RM3100::READ_CMM): { case (RM3100::READ_CMM): {
uint8_t cmmValue = packet[1]; uint8_t cmmValue = packet[1];
// We clear the seventh bit in any case // We clear the seventh bit in any case
// because this one is zero sometimes for some reason // because this one is zero sometimes for some reason
bitutil::clear(&cmmValue, 6); bitutil::clear(&cmmValue, 6);
if(cmmValue == cmmRegValue and internalState == InternalState::READ_CMM) { if (cmmValue == cmmRegValue and internalState == InternalState::READ_CMM) {
commandExecuted = true; commandExecuted = true;
} } else {
else { // Attempt reconfiguration
// Attempt reconfiguration internalState = InternalState::CONFIGURE_CMM;
internalState = InternalState::CONFIGURE_CMM; return DeviceHandlerIF::DEVICE_REPLY_INVALID;
return DeviceHandlerIF::DEVICE_REPLY_INVALID; }
} break;
break;
} }
case(RM3100::READ_TMRC): { case (RM3100::READ_TMRC): {
if(packet[1] == tmrcRegValue) { if (packet[1] == tmrcRegValue) {
commandExecuted = true; commandExecuted = true;
// Reading TMRC was commanded. Trigger event to inform ground
if(mode != _MODE_START_UP) {
triggerEvent(tmrcSet, tmrcRegValue, 0);
}
}
else {
// Attempt reconfiguration
internalState = InternalState::STATE_CONFIGURE_TMRC;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
}
case(RM3100::READ_CYCLE_COUNT): {
uint16_t cycleCountX = packet[1] << 8 | packet[2];
uint16_t cycleCountY = packet[3] << 8 | packet[4];
uint16_t cycleCountZ = packet[5] << 8 | packet[6];
if(cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or
cycleCountZ != cycleCountRegValueZ) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
// Reading TMRC was commanded. Trigger event to inform ground // Reading TMRC was commanded. Trigger event to inform ground
if(mode != _MODE_START_UP) { if (mode != _MODE_START_UP) {
uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY; triggerEvent(tmrcSet, tmrcRegValue, 0);
triggerEvent(cycleCountersSet, eventParam1, cycleCountZ);
} }
break; } else {
// Attempt reconfiguration
internalState = InternalState::STATE_CONFIGURE_TMRC;
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
break;
} }
case(RM3100::READ_DATA): { case (RM3100::READ_CYCLE_COUNT): {
result = handleDataReadout(packet); uint16_t cycleCountX = packet[1] << 8 | packet[2];
break; uint16_t cycleCountY = packet[3] << 8 | packet[4];
uint16_t cycleCountZ = packet[5] << 8 | packet[6];
if (cycleCountX != cycleCountRegValueX or cycleCountY != cycleCountRegValueY or
cycleCountZ != cycleCountRegValueZ) {
return DeviceHandlerIF::DEVICE_REPLY_INVALID;
}
// Reading TMRC was commanded. Trigger event to inform ground
if (mode != _MODE_START_UP) {
uint32_t eventParam1 = (cycleCountX << 16) | cycleCountY;
triggerEvent(cycleCountersSet, eventParam1, cycleCountZ);
}
break;
}
case (RM3100::READ_DATA): {
result = handleDataReadout(packet);
break;
} }
default: default:
return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY; return DeviceHandlerIF::UNKNOWN_DEVICE_REPLY;
} }
return result; return result;
} }
ReturnValue_t MgmRM3100Handler::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand, ReturnValue_t MgmRM3100Handler::handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) { const uint8_t *commandData,
if(commandData == nullptr) { size_t commandDataLen) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; if (commandData == nullptr) {
} return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
// Set cycle count // Set cycle count
if(commandDataLen == 2) { if (commandDataLen == 2) {
handleCycleCommand(true, commandData, commandDataLen); handleCycleCommand(true, commandData, commandDataLen);
} } else if (commandDataLen == 6) {
else if(commandDataLen == 6) { handleCycleCommand(false, commandData, commandDataLen);
handleCycleCommand(false, commandData, commandDataLen); } else {
} return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
else { }
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE; commandBuffer[0] = RM3100::CYCLE_COUNT_VALUE;
std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2); std::memcpy(commandBuffer + 1, &cycleCountRegValueX, 2);
std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2); std::memcpy(commandBuffer + 3, &cycleCountRegValueY, 2);
std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2); std::memcpy(commandBuffer + 5, &cycleCountRegValueZ, 2);
rawPacketLen = 7; rawPacketLen = 7;
rawPacket = commandBuffer; rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t MgmRM3100Handler::handleCycleCommand(bool oneCycleValue, ReturnValue_t MgmRM3100Handler::handleCycleCommand(bool oneCycleValue, const uint8_t *commandData,
const uint8_t *commandData, size_t commandDataLen) { size_t commandDataLen) {
RM3100::CycleCountCommand command(oneCycleValue); RM3100::CycleCountCommand command(oneCycleValue);
ReturnValue_t result = command.deSerialize(&commandData, &commandDataLen, ReturnValue_t result =
SerializeIF::Endianness::BIG); command.deSerialize(&commandData, &commandDataLen, SerializeIF::Endianness::BIG);
if(result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
// Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts." // Data sheet p.30 "while noise limits the useful upper range to ~400 cycle counts."
if(command.cycleCountX > 450 ) { if (command.cycleCountX > 450) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
} }
if(not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) { if (not oneCycleValue and (command.cycleCountY > 450 or command.cycleCountZ > 450)) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
} }
cycleCountRegValueX = command.cycleCountX; cycleCountRegValueX = command.cycleCountX;
cycleCountRegValueY = command.cycleCountY; cycleCountRegValueY = command.cycleCountY;
cycleCountRegValueZ = command.cycleCountZ; cycleCountRegValueZ = command.cycleCountZ;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t MgmRM3100Handler::handleTmrcConfigCommand(DeviceCommandId_t deviceCommand, ReturnValue_t MgmRM3100Handler::handleTmrcConfigCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) { const uint8_t *commandData,
if(commandData == nullptr or commandDataLen != 1) { size_t commandDataLen) {
return DeviceHandlerIF::INVALID_COMMAND_PARAMETER; if (commandData == nullptr or commandDataLen != 1) {
} return DeviceHandlerIF::INVALID_COMMAND_PARAMETER;
}
commandBuffer[0] = RM3100::TMRC_REGISTER; commandBuffer[0] = RM3100::TMRC_REGISTER;
commandBuffer[1] = commandData[0]; commandBuffer[1] = commandData[0];
tmrcRegValue = commandData[0]; tmrcRegValue = commandData[0];
rawPacketLen = 2; rawPacketLen = 2;
rawPacket = commandBuffer; rawPacket = commandBuffer;
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
void MgmRM3100Handler::fillCommandAndReplyMap() { void MgmRM3100Handler::fillCommandAndReplyMap() {
insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 3); insertInCommandAndReplyMap(RM3100::CONFIGURE_CMM, 3);
insertInCommandAndReplyMap(RM3100::READ_CMM, 3); insertInCommandAndReplyMap(RM3100::READ_CMM, 3);
insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 3); insertInCommandAndReplyMap(RM3100::CONFIGURE_TMRC, 3);
insertInCommandAndReplyMap(RM3100::READ_TMRC, 3); insertInCommandAndReplyMap(RM3100::READ_TMRC, 3);
insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 3); insertInCommandAndReplyMap(RM3100::CONFIGURE_CYCLE_COUNT, 3);
insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 3); insertInCommandAndReplyMap(RM3100::READ_CYCLE_COUNT, 3);
insertInCommandAndReplyMap(RM3100::READ_DATA, 3, &primaryDataset); insertInCommandAndReplyMap(RM3100::READ_DATA, 3, &primaryDataset);
} }
void MgmRM3100Handler::modeChanged(void) { void MgmRM3100Handler::modeChanged(void) { internalState = InternalState::NONE; }
internalState = InternalState::NONE;
}
ReturnValue_t MgmRM3100Handler::initializeLocalDataPool( ReturnValue_t MgmRM3100Handler::initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
localpool::DataPool &localDataPoolMap, LocalDataPoolManager &poolManager) { LocalDataPoolManager &poolManager) {
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_X, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Y, new PoolEntry<float>({0.0}));
localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z, new PoolEntry<float>({0.0})); localDataPoolMap.emplace(RM3100::FIELD_STRENGTH_Z, new PoolEntry<float>({0.0}));
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
uint32_t MgmRM3100Handler::getTransitionDelayMs(Mode_t from, Mode_t to) { uint32_t MgmRM3100Handler::getTransitionDelayMs(Mode_t from, Mode_t to) {
return this->transitionDelay; return this->transitionDelay;
} }
void MgmRM3100Handler::setToGoToNormalMode(bool enable) { void MgmRM3100Handler::setToGoToNormalMode(bool enable) { goToNormalModeAtStartup = enable; }
goToNormalModeAtStartup = enable;
}
ReturnValue_t MgmRM3100Handler::handleDataReadout(const uint8_t *packet) { ReturnValue_t MgmRM3100Handler::handleDataReadout(const uint8_t *packet) {
// Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift // Analyze data here. The sensor generates 24 bit signed values so we need to do some bitshift
// trickery here to calculate the raw values first // trickery here to calculate the raw values first
int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8; int32_t fieldStrengthRawX = ((packet[1] << 24) | (packet[2] << 16) | (packet[3] << 8)) >> 8;
int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8; int32_t fieldStrengthRawY = ((packet[4] << 24) | (packet[5] << 16) | (packet[6] << 8)) >> 8;
int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8; int32_t fieldStrengthRawZ = ((packet[7] << 24) | (packet[8] << 16) | (packet[3] << 8)) >> 8;
// Now scale to physical value in microtesla // Now scale to physical value in microtesla
float fieldStrengthX = fieldStrengthRawX * scaleFactorX; float fieldStrengthX = fieldStrengthRawX * scaleFactorX;
float fieldStrengthY = fieldStrengthRawY * scaleFactorX; float fieldStrengthY = fieldStrengthRawY * scaleFactorX;
float fieldStrengthZ = fieldStrengthRawZ * scaleFactorX; float fieldStrengthZ = fieldStrengthRawZ * scaleFactorX;
#if FSFW_HAL_RM3100_MGM_DEBUG == 1 if (periodicPrintout) {
if(debugDivider->checkAndIncrement()) { if (debugDivider.checkAndIncrement()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "MgmRM3100Handler: Magnetic field strength in" sif::info << "MgmRM3100Handler: Magnetic field strength in"
" microtesla:" << std::endl; " microtesla:"
sif::info << "X: " << fieldStrengthX << " uT" << std::endl; << std::endl;
sif::info << "Y: " << fieldStrengthY << " uT" << std::endl; sif::info << "X: " << fieldStrengthX << " uT" << std::endl;
sif::info << "Z: " << fieldStrengthZ << " uT" << std::endl; sif::info << "Y: " << fieldStrengthY << " uT" << std::endl;
sif::info << "Z: " << fieldStrengthZ << " uT" << std::endl;
#else #else
sif::printInfo("MgmRM3100Handler: Magnetic field strength in microtesla:\n"); sif::printInfo("MgmRM3100Handler: Magnetic field strength in microtesla:\n");
sif::printInfo("X: %f uT\n", fieldStrengthX); sif::printInfo("X: %f uT\n", fieldStrengthX);
sif::printInfo("Y: %f uT\n", fieldStrengthY); sif::printInfo("Y: %f uT\n", fieldStrengthY);
sif::printInfo("Z: %f uT\n", fieldStrengthZ); sif::printInfo("Z: %f uT\n", fieldStrengthZ);
#endif #endif
} }
#endif }
// TODO: Sanity check on values? // TODO: Sanity check on values?
PoolReadGuard readGuard(&primaryDataset); PoolReadGuard readGuard(&primaryDataset);
if(readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) { if (readGuard.getReadResult() == HasReturnvaluesIF::RETURN_OK) {
primaryDataset.fieldStrengthX = fieldStrengthX; primaryDataset.fieldStrengthX = fieldStrengthX;
primaryDataset.fieldStrengthY = fieldStrengthY; primaryDataset.fieldStrengthY = fieldStrengthY;
primaryDataset.fieldStrengthZ = fieldStrengthZ; primaryDataset.fieldStrengthZ = fieldStrengthZ;
primaryDataset.setValidity(true, true); primaryDataset.setValidity(true, true);
} }
return RETURN_OK; return RETURN_OK;
}
void MgmRM3100Handler::enablePeriodicPrintouts(bool enable, uint8_t divider) {
periodicPrintout = enable;
debugDivider.setDivider(divider);
} }

View File

@ -1,13 +1,9 @@
#ifndef MISSION_DEVICES_MGMRM3100HANDLER_H_ #ifndef MISSION_DEVICES_MGMRM3100HANDLER_H_
#define MISSION_DEVICES_MGMRM3100HANDLER_H_ #define MISSION_DEVICES_MGMRM3100HANDLER_H_
#include "fsfw/FSFW.h"
#include "devicedefinitions/MgmRM3100HandlerDefs.h" #include "devicedefinitions/MgmRM3100HandlerDefs.h"
#include "fsfw/devicehandlers/DeviceHandlerBase.h" #include "fsfw/devicehandlers/DeviceHandlerBase.h"
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
#include "fsfw/globalfunctions/PeriodicOperationDivider.h" #include "fsfw/globalfunctions/PeriodicOperationDivider.h"
#endif
/** /**
* @brief Device Handler for the RM3100 geomagnetic magnetometer sensor * @brief Device Handler for the RM3100 geomagnetic magnetometer sensor
@ -16,95 +12,92 @@
* Flight manual: * Flight manual:
* https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/RM3100_MGM * https://egit.irs.uni-stuttgart.de/redmine/projects/eive-flight-manual/wiki/RM3100_MGM
*/ */
class MgmRM3100Handler: public DeviceHandlerBase { class MgmRM3100Handler : public DeviceHandlerBase {
public: public:
static const uint8_t INTERFACE_ID = CLASS_ID::MGM_RM3100; static const uint8_t INTERFACE_ID = CLASS_ID::MGM_RM3100;
//! [EXPORT] : [COMMENT] P1: TMRC value which was set, P2: 0 //! [EXPORT] : [COMMENT] P1: TMRC value which was set, P2: 0
static constexpr Event tmrcSet = event::makeEvent(SUBSYSTEM_ID::MGM_RM3100, static constexpr Event tmrcSet = event::makeEvent(SUBSYSTEM_ID::MGM_RM3100, 0x00, severity::INFO);
0x00, severity::INFO);
//! [EXPORT] : [COMMENT] Cycle counter set. P1: First two bytes new Cycle Count X //! [EXPORT] : [COMMENT] Cycle counter set. P1: First two bytes new Cycle Count X
//! P1: Second two bytes new Cycle Count Y //! P1: Second two bytes new Cycle Count Y
//! P2: New cycle count Z //! P2: New cycle count Z
static constexpr Event cycleCountersSet = event::makeEvent( static constexpr Event cycleCountersSet =
SUBSYSTEM_ID::MGM_RM3100, 0x01, severity::INFO); event::makeEvent(SUBSYSTEM_ID::MGM_RM3100, 0x01, severity::INFO);
MgmRM3100Handler(object_id_t objectId, object_id_t deviceCommunication, MgmRM3100Handler(object_id_t objectId, object_id_t deviceCommunication, CookieIF *comCookie,
CookieIF* comCookie, uint32_t transitionDelay); uint32_t transitionDelay);
virtual ~MgmRM3100Handler(); virtual ~MgmRM3100Handler();
/** void enablePeriodicPrintouts(bool enable, uint8_t divider);
* Configure device handler to go to normal mode after startup immediately /**
* @param enable * Configure device handler to go to normal mode after startup immediately
*/ * @param enable
void setToGoToNormalMode(bool enable); */
void setToGoToNormalMode(bool enable);
protected: protected:
/* DeviceHandlerBase overrides */
ReturnValue_t buildTransitionDeviceCommand(DeviceCommandId_t *id) override;
void doStartUp() override;
void doShutDown() override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData,
size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len, DeviceCommandId_t *foundId,
size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) override;
/* DeviceHandlerBase overrides */ void fillCommandAndReplyMap() override;
ReturnValue_t buildTransitionDeviceCommand( void modeChanged(void) override;
DeviceCommandId_t *id) override; virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override;
void doStartUp() override; ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap,
void doShutDown() override; LocalDataPoolManager &poolManager) override;
ReturnValue_t buildNormalDeviceCommand(DeviceCommandId_t *id) override;
ReturnValue_t buildCommandFromCommand(DeviceCommandId_t deviceCommand,
const uint8_t *commandData, size_t commandDataLen) override;
ReturnValue_t scanForReply(const uint8_t *start, size_t len,
DeviceCommandId_t *foundId, size_t *foundLen) override;
ReturnValue_t interpretDeviceReply(DeviceCommandId_t id, const uint8_t *packet) override;
void fillCommandAndReplyMap() override; private:
void modeChanged(void) override; enum class InternalState {
virtual uint32_t getTransitionDelayMs(Mode_t from, Mode_t to) override; NONE,
ReturnValue_t initializeLocalDataPool(localpool::DataPool &localDataPoolMap, CONFIGURE_CMM,
LocalDataPoolManager &poolManager) override; READ_CMM,
// The cycle count states are propably not going to be used because
// the default cycle count will be used.
STATE_CONFIGURE_CYCLE_COUNT,
STATE_READ_CYCLE_COUNT,
STATE_CONFIGURE_TMRC,
STATE_READ_TMRC,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
RM3100::Rm3100PrimaryDataset primaryDataset;
private: uint8_t commandBuffer[10];
uint8_t commandBufferLen = 0;
enum class InternalState { uint8_t cmmRegValue = RM3100::CMM_VALUE;
NONE, uint8_t tmrcRegValue = RM3100::TMRC_DEFAULT_VALUE;
CONFIGURE_CMM, uint16_t cycleCountRegValueX = RM3100::CYCLE_COUNT_VALUE;
READ_CMM, uint16_t cycleCountRegValueY = RM3100::CYCLE_COUNT_VALUE;
// The cycle count states are propably not going to be used because uint16_t cycleCountRegValueZ = RM3100::CYCLE_COUNT_VALUE;
// the default cycle count will be used. float scaleFactorX = 1.0 / RM3100::DEFAULT_GAIN;
STATE_CONFIGURE_CYCLE_COUNT, float scaleFactorY = 1.0 / RM3100::DEFAULT_GAIN;
STATE_READ_CYCLE_COUNT, float scaleFactorZ = 1.0 / RM3100::DEFAULT_GAIN;
STATE_CONFIGURE_TMRC,
STATE_READ_TMRC,
NORMAL
};
InternalState internalState = InternalState::NONE;
bool commandExecuted = false;
RM3100::Rm3100PrimaryDataset primaryDataset;
uint8_t commandBuffer[10]; bool goToNormalModeAtStartup = false;
uint8_t commandBufferLen = 0; uint32_t transitionDelay;
uint8_t cmmRegValue = RM3100::CMM_VALUE; ReturnValue_t handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand,
uint8_t tmrcRegValue = RM3100::TMRC_DEFAULT_VALUE; const uint8_t *commandData, size_t commandDataLen);
uint16_t cycleCountRegValueX = RM3100::CYCLE_COUNT_VALUE; ReturnValue_t handleCycleCommand(bool oneCycleValue, const uint8_t *commandData,
uint16_t cycleCountRegValueY = RM3100::CYCLE_COUNT_VALUE; size_t commandDataLen);
uint16_t cycleCountRegValueZ = RM3100::CYCLE_COUNT_VALUE;
float scaleFactorX = 1.0 / RM3100::DEFAULT_GAIN;
float scaleFactorY = 1.0 / RM3100::DEFAULT_GAIN;
float scaleFactorZ = 1.0 / RM3100::DEFAULT_GAIN;
bool goToNormalModeAtStartup = false; ReturnValue_t handleTmrcConfigCommand(DeviceCommandId_t deviceCommand, const uint8_t *commandData,
uint32_t transitionDelay; size_t commandDataLen);
ReturnValue_t handleCycleCountConfigCommand(DeviceCommandId_t deviceCommand, ReturnValue_t handleDataReadout(const uint8_t *packet);
const uint8_t *commandData,size_t commandDataLen);
ReturnValue_t handleCycleCommand(bool oneCycleValue,
const uint8_t *commandData, size_t commandDataLen);
ReturnValue_t handleTmrcConfigCommand(DeviceCommandId_t deviceCommand, bool periodicPrintout = false;
const uint8_t *commandData,size_t commandDataLen); PeriodicOperationDivider debugDivider = PeriodicOperationDivider(3);
ReturnValue_t handleDataReadout(const uint8_t* packet);
#if FSFW_HAL_RM3100_MGM_DEBUG == 1
PeriodicOperationDivider* debugDivider;
#endif
}; };
#endif /* MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_ */ #endif /* MISSION_DEVICEHANDLING_MGMRM3100HANDLER_H_ */

View File

@ -3,6 +3,7 @@
#include <fsfw/datapoollocal/StaticLocalDataSet.h> #include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h> #include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <cstdint> #include <cstdint>
namespace L3GD20H { namespace L3GD20H {
@ -36,8 +37,8 @@ static constexpr uint8_t SET_Z_ENABLE = 1 << 2;
static constexpr uint8_t SET_X_ENABLE = 1 << 1; static constexpr uint8_t SET_X_ENABLE = 1 << 1;
static constexpr uint8_t SET_Y_ENABLE = 1; static constexpr uint8_t SET_Y_ENABLE = 1;
static constexpr uint8_t CTRL_REG_1_VAL = SET_POWER_NORMAL_MODE | SET_Z_ENABLE | static constexpr uint8_t CTRL_REG_1_VAL =
SET_Y_ENABLE | SET_X_ENABLE; SET_POWER_NORMAL_MODE | SET_Z_ENABLE | SET_Y_ENABLE | SET_X_ENABLE;
/* Register 2 */ /* Register 2 */
static constexpr uint8_t EXTERNAL_EDGE_ENB = 1 << 7; static constexpr uint8_t EXTERNAL_EDGE_ENB = 1 << 7;
@ -104,40 +105,29 @@ static constexpr DeviceCommandId_t READ_CTRL_REGS = 2;
static constexpr uint32_t GYRO_DATASET_ID = READ_REGS; static constexpr uint32_t GYRO_DATASET_ID = READ_REGS;
enum GyroPoolIds: lp_id_t { enum GyroPoolIds : lp_id_t { ANG_VELOC_X, ANG_VELOC_Y, ANG_VELOC_Z, TEMPERATURE };
ANG_VELOC_X,
ANG_VELOC_Y, } // namespace L3GD20H
ANG_VELOC_Z,
TEMPERATURE class GyroPrimaryDataset : public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId)
: StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId, L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId, L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner)
: StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
}; };
}
class GyroPrimaryDataset: public StaticLocalDataSet<5> {
public:
/** Constructor for data users like controllers */
GyroPrimaryDataset(object_id_t mgmId):
StaticLocalDataSet(sid_t(mgmId, L3GD20H::GYRO_DATASET_ID)) {
setAllVariablesReadOnly();
}
/* Angular velocities in degrees per second (DPS) */
lp_var_t<float> angVelocX = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_X, this);
lp_var_t<float> angVelocY = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Y, this);
lp_var_t<float> angVelocZ = lp_var_t<float>(sid.objectId,
L3GD20H::ANG_VELOC_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId,
L3GD20H::TEMPERATURE, this);
private:
friend class GyroHandlerL3GD20H;
/** Constructor for the data creator */
GyroPrimaryDataset(HasLocalDataPoolIF* hkOwner):
StaticLocalDataSet(hkOwner, L3GD20H::GYRO_DATASET_ID) {}
};
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_ */ #endif /* MISSION_DEVICES_DEVICEDEFINITIONS_GYROL3GD20DEFINITIONS_H_ */

View File

@ -1,26 +1,18 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_ #ifndef MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_ #define MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h> #include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h> #include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <cstdint> #include <cstdint>
namespace MGMLIS3MDL { namespace MGMLIS3MDL {
enum Set { enum Set { ON, OFF };
ON, OFF enum OpMode { LOW, MEDIUM, HIGH, ULTRA };
};
enum OpMode {
LOW, MEDIUM, HIGH, ULTRA
};
enum Sensitivies: uint8_t { enum Sensitivies : uint8_t { GAUSS_4 = 4, GAUSS_8 = 8, GAUSS_12 = 12, GAUSS_16 = 16 };
GAUSS_4 = 4,
GAUSS_8 = 8,
GAUSS_12 = 12,
GAUSS_16 = 16
};
/* Actually 15, we just round up a bit */ /* Actually 15, we just round up a bit */
static constexpr size_t MAX_BUFFER_SIZE = 16; static constexpr size_t MAX_BUFFER_SIZE = 16;
@ -54,7 +46,7 @@ static const uint8_t SETUP_REPLY_LEN = 6;
/*------------------------------------------------------------------------*/ /*------------------------------------------------------------------------*/
/* Register adress returns identifier of device with default 0b00111101 */ /* Register adress returns identifier of device with default 0b00111101 */
static const uint8_t IDENTIFY_DEVICE_REG_ADDR = 0b00001111; static const uint8_t IDENTIFY_DEVICE_REG_ADDR = 0b00001111;
static const uint8_t DEVICE_ID = 0b00111101; // Identifier for Device static const uint8_t DEVICE_ID = 0b00111101; // Identifier for Device
/* Register adress to access register 1 */ /* Register adress to access register 1 */
static const uint8_t CTRL_REG1 = 0b00100000; static const uint8_t CTRL_REG1 = 0b00100000;
@ -105,74 +97,67 @@ static const uint8_t RW_BIT = 7;
static const uint8_t MS_BIT = 6; static const uint8_t MS_BIT = 6;
/* CTRL_REG1 bits */ /* CTRL_REG1 bits */
static const uint8_t ST = 0; // Self test enable bit, enabled = 1 static const uint8_t ST = 0; // Self test enable bit, enabled = 1
// Enable rates higher than 80 Hz enabled = 1 // Enable rates higher than 80 Hz enabled = 1
static const uint8_t FAST_ODR = 1; static const uint8_t FAST_ODR = 1;
static const uint8_t DO0 = 2; // Output data rate bit 2 static const uint8_t DO0 = 2; // Output data rate bit 2
static const uint8_t DO1 = 3; // Output data rate bit 3 static const uint8_t DO1 = 3; // Output data rate bit 3
static const uint8_t DO2 = 4; // Output data rate bit 4 static const uint8_t DO2 = 4; // Output data rate bit 4
static const uint8_t OM0 = 5; // XY operating mode bit 5 static const uint8_t OM0 = 5; // XY operating mode bit 5
static const uint8_t OM1 = 6; // XY operating mode bit 6 static const uint8_t OM1 = 6; // XY operating mode bit 6
static const uint8_t TEMP_EN = 7; // Temperature sensor enable enabled = 1 static const uint8_t TEMP_EN = 7; // Temperature sensor enable enabled = 1
static const uint8_t CTRL_REG1_DEFAULT = (1 << TEMP_EN) | (1 << OM1) | static const uint8_t CTRL_REG1_DEFAULT =
(1 << DO0) | (1 << DO1) | (1 << DO2); (1 << TEMP_EN) | (1 << OM1) | (1 << DO0) | (1 << DO1) | (1 << DO2);
/* CTRL_REG2 bits */ /* CTRL_REG2 bits */
//reset configuration registers and user registers // reset configuration registers and user registers
static const uint8_t SOFT_RST = 2; static const uint8_t SOFT_RST = 2;
static const uint8_t REBOOT = 3; //reboot memory content static const uint8_t REBOOT = 3; // reboot memory content
static const uint8_t FSO = 5; //full-scale selection bit 5 static const uint8_t FSO = 5; // full-scale selection bit 5
static const uint8_t FS1 = 6; //full-scale selection bit 6 static const uint8_t FS1 = 6; // full-scale selection bit 6
static const uint8_t CTRL_REG2_DEFAULT = 0; static const uint8_t CTRL_REG2_DEFAULT = 0;
/* CTRL_REG3 bits */ /* CTRL_REG3 bits */
static const uint8_t MD0 = 0; //Operating mode bit 0 static const uint8_t MD0 = 0; // Operating mode bit 0
static const uint8_t MD1 = 1; //Operating mode bit 1 static const uint8_t MD1 = 1; // Operating mode bit 1
//SPI serial interface mode selection enabled = 3-wire-mode // SPI serial interface mode selection enabled = 3-wire-mode
static const uint8_t SIM = 2; static const uint8_t SIM = 2;
static const uint8_t LP = 5; //low-power mode static const uint8_t LP = 5; // low-power mode
static const uint8_t CTRL_REG3_DEFAULT = 0; static const uint8_t CTRL_REG3_DEFAULT = 0;
/* CTRL_REG4 bits */ /* CTRL_REG4 bits */
//big/little endian data selection enabled = MSb at lower adress // big/little endian data selection enabled = MSb at lower adress
static const uint8_t BLE = 1; static const uint8_t BLE = 1;
static const uint8_t OMZ0 = 2; //Z operating mode bit 2 static const uint8_t OMZ0 = 2; // Z operating mode bit 2
static const uint8_t OMZ1 = 3; //Z operating mode bit 3 static const uint8_t OMZ1 = 3; // Z operating mode bit 3
static const uint8_t CTRL_REG4_DEFAULT = (1 << OMZ1); static const uint8_t CTRL_REG4_DEFAULT = (1 << OMZ1);
/* CTRL_REG5 bits */ /* CTRL_REG5 bits */
static const uint8_t BDU = 6; //Block data update static const uint8_t BDU = 6; // Block data update
static const uint8_t FAST_READ = 7; //Fast read enabled = 1 static const uint8_t FAST_READ = 7; // Fast read enabled = 1
static const uint8_t CTRL_REG5_DEFAULT = 0; static const uint8_t CTRL_REG5_DEFAULT = 0;
static const uint32_t MGM_DATA_SET_ID = READ_CONFIG_AND_DATA; static const uint32_t MGM_DATA_SET_ID = READ_CONFIG_AND_DATA;
enum MgmPoolIds: lp_id_t { enum MgmPoolIds : lp_id_t {
FIELD_STRENGTH_X, FIELD_STRENGTH_X,
FIELD_STRENGTH_Y, FIELD_STRENGTH_Y,
FIELD_STRENGTH_Z, FIELD_STRENGTH_Z,
TEMPERATURE_CELCIUS TEMPERATURE_CELCIUS
}; };
class MgmPrimaryDataset: public StaticLocalDataSet<4> { class MgmPrimaryDataset : public StaticLocalDataSet<4> {
public: public:
MgmPrimaryDataset(HasLocalDataPoolIF* hkOwner): MgmPrimaryDataset(HasLocalDataPoolIF* hkOwner) : StaticLocalDataSet(hkOwner, MGM_DATA_SET_ID) {}
StaticLocalDataSet(hkOwner, MGM_DATA_SET_ID) {}
MgmPrimaryDataset(object_id_t mgmId): MgmPrimaryDataset(object_id_t mgmId) : StaticLocalDataSet(sid_t(mgmId, MGM_DATA_SET_ID)) {}
StaticLocalDataSet(sid_t(mgmId, MGM_DATA_SET_ID)) {}
lp_var_t<float> fieldStrengthX = lp_var_t<float>(sid.objectId, lp_var_t<float> fieldStrengthX = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_X, this);
FIELD_STRENGTH_X, this); lp_var_t<float> fieldStrengthY = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_Y, this);
lp_var_t<float> fieldStrengthY = lp_var_t<float>(sid.objectId, lp_var_t<float> fieldStrengthZ = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_Z, this);
FIELD_STRENGTH_Y, this); lp_var_t<float> temperature = lp_var_t<float>(sid.objectId, TEMPERATURE_CELCIUS, this);
lp_var_t<float> fieldStrengthZ = lp_var_t<float>(sid.objectId,
FIELD_STRENGTH_Z, this);
lp_var_t<float> temperature = lp_var_t<float>(sid.objectId,
TEMPERATURE_CELCIUS, this);
}; };
} } // namespace MGMLIS3MDL
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_ */ #endif /* MISSION_DEVICES_DEVICEDEFINITIONS_MGMLIS3HANDLERDEFS_H_ */

View File

@ -1,10 +1,11 @@
#ifndef MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_ #ifndef MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_
#define MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_ #define MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/datapoollocal/LocalPoolVariable.h> #include <fsfw/datapoollocal/LocalPoolVariable.h>
#include <fsfw/datapoollocal/StaticLocalDataSet.h>
#include <fsfw/devicehandlers/DeviceHandlerIF.h> #include <fsfw/devicehandlers/DeviceHandlerIF.h>
#include <fsfw/serialize/SerialLinkedListAdapter.h> #include <fsfw/serialize/SerialLinkedListAdapter.h>
#include <cstdint> #include <cstdint>
namespace RM3100 { namespace RM3100 {
@ -24,8 +25,8 @@ static constexpr uint8_t SET_CMM_DRDM = 1 << 2;
static constexpr uint8_t SET_CMM_START = 1; static constexpr uint8_t SET_CMM_START = 1;
static constexpr uint8_t CMM_REGISTER = 0x01; static constexpr uint8_t CMM_REGISTER = 0x01;
static constexpr uint8_t CMM_VALUE = SET_CMM_CMZ | SET_CMM_CMY | SET_CMM_CMX | static constexpr uint8_t CMM_VALUE =
SET_CMM_DRDM | SET_CMM_START; SET_CMM_CMZ | SET_CMM_CMY | SET_CMM_CMX | SET_CMM_DRDM | SET_CMM_START;
/*----------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------*/
/* Cycle count register */ /* Cycle count register */
@ -33,8 +34,7 @@ static constexpr uint8_t CMM_VALUE = SET_CMM_CMZ | SET_CMM_CMY | SET_CMM_CMX |
// Default value (200) // Default value (200)
static constexpr uint8_t CYCLE_COUNT_VALUE = 0xC8; static constexpr uint8_t CYCLE_COUNT_VALUE = 0xC8;
static constexpr float DEFAULT_GAIN = static_cast<float>(CYCLE_COUNT_VALUE) / static constexpr float DEFAULT_GAIN = static_cast<float>(CYCLE_COUNT_VALUE) / 100 * 38;
100 * 38;
static constexpr uint8_t CYCLE_COUNT_START_REGISTER = 0x04; static constexpr uint8_t CYCLE_COUNT_START_REGISTER = 0x04;
/*----------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------*/
@ -67,66 +67,58 @@ static constexpr DeviceCommandId_t READ_TMRC = 4;
static constexpr DeviceCommandId_t CONFIGURE_CYCLE_COUNT = 5; static constexpr DeviceCommandId_t CONFIGURE_CYCLE_COUNT = 5;
static constexpr DeviceCommandId_t READ_CYCLE_COUNT = 6; static constexpr DeviceCommandId_t READ_CYCLE_COUNT = 6;
class CycleCountCommand: public SerialLinkedListAdapter<SerializeIF> { class CycleCountCommand : public SerialLinkedListAdapter<SerializeIF> {
public: public:
CycleCountCommand(bool oneCycleCount = true): oneCycleCount(oneCycleCount) { CycleCountCommand(bool oneCycleCount = true) : oneCycleCount(oneCycleCount) {
setLinks(oneCycleCount); setLinks(oneCycleCount);
} }
ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size, ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
Endianness streamEndianness) override { Endianness streamEndianness) override {
ReturnValue_t result = SerialLinkedListAdapter::deSerialize(buffer, ReturnValue_t result = SerialLinkedListAdapter::deSerialize(buffer, size, streamEndianness);
size, streamEndianness); if (oneCycleCount) {
if(oneCycleCount) { cycleCountY = cycleCountX;
cycleCountY = cycleCountX; cycleCountZ = cycleCountX;
cycleCountZ = cycleCountX; }
} return result;
return result; }
}
SerializeElement<uint16_t> cycleCountX; SerializeElement<uint16_t> cycleCountX;
SerializeElement<uint16_t> cycleCountY; SerializeElement<uint16_t> cycleCountY;
SerializeElement<uint16_t> cycleCountZ; SerializeElement<uint16_t> cycleCountZ;
private: private:
void setLinks(bool oneCycleCount) { void setLinks(bool oneCycleCount) {
setStart(&cycleCountX); setStart(&cycleCountX);
if(not oneCycleCount) { if (not oneCycleCount) {
cycleCountX.setNext(&cycleCountY); cycleCountX.setNext(&cycleCountY);
cycleCountY.setNext(&cycleCountZ); cycleCountY.setNext(&cycleCountZ);
} }
} }
bool oneCycleCount; bool oneCycleCount;
}; };
static constexpr uint32_t MGM_DATASET_ID = READ_DATA; static constexpr uint32_t MGM_DATASET_ID = READ_DATA;
enum MgmPoolIds: lp_id_t { enum MgmPoolIds : lp_id_t {
FIELD_STRENGTH_X, FIELD_STRENGTH_X,
FIELD_STRENGTH_Y, FIELD_STRENGTH_Y,
FIELD_STRENGTH_Z, FIELD_STRENGTH_Z,
}; };
class Rm3100PrimaryDataset: public StaticLocalDataSet<3> { class Rm3100PrimaryDataset : public StaticLocalDataSet<3> {
public: public:
Rm3100PrimaryDataset(HasLocalDataPoolIF* hkOwner): Rm3100PrimaryDataset(HasLocalDataPoolIF* hkOwner) : StaticLocalDataSet(hkOwner, MGM_DATASET_ID) {}
StaticLocalDataSet(hkOwner, MGM_DATASET_ID) {}
Rm3100PrimaryDataset(object_id_t mgmId): Rm3100PrimaryDataset(object_id_t mgmId) : StaticLocalDataSet(sid_t(mgmId, MGM_DATASET_ID)) {}
StaticLocalDataSet(sid_t(mgmId, MGM_DATASET_ID)) {}
// Field strengths in micro Tesla. // Field strengths in micro Tesla.
lp_var_t<float> fieldStrengthX = lp_var_t<float>(sid.objectId, lp_var_t<float> fieldStrengthX = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_X, this);
FIELD_STRENGTH_X, this); lp_var_t<float> fieldStrengthY = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_Y, this);
lp_var_t<float> fieldStrengthY = lp_var_t<float>(sid.objectId, lp_var_t<float> fieldStrengthZ = lp_var_t<float>(sid.objectId, FIELD_STRENGTH_Z, this);
FIELD_STRENGTH_Y, this);
lp_var_t<float> fieldStrengthZ = lp_var_t<float>(sid.objectId,
FIELD_STRENGTH_Z, this);
}; };
} } // namespace RM3100
#endif /* MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_ */ #endif /* MISSION_DEVICES_DEVICEDEFINITIONS_MGMHANDLERRM3100DEFINITIONS_H_ */

View File

@ -4,10 +4,17 @@ endif()
target_sources(${LIB_FSFW_NAME} PRIVATE target_sources(${LIB_FSFW_NAME} PRIVATE
UnixFileGuard.cpp UnixFileGuard.cpp
CommandExecutor.cpp
utility.cpp utility.cpp
) )
add_subdirectory(gpio) if(FSFW_HAL_LINUX_ADD_PERIPHERAL_DRIVERS)
add_subdirectory(spi) if(FSFW_HAL_LINUX_ADD_LIBGPIOD)
add_subdirectory(i2c) add_subdirectory(gpio)
add_subdirectory(uart) endif()
add_subdirectory(spi)
add_subdirectory(i2c)
add_subdirectory(uart)
endif()
add_subdirectory(uio)

View File

@ -0,0 +1,207 @@
#include "CommandExecutor.h"
#include <unistd.h>
#include <cstring>
#include "fsfw/container/DynamicFIFO.h"
#include "fsfw/container/SimpleRingBuffer.h"
#include "fsfw/serviceinterface.h"
CommandExecutor::CommandExecutor(const size_t maxSize) : readVec(maxSize) {
waiter.events = POLLIN;
}
ReturnValue_t CommandExecutor::load(std::string command, bool blocking, bool printOutput) {
if (state == States::PENDING) {
return COMMAND_PENDING;
}
currentCmd = command;
this->blocking = blocking;
this->printOutput = printOutput;
if (state == States::IDLE) {
state = States::COMMAND_LOADED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t CommandExecutor::execute() {
if (state == States::IDLE) {
return NO_COMMAND_LOADED_OR_PENDING;
} else if (state == States::PENDING) {
return COMMAND_PENDING;
}
currentCmdFile = popen(currentCmd.c_str(), "r");
if (currentCmdFile == nullptr) {
lastError = errno;
return HasReturnvaluesIF::RETURN_FAILED;
}
if (blocking) {
ReturnValue_t result = executeBlocking();
state = States::IDLE;
return result;
} else {
currentFd = fileno(currentCmdFile);
waiter.fd = currentFd;
}
state = States::PENDING;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t CommandExecutor::close() {
if (state == States::PENDING) {
// Attempt to close process, irrespective of if it is running or not
if (currentCmdFile != nullptr) {
pclose(currentCmdFile);
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void CommandExecutor::printLastError(std::string funcName) const {
if (lastError != 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << funcName << " pclose failed with code " << lastError << ": "
<< strerror(lastError) << std::endl;
#else
sif::printError("%s pclose failed with code %d: %s\n", funcName, lastError,
strerror(lastError));
#endif
}
}
void CommandExecutor::setRingBuffer(SimpleRingBuffer* ringBuffer,
DynamicFIFO<uint16_t>* sizesFifo) {
this->ringBuffer = ringBuffer;
this->sizesFifo = sizesFifo;
}
ReturnValue_t CommandExecutor::check(bool& replyReceived) {
if (blocking) {
return HasReturnvaluesIF::RETURN_OK;
}
switch (state) {
case (States::IDLE):
case (States::COMMAND_LOADED): {
return NO_COMMAND_LOADED_OR_PENDING;
}
case (States::PENDING): {
break;
}
}
int result = poll(&waiter, 1, 0);
switch (result) {
case (0): {
return HasReturnvaluesIF::RETURN_OK;
break;
}
case (1): {
if (waiter.revents & POLLIN) {
ssize_t readBytes = read(currentFd, readVec.data(), readVec.size());
if (readBytes == 0) {
// Should not happen
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecutor::check: No bytes read "
"after poll event.."
<< std::endl;
#else
sif::printWarning("CommandExecutor::check: No bytes read after poll event..\n");
#endif
break;
} else if (readBytes > 0) {
replyReceived = true;
if (printOutput) {
// It is assumed the command output is line terminated
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << currentCmd << " | " << readVec.data();
#else
sif::printInfo("%s | %s", currentCmd, readVec.data());
#endif
}
if (ringBuffer != nullptr) {
ringBuffer->writeData(reinterpret_cast<const uint8_t*>(readVec.data()), readBytes);
}
if (sizesFifo != nullptr) {
if (not sizesFifo->full()) {
sizesFifo->insert(readBytes);
}
}
} else {
// Should also not happen
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecutor::check: Error " << errno << ": " << strerror(errno)
<< std::endl;
#else
sif::printWarning("CommandExecutor::check: Error %d: %s\n", errno, strerror(errno));
#endif
}
}
if (waiter.revents & POLLERR) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "CommandExecuter::check: Poll error" << std::endl;
#else
sif::printWarning("CommandExecuter::check: Poll error\n");
#endif
return COMMAND_ERROR;
}
if (waiter.revents & POLLHUP) {
result = pclose(currentCmdFile);
ReturnValue_t retval = EXECUTION_FINISHED;
if (result != 0) {
lastError = result;
retval = HasReturnvaluesIF::RETURN_FAILED;
}
state = States::IDLE;
currentCmdFile = nullptr;
currentFd = 0;
return retval;
}
break;
}
}
return HasReturnvaluesIF::RETURN_OK;
}
void CommandExecutor::reset() {
CommandExecutor::close();
currentCmdFile = nullptr;
currentFd = 0;
state = States::IDLE;
}
int CommandExecutor::getLastError() const {
// See:
// https://stackoverflow.com/questions/808541/any-benefit-in-using-wexitstatus-macro-in-c-over-division-by-256-on-exit-statu
return WEXITSTATUS(this->lastError);
}
CommandExecutor::States CommandExecutor::getCurrentState() const { return state; }
ReturnValue_t CommandExecutor::executeBlocking() {
while (fgets(readVec.data(), readVec.size(), currentCmdFile) != nullptr) {
std::string output(readVec.data());
if (printOutput) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << currentCmd << " | " << output;
#else
sif::printInfo("%s | %s", currentCmd, output);
#endif
}
if (ringBuffer != nullptr) {
ringBuffer->writeData(reinterpret_cast<const uint8_t*>(output.data()), output.size());
}
if (sizesFifo != nullptr) {
if (not sizesFifo->full()) {
sizesFifo->insert(output.size());
}
}
}
int result = pclose(currentCmdFile);
if (result != 0) {
lastError = result;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,129 @@
#ifndef FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_
#define FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_
#include <poll.h>
#include <string>
#include <vector>
#include "fsfw/returnvalues/FwClassIds.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
class SimpleRingBuffer;
template <typename T>
class DynamicFIFO;
/**
* @brief Helper class to execute shell commands in blocking and non-blocking mode
* @details
* This class is able to execute processes by using the Linux popen call. It also has the
* capability of writing the read output of a process into a provided ring buffer.
*
* The executor works by first loading the command which should be executed and specifying
* whether it should be executed blocking or non-blocking. After that, execution can be started
* with the execute command. In blocking mode, the execute command will block until the command
* has finished
*/
class CommandExecutor {
public:
enum class States { IDLE, COMMAND_LOADED, PENDING };
static constexpr uint8_t CLASS_ID = CLASS_ID::LINUX_OSAL;
//! [EXPORT] : [COMMENT] Execution of the current command has finished
static constexpr ReturnValue_t EXECUTION_FINISHED =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 0);
//! [EXPORT] : [COMMENT] Command is pending. This will also be returned if the user tries
//! to load another command but a command is still pending
static constexpr ReturnValue_t COMMAND_PENDING = HasReturnvaluesIF::makeReturnCode(CLASS_ID, 1);
//! [EXPORT] : [COMMENT] Some bytes have been read from the executing process
static constexpr ReturnValue_t BYTES_READ = HasReturnvaluesIF::makeReturnCode(CLASS_ID, 2);
//! [EXPORT] : [COMMENT] Command execution failed
static constexpr ReturnValue_t COMMAND_ERROR = HasReturnvaluesIF::makeReturnCode(CLASS_ID, 3);
//! [EXPORT] : [COMMENT]
static constexpr ReturnValue_t NO_COMMAND_LOADED_OR_PENDING =
HasReturnvaluesIF::makeReturnCode(CLASS_ID, 4);
static constexpr ReturnValue_t PCLOSE_CALL_ERROR = HasReturnvaluesIF::makeReturnCode(CLASS_ID, 6);
/**
* Constructor. Is initialized with maximum size of internal buffer to read data from the
* executed process.
* @param maxSize
*/
CommandExecutor(const size_t maxSize);
/**
* Load a new command which should be executed
* @param command
* @param blocking
* @param printOutput
* @return
*/
ReturnValue_t load(std::string command, bool blocking, bool printOutput = true);
/**
* Execute the loaded command.
* @return
* - In blocking mode, it will return RETURN_FAILED if
* the result of the system call was not 0. The error value can be accessed using
* getLastError
* - In non-blocking mode, this call will start
* the execution and then return RETURN_OK
*/
ReturnValue_t execute();
/**
* Only used in non-blocking mode. Checks the currently running command.
* @param bytesRead Will be set to the number of bytes read, if bytes have been read
* @return
* - BYTES_READ if bytes have been read from the executing process. It is recommended to call
* check again after this
* - RETURN_OK execution is pending, but no bytes have been read from the executing process
* - RETURN_FAILED if execution has failed, error value can be accessed using getLastError
* - EXECUTION_FINISHED if the process was executed successfully
* - NO_COMMAND_LOADED_OR_PENDING self-explanatory
* - COMMAND_ERROR internal poll error
*/
ReturnValue_t check(bool& replyReceived);
/**
* Abort the current command. Should normally not be necessary, check can be used to find
* out whether command execution was successful
* @return RETURN_OK
*/
ReturnValue_t close();
States getCurrentState() const;
int getLastError() const;
void printLastError(std::string funcName) const;
/**
* Assign a ring buffer and a FIFO which will be filled by the executor with the output
* read from the started process
* @param ringBuffer
* @param sizesFifo
*/
void setRingBuffer(SimpleRingBuffer* ringBuffer, DynamicFIFO<uint16_t>* sizesFifo);
/**
* Reset the executor. This calls close internally and then reset the state machine so new
* commands can be loaded and executed
*/
void reset();
private:
std::string currentCmd;
bool blocking = true;
FILE* currentCmdFile = nullptr;
int currentFd = 0;
bool printOutput = true;
std::vector<char> readVec;
struct pollfd waiter {};
SimpleRingBuffer* ringBuffer = nullptr;
DynamicFIFO<uint16_t>* sizesFifo = nullptr;
States state = States::IDLE;
int lastError = 0;
ReturnValue_t executeBlocking();
};
#endif /* FSFW_SRC_FSFW_OSAL_LINUX_COMMANDEXECUTOR_H_ */

View File

@ -1,37 +1,36 @@
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface.h"
#include "fsfw_hal/linux/UnixFileGuard.h" #include "fsfw_hal/linux/UnixFileGuard.h"
#include <cerrno> #include <cerrno>
#include <cstring> #include <cstring>
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface.h"
UnixFileGuard::UnixFileGuard(std::string device, int* fileDescriptor, int flags, UnixFileGuard::UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix): std::string diagnosticPrefix)
fileDescriptor(fileDescriptor) { : fileDescriptor(fileDescriptor) {
if(fileDescriptor == nullptr) { if (fileDescriptor == nullptr) {
return; return;
} }
*fileDescriptor = open(device.c_str(), flags); *fileDescriptor = open(device.c_str(), flags);
if (*fileDescriptor < 0) { if (*fileDescriptor < 0) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << diagnosticPrefix << ": Opening device failed with error code " << sif::warning << diagnosticPrefix << ": Opening device failed with error code " << errno << ": "
errno << ": " << strerror(errno) << std::endl; << strerror(errno) << std::endl;
#else #else
sif::printWarning("%s: Opening device failed with error code %d: %s\n", sif::printWarning("%s: Opening device failed with error code %d: %s\n", diagnosticPrefix, errno,
diagnosticPrefix, errno, strerror(errno)); strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
openStatus = OPEN_FILE_FAILED; openStatus = OPEN_FILE_FAILED;
} }
} }
UnixFileGuard::~UnixFileGuard() { UnixFileGuard::~UnixFileGuard() {
if(fileDescriptor != nullptr) { if (fileDescriptor != nullptr) {
close(*fileDescriptor); close(*fileDescriptor);
} }
} }
ReturnValue_t UnixFileGuard::getOpenResult() const { ReturnValue_t UnixFileGuard::getOpenResult() const { return openStatus; }
return openStatus;
}

View File

@ -1,33 +1,30 @@
#ifndef LINUX_UTILITY_UNIXFILEGUARD_H_ #ifndef LINUX_UTILITY_UNIXFILEGUARD_H_
#define LINUX_UTILITY_UNIXFILEGUARD_H_ #define LINUX_UTILITY_UNIXFILEGUARD_H_
#include <fcntl.h>
#include <fsfw/returnvalues/HasReturnvaluesIF.h> #include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include <unistd.h>
#include <string> #include <string>
#include <fcntl.h>
#include <unistd.h>
class UnixFileGuard { class UnixFileGuard {
public: public:
static constexpr int READ_WRITE_FLAG = O_RDWR; static constexpr int READ_WRITE_FLAG = O_RDWR;
static constexpr int READ_ONLY_FLAG = O_RDONLY; static constexpr int READ_ONLY_FLAG = O_RDONLY;
static constexpr int NON_BLOCKING_IO_FLAG = O_NONBLOCK; static constexpr int NON_BLOCKING_IO_FLAG = O_NONBLOCK;
static constexpr ReturnValue_t OPEN_FILE_FAILED = 1; static constexpr ReturnValue_t OPEN_FILE_FAILED = 1;
UnixFileGuard(std::string device, int* fileDescriptor, int flags, UnixFileGuard(std::string device, int* fileDescriptor, int flags,
std::string diagnosticPrefix = ""); std::string diagnosticPrefix = "");
virtual~ UnixFileGuard(); virtual ~UnixFileGuard();
ReturnValue_t getOpenResult() const; ReturnValue_t getOpenResult() const;
private:
int* fileDescriptor = nullptr; private:
ReturnValue_t openStatus = HasReturnvaluesIF::RETURN_OK; int* fileDescriptor = nullptr;
ReturnValue_t openStatus = HasReturnvaluesIF::RETURN_OK;
}; };
#endif /* LINUX_UTILITY_UNIXFILEGUARD_H_ */ #endif /* LINUX_UTILITY_UNIXFILEGUARD_H_ */

View File

@ -1,12 +1,16 @@
target_sources(${LIB_FSFW_NAME} PRIVATE
LinuxLibgpioIF.cpp
)
# This abstraction layer requires the gpiod library. You can install this library # This abstraction layer requires the gpiod library. You can install this library
# with "sudo apt-get install -y libgpiod-dev". If you are cross-compiling, you need # with "sudo apt-get install -y libgpiod-dev". If you are cross-compiling, you need
# to install the package before syncing the sysroot to your host computer. # to install the package before syncing the sysroot to your host computer.
find_library(LIB_GPIO gpiod REQUIRED) find_library(LIB_GPIO gpiod)
if(${LIB_GPIO} MATCHES LIB_GPIO-NOTFOUND)
message(STATUS "gpiod library not found, not linking against it")
else()
target_sources(${LIB_FSFW_NAME} PRIVATE
LinuxLibgpioIF.cpp
)
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_GPIO}
)
endif()
target_link_libraries(${LIB_FSFW_NAME} PRIVATE
${LIB_GPIO}
)

View File

@ -1,442 +1,447 @@
#include "LinuxLibgpioIF.h" #include "LinuxLibgpioIF.h"
#include "fsfw_hal/common/gpio/gpioDefinitions.h" #include <gpiod.h>
#include "fsfw_hal/common/gpio/GpioCookie.h" #include <unistd.h>
#include "fsfw/serviceinterface/ServiceInterface.h"
#include <utility> #include <utility>
#include <unistd.h>
#include <gpiod.h>
LinuxLibgpioIF::LinuxLibgpioIF(object_id_t objectId) : SystemObject(objectId) { #include "fsfw/serviceinterface/ServiceInterface.h"
} #include "fsfw_hal/common/gpio/GpioCookie.h"
#include "fsfw_hal/common/gpio/gpioDefinitions.h"
LinuxLibgpioIF::LinuxLibgpioIF(object_id_t objectId) : SystemObject(objectId) {}
LinuxLibgpioIF::~LinuxLibgpioIF() { LinuxLibgpioIF::~LinuxLibgpioIF() {
for(auto& config: gpioMap) { for (auto& config : gpioMap) {
delete(config.second); delete (config.second);
} }
} }
ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) { ReturnValue_t LinuxLibgpioIF::addGpios(GpioCookie* gpioCookie) {
ReturnValue_t result; ReturnValue_t result;
if(gpioCookie == nullptr) { if (gpioCookie == nullptr) {
sif::error << "LinuxLibgpioIF::addGpios: Invalid cookie" << std::endl; sif::error << "LinuxLibgpioIF::addGpios: Invalid cookie" << std::endl;
return RETURN_FAILED; return RETURN_FAILED;
} }
GpioMap mapToAdd = gpioCookie->getGpioMap(); GpioMap mapToAdd = gpioCookie->getGpioMap();
/* Check whether this ID already exists in the map and remove duplicates */ /* Check whether this ID already exists in the map and remove duplicates */
result = checkForConflicts(mapToAdd); result = checkForConflicts(mapToAdd);
if (result != RETURN_OK){ if (result != RETURN_OK) {
return result; return result;
} }
result = configureGpios(mapToAdd); result = configureGpios(mapToAdd);
if (result != RETURN_OK) { if (result != RETURN_OK) {
return RETURN_FAILED; return RETURN_FAILED;
} }
/* Register new GPIOs in gpioMap */ /* Register new GPIOs in gpioMap */
gpioMap.insert(mapToAdd.begin(), mapToAdd.end()); gpioMap.insert(mapToAdd.begin(), mapToAdd.end());
return RETURN_OK; return RETURN_OK;
} }
ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) { ReturnValue_t LinuxLibgpioIF::configureGpios(GpioMap& mapToAdd) {
for(auto& gpioConfig: mapToAdd) { for (auto& gpioConfig : mapToAdd) {
auto& gpioType = gpioConfig.second->gpioType; auto& gpioType = gpioConfig.second->gpioType;
switch(gpioType) { switch (gpioType) {
case(gpio::GpioTypes::NONE): { case (gpio::GpioTypes::NONE): {
return GPIO_INVALID_INSTANCE; return GPIO_INVALID_INSTANCE;
}
case (gpio::GpioTypes::GPIO_REGULAR_BY_CHIP): {
auto regularGpio = dynamic_cast<GpiodRegularByChip*>(gpioConfig.second);
if (regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
} }
case(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP): { configureGpioByChip(gpioConfig.first, *regularGpio);
auto regularGpio = dynamic_cast<GpiodRegularByChip*>(gpioConfig.second); break;
if(regularGpio == nullptr) { }
return GPIO_INVALID_INSTANCE; case (gpio::GpioTypes::GPIO_REGULAR_BY_LABEL): {
} auto regularGpio = dynamic_cast<GpiodRegularByLabel*>(gpioConfig.second);
configureGpioByChip(gpioConfig.first, *regularGpio); if (regularGpio == nullptr) {
break; return GPIO_INVALID_INSTANCE;
} }
case(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL):{ configureGpioByLabel(gpioConfig.first, *regularGpio);
auto regularGpio = dynamic_cast<GpiodRegularByLabel*>(gpioConfig.second); break;
if(regularGpio == nullptr) { }
return GPIO_INVALID_INSTANCE; case (gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): {
} auto regularGpio = dynamic_cast<GpiodRegularByLineName*>(gpioConfig.second);
configureGpioByLabel(gpioConfig.first, *regularGpio); if (regularGpio == nullptr) {
break; return GPIO_INVALID_INSTANCE;
}
case(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME):{
auto regularGpio = dynamic_cast<GpiodRegularByLineName*>(gpioConfig.second);
if(regularGpio == nullptr) {
return GPIO_INVALID_INSTANCE;
}
configureGpioByLineName(gpioConfig.first, *regularGpio);
break;
}
case(gpio::GpioTypes::CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if(gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
}
gpioCallback->callback(gpioConfig.first, gpio::GpioOperation::WRITE,
gpioCallback->initValue, gpioCallback->callbackArgs);
} }
configureGpioByLineName(gpioConfig.first, *regularGpio);
break;
}
case (gpio::GpioTypes::CALLBACK): {
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioConfig.second);
if (gpioCallback->callback == nullptr) {
return GPIO_INVALID_INSTANCE;
} }
gpioCallback->callback(gpioConfig.first, gpio::GpioOperation::WRITE,
gpioCallback->initValue, gpioCallback->callbackArgs);
}
} }
return RETURN_OK; }
return RETURN_OK;
} }
ReturnValue_t LinuxLibgpioIF::configureGpioByLabel(gpioId_t gpioId, ReturnValue_t LinuxLibgpioIF::configureGpioByLabel(gpioId_t gpioId,
GpiodRegularByLabel &gpioByLabel) { GpiodRegularByLabel& gpioByLabel) {
std::string& label = gpioByLabel.label; std::string& label = gpioByLabel.label;
struct gpiod_chip* chip = gpiod_chip_open_by_label(label.c_str()); struct gpiod_chip* chip = gpiod_chip_open_by_label(label.c_str());
if (chip == nullptr) { if (chip == nullptr) {
sif::warning << "LinuxLibgpioIF::configureGpioByLabel: Failed to open gpio from gpio " sif::warning << "LinuxLibgpioIF::configureGpioByLabel: Failed to open gpio from gpio "
<< "group with label " << label << ". Gpio ID: " << gpioId << std::endl; << "group with label " << label << ". Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED; return RETURN_FAILED;
}
} std::string failOutput = "label: " + label;
std::string failOutput = "label: " + label; return configureRegularGpio(gpioId, chip, gpioByLabel, failOutput);
return configureRegularGpio(gpioId, chip, gpioByLabel, failOutput);
} }
ReturnValue_t LinuxLibgpioIF::configureGpioByChip(gpioId_t gpioId, ReturnValue_t LinuxLibgpioIF::configureGpioByChip(gpioId_t gpioId, GpiodRegularByChip& gpioByChip) {
GpiodRegularByChip &gpioByChip) { std::string& chipname = gpioByChip.chipname;
std::string& chipname = gpioByChip.chipname; struct gpiod_chip* chip = gpiod_chip_open_by_name(chipname.c_str());
struct gpiod_chip* chip = gpiod_chip_open_by_name(chipname.c_str()); if (chip == nullptr) {
if (chip == nullptr) { sif::warning << "LinuxLibgpioIF::configureGpioByChip: Failed to open chip " << chipname
sif::warning << "LinuxLibgpioIF::configureGpioByChip: Failed to open chip " << ". Gpio ID: " << gpioId << std::endl;
<< chipname << ". Gpio ID: " << gpioId << std::endl; return RETURN_FAILED;
return RETURN_FAILED; }
} std::string failOutput = "chipname: " + chipname;
std::string failOutput = "chipname: " + chipname; return configureRegularGpio(gpioId, chip, gpioByChip, failOutput);
return configureRegularGpio(gpioId, chip, gpioByChip, failOutput);
} }
ReturnValue_t LinuxLibgpioIF::configureGpioByLineName(gpioId_t gpioId, ReturnValue_t LinuxLibgpioIF::configureGpioByLineName(gpioId_t gpioId,
GpiodRegularByLineName &gpioByLineName) { GpiodRegularByLineName& gpioByLineName) {
std::string& lineName = gpioByLineName.lineName; std::string& lineName = gpioByLineName.lineName;
char chipname[MAX_CHIPNAME_LENGTH]; char chipname[MAX_CHIPNAME_LENGTH];
unsigned int lineOffset; unsigned int lineOffset;
int result = gpiod_ctxless_find_line(lineName.c_str(), chipname, MAX_CHIPNAME_LENGTH, int result =
&lineOffset); gpiod_ctxless_find_line(lineName.c_str(), chipname, MAX_CHIPNAME_LENGTH, &lineOffset);
if (result != LINE_FOUND) { if (result != LINE_FOUND) {
parseFindeLineResult(result, lineName); parseFindeLineResult(result, lineName);
return RETURN_FAILED; return RETURN_FAILED;
} }
gpioByLineName.lineNum = static_cast<int>(lineOffset); gpioByLineName.lineNum = static_cast<int>(lineOffset);
struct gpiod_chip* chip = gpiod_chip_open_by_name(chipname); struct gpiod_chip* chip = gpiod_chip_open_by_name(chipname);
if (chip == nullptr) { if (chip == nullptr) {
sif::warning << "LinuxLibgpioIF::configureGpioByLineName: Failed to open chip " sif::warning << "LinuxLibgpioIF::configureGpioByLineName: Failed to open chip " << chipname
<< chipname << ". <Gpio ID: " << gpioId << std::endl; << ". <Gpio ID: " << gpioId << std::endl;
return RETURN_FAILED; return RETURN_FAILED;
} }
std::string failOutput = "line name: " + lineName; std::string failOutput = "line name: " + lineName;
return configureRegularGpio(gpioId, chip, gpioByLineName, failOutput); return configureRegularGpio(gpioId, chip, gpioByLineName, failOutput);
} }
ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, struct gpiod_chip* chip, ReturnValue_t LinuxLibgpioIF::configureRegularGpio(gpioId_t gpioId, struct gpiod_chip* chip,
GpiodRegularBase& regularGpio, std::string failOutput) { GpiodRegularBase& regularGpio,
unsigned int lineNum; std::string failOutput) {
gpio::Direction direction; unsigned int lineNum;
std::string consumer; gpio::Direction direction;
struct gpiod_line *lineHandle; std::string consumer;
int result = 0; struct gpiod_line* lineHandle;
int result = 0;
lineNum = regularGpio.lineNum; lineNum = regularGpio.lineNum;
lineHandle = gpiod_chip_get_line(chip, lineNum); lineHandle = gpiod_chip_get_line(chip, lineNum);
if (!lineHandle) { if (!lineHandle) {
sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl; sif::warning << "LinuxLibgpioIF::configureRegularGpio: Failed to open line " << std::endl;
sif::warning << "GPIO ID: " << gpioId << ", line number: " << lineNum << sif::warning << "GPIO ID: " << gpioId << ", line number: " << lineNum << ", " << failOutput
", " << failOutput << std::endl; << std::endl;
sif::warning << "Check if Linux GPIO configuration has changed. " << std::endl; sif::warning << "Check if Linux GPIO configuration has changed. " << std::endl;
gpiod_chip_close(chip); gpiod_chip_close(chip);
return RETURN_FAILED; return RETURN_FAILED;
} }
direction = regularGpio.direction; direction = regularGpio.direction;
consumer = regularGpio.consumer; consumer = regularGpio.consumer;
/* Configure direction and add a description to the GPIO */ /* Configure direction and add a description to the GPIO */
switch (direction) { switch (direction) {
case(gpio::OUT): { case (gpio::Direction::OUT): {
result = gpiod_line_request_output(lineHandle, consumer.c_str(), result = gpiod_line_request_output(lineHandle, consumer.c_str(),
regularGpio.initValue); static_cast<int>(regularGpio.initValue));
break; break;
} }
case(gpio::IN): { case (gpio::Direction::IN): {
result = gpiod_line_request_input(lineHandle, consumer.c_str()); result = gpiod_line_request_input(lineHandle, consumer.c_str());
break; break;
} }
default: { default: {
sif::error << "LinuxLibgpioIF::configureGpios: Invalid direction specified" sif::error << "LinuxLibgpioIF::configureGpios: Invalid direction specified" << std::endl;
<< std::endl; return GPIO_INVALID_INSTANCE;
return GPIO_INVALID_INSTANCE;
} }
if (result < 0) { if (result < 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << sif::error << "LinuxLibgpioIF::configureRegularGpio: Failed to request line " << lineNum
lineNum << " from GPIO instance with ID: " << gpioId << std::endl; << " from GPIO instance with ID: " << gpioId << std::endl;
#else #else
sif::printError("LinuxLibgpioIF::configureRegularGpio: " sif::printError(
"Failed to request line %d from GPIO instance with ID: %d\n", lineNum, gpioId); "LinuxLibgpioIF::configureRegularGpio: "
"Failed to request line %d from GPIO instance with ID: %d\n",
lineNum, gpioId);
#endif #endif
gpiod_line_release(lineHandle); gpiod_line_release(lineHandle);
return RETURN_FAILED; return RETURN_FAILED;
} }
}
} /**
/** * Write line handle to GPIO configuration instance so it can later be used to set or
* Write line handle to GPIO configuration instance so it can later be used to set or * read states of GPIOs.
* read states of GPIOs. */
*/ regularGpio.lineHandle = lineHandle;
regularGpio.lineHandle = lineHandle; return RETURN_OK;
return RETURN_OK;
} }
ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) { ReturnValue_t LinuxLibgpioIF::pullHigh(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId); gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) { if (gpioMapIter == gpioMap.end()) {
sif::warning << "LinuxLibgpioIF::pullHigh: Unknown GPIO ID " << gpioId << std::endl; sif::warning << "LinuxLibgpioIF::pullHigh: Unknown GPIO ID " << gpioId << std::endl;
return UNKNOWN_GPIO_ID; return UNKNOWN_GPIO_ID;
} }
auto gpioType = gpioMapIter->second->gpioType; auto gpioType = gpioMapIter->second->gpioType;
if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) { gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second); auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second);
if(regularGpio == nullptr) { if (regularGpio == nullptr) {
return GPIO_TYPE_FAILURE; return GPIO_TYPE_FAILURE;
}
return driveGpio(gpioId, *regularGpio, gpio::HIGH);
} }
else { return driveGpio(gpioId, *regularGpio, gpio::Levels::HIGH);
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second); } else {
if(gpioCallback->callback == nullptr) { auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
return GPIO_INVALID_INSTANCE; if (gpioCallback->callback == nullptr) {
} return GPIO_INVALID_INSTANCE;
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
gpio::Levels::HIGH, gpioCallback->callbackArgs);
return RETURN_OK;
} }
return GPIO_TYPE_FAILURE; gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE, gpio::Levels::HIGH,
gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
} }
ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) { ReturnValue_t LinuxLibgpioIF::pullLow(gpioId_t gpioId) {
gpioMapIter = gpioMap.find(gpioId); gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()) { if (gpioMapIter == gpioMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::pullLow: Unknown GPIO ID " << gpioId << std::endl; sif::warning << "LinuxLibgpioIF::pullLow: Unknown GPIO ID " << gpioId << std::endl;
#else #else
sif::printWarning("LinuxLibgpioIF::pullLow: Unknown GPIO ID %d\n", gpioId); sif::printWarning("LinuxLibgpioIF::pullLow: Unknown GPIO ID %d\n", gpioId);
#endif #endif
return UNKNOWN_GPIO_ID; return UNKNOWN_GPIO_ID;
} }
auto& gpioType = gpioMapIter->second->gpioType; auto& gpioType = gpioMapIter->second->gpioType;
if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) { gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second); auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second);
if(regularGpio == nullptr) { if (regularGpio == nullptr) {
return GPIO_TYPE_FAILURE; return GPIO_TYPE_FAILURE;
}
return driveGpio(gpioId, *regularGpio, gpio::LOW);
} }
else { return driveGpio(gpioId, *regularGpio, gpio::Levels::LOW);
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second); } else {
if(gpioCallback->callback == nullptr) { auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
return GPIO_INVALID_INSTANCE; if (gpioCallback->callback == nullptr) {
} return GPIO_INVALID_INSTANCE;
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE,
gpio::Levels::LOW, gpioCallback->callbackArgs);
return RETURN_OK;
} }
return GPIO_TYPE_FAILURE; gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::WRITE, gpio::Levels::LOW,
gpioCallback->callbackArgs);
return RETURN_OK;
}
return GPIO_TYPE_FAILURE;
} }
ReturnValue_t LinuxLibgpioIF::driveGpio(gpioId_t gpioId, ReturnValue_t LinuxLibgpioIF::driveGpio(gpioId_t gpioId, GpiodRegularBase& regularGpio,
GpiodRegularBase& regularGpio, gpio::Levels logicLevel) { gpio::Levels logicLevel) {
int result = gpiod_line_set_value(regularGpio.lineHandle, logicLevel); int result = gpiod_line_set_value(regularGpio.lineHandle, static_cast<int>(logicLevel));
if (result < 0) { if (result < 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID " << gpioId << sif::warning << "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID " << gpioId
" to logic level " << logicLevel << std::endl; << " to logic level " << static_cast<int>(logicLevel) << std::endl;
#else #else
sif::printWarning("LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID %d to " sif::printWarning(
"logic level %d\n", gpioId, logicLevel); "LinuxLibgpioIF::driveGpio: Failed to pull GPIO with ID %d to "
"logic level %d\n",
gpioId, logicLevel);
#endif #endif
return DRIVE_GPIO_FAILURE; return DRIVE_GPIO_FAILURE;
} }
return RETURN_OK; return RETURN_OK;
} }
ReturnValue_t LinuxLibgpioIF::readGpio(gpioId_t gpioId, int* gpioState) { ReturnValue_t LinuxLibgpioIF::readGpio(gpioId_t gpioId, int* gpioState) {
gpioMapIter = gpioMap.find(gpioId); gpioMapIter = gpioMap.find(gpioId);
if (gpioMapIter == gpioMap.end()){ if (gpioMapIter == gpioMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::readGpio: Unknown GPIOD ID " << gpioId << std::endl; sif::warning << "LinuxLibgpioIF::readGpio: Unknown GPIOD ID " << gpioId << std::endl;
#else #else
sif::printWarning("LinuxLibgpioIF::readGpio: Unknown GPIOD ID %d\n", gpioId); sif::printWarning("LinuxLibgpioIF::readGpio: Unknown GPIOD ID %d\n", gpioId);
#endif #endif
return UNKNOWN_GPIO_ID; return UNKNOWN_GPIO_ID;
} }
auto gpioType = gpioMapIter->second->gpioType; auto gpioType = gpioMapIter->second->gpioType;
if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP if (gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_CHIP or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LABEL or
or gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) { gpioType == gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME) {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second); auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioMapIter->second);
if(regularGpio == nullptr) { if (regularGpio == nullptr) {
return GPIO_TYPE_FAILURE; return GPIO_TYPE_FAILURE;
}
*gpioState = gpiod_line_get_value(regularGpio->lineHandle);
} }
else { *gpioState = gpiod_line_get_value(regularGpio->lineHandle);
auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second); } else {
if(gpioCallback->callback == nullptr) { auto gpioCallback = dynamic_cast<GpioCallback*>(gpioMapIter->second);
return GPIO_INVALID_INSTANCE; if (gpioCallback->callback == nullptr) {
} return GPIO_INVALID_INSTANCE;
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::READ,
gpio::Levels::NONE, gpioCallback->callbackArgs);
return RETURN_OK;
} }
gpioCallback->callback(gpioMapIter->first, gpio::GpioOperation::READ, gpio::Levels::NONE,
gpioCallback->callbackArgs);
return RETURN_OK; return RETURN_OK;
}
return RETURN_OK;
} }
ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd){ ReturnValue_t LinuxLibgpioIF::checkForConflicts(GpioMap& mapToAdd) {
ReturnValue_t status = HasReturnvaluesIF::RETURN_OK; ReturnValue_t status = HasReturnvaluesIF::RETURN_OK;
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
for(auto& gpioConfig: mapToAdd) { for (auto& gpioConfig : mapToAdd) {
switch(gpioConfig.second->gpioType) { switch (gpioConfig.second->gpioType) {
case(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP): case (gpio::GpioTypes::GPIO_REGULAR_BY_CHIP):
case(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL): case (gpio::GpioTypes::GPIO_REGULAR_BY_LABEL):
case(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): { case (gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): {
auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioConfig.second); auto regularGpio = dynamic_cast<GpiodRegularBase*>(gpioConfig.second);
if(regularGpio == nullptr) { if (regularGpio == nullptr) {
return GPIO_TYPE_FAILURE; return GPIO_TYPE_FAILURE;
}
// Check for conflicts and remove duplicates if necessary
result = checkForConflictsById(gpioConfig.first, gpioConfig.second->gpioType, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
} }
case(gpio::GpioTypes::CALLBACK): { // Check for conflicts and remove duplicates if necessary
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second); result = checkForConflictsById(gpioConfig.first, gpioConfig.second->gpioType, mapToAdd);
if(callbackGpio == nullptr) { if (result != HasReturnvaluesIF::RETURN_OK) {
return GPIO_TYPE_FAILURE; status = result;
}
// Check for conflicts and remove duplicates if necessary
result = checkForConflictsById(gpioConfig.first,
gpioConfig.second->gpioType, mapToAdd);
if(result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
} }
default: { break;
}
case (gpio::GpioTypes::CALLBACK): {
auto callbackGpio = dynamic_cast<GpioCallback*>(gpioConfig.second);
if (callbackGpio == nullptr) {
return GPIO_TYPE_FAILURE;
}
// Check for conflicts and remove duplicates if necessary
result = checkForConflictsById(gpioConfig.first, gpioConfig.second->gpioType, mapToAdd);
if (result != HasReturnvaluesIF::RETURN_OK) {
status = result;
}
break;
}
default: {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "Invalid GPIO type detected for GPIO ID " << gpioConfig.first sif::warning << "Invalid GPIO type detected for GPIO ID " << gpioConfig.first << std::endl;
<< std::endl;
#else #else
sif::printWarning("Invalid GPIO type detected for GPIO ID %d\n", gpioConfig.first); sif::printWarning("Invalid GPIO type detected for GPIO ID %d\n", gpioConfig.first);
#endif #endif
status = GPIO_TYPE_FAILURE; status = GPIO_TYPE_FAILURE;
} }
}
} }
return status; }
return status;
} }
ReturnValue_t LinuxLibgpioIF::checkForConflictsById(gpioId_t gpioIdToCheck, ReturnValue_t LinuxLibgpioIF::checkForConflictsById(gpioId_t gpioIdToCheck,
gpio::GpioTypes expectedType, GpioMap& mapToAdd) { gpio::GpioTypes expectedType,
// Cross check with private map GpioMap& mapToAdd) {
gpioMapIter = gpioMap.find(gpioIdToCheck); // Cross check with private map
if(gpioMapIter != gpioMap.end()) { gpioMapIter = gpioMap.find(gpioIdToCheck);
auto& gpioType = gpioMapIter->second->gpioType; if (gpioMapIter != gpioMap.end()) {
bool eraseDuplicateDifferentType = false; auto& gpioType = gpioMapIter->second->gpioType;
switch(expectedType) { bool eraseDuplicateDifferentType = false;
case(gpio::GpioTypes::NONE): { switch (expectedType) {
break; case (gpio::GpioTypes::NONE): {
break;
}
case (gpio::GpioTypes::GPIO_REGULAR_BY_CHIP):
case (gpio::GpioTypes::GPIO_REGULAR_BY_LABEL):
case (gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): {
if (gpioType == gpio::GpioTypes::NONE or gpioType == gpio::GpioTypes::CALLBACK) {
eraseDuplicateDifferentType = true;
} }
case(gpio::GpioTypes::GPIO_REGULAR_BY_CHIP): break;
case(gpio::GpioTypes::GPIO_REGULAR_BY_LABEL): }
case(gpio::GpioTypes::GPIO_REGULAR_BY_LINE_NAME): { case (gpio::GpioTypes::CALLBACK): {
if(gpioType == gpio::GpioTypes::NONE or gpioType == gpio::GpioTypes::CALLBACK) { if (gpioType != gpio::GpioTypes::CALLBACK) {
eraseDuplicateDifferentType = true; eraseDuplicateDifferentType = true;
}
break;
} }
case(gpio::GpioTypes::CALLBACK): { }
if(gpioType != gpio::GpioTypes::CALLBACK) {
eraseDuplicateDifferentType = true;
}
}
}
if(eraseDuplicateDifferentType) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for "
"different GPIO type " << gpioIdToCheck <<
". Removing duplicate from map to add" << std::endl;
#else
sif::printWarning("LinuxLibgpioIF::checkForConflicts: ID already exists for "
"different GPIO type %d. Removing duplicate from map to add\n", gpioIdToCheck);
#endif
mapToAdd.erase(gpioIdToCheck);
return GPIO_DUPLICATE_DETECTED;
}
// Remove element from map to add because a entry for this GPIO already exists
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO "
"definition with ID " << gpioIdToCheck << " detected. " <<
"Duplicate will be removed from map to add" << std::endl;
#else
sif::printWarning("LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition "
"with ID %d detected. Duplicate will be removed from map to add\n", gpioIdToCheck);
#endif
mapToAdd.erase(gpioIdToCheck);
return GPIO_DUPLICATE_DETECTED;
} }
return HasReturnvaluesIF::RETURN_OK; if (eraseDuplicateDifferentType) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::checkForConflicts: ID already exists for "
"different GPIO type "
<< gpioIdToCheck << ". Removing duplicate from map to add" << std::endl;
#else
sif::printWarning(
"LinuxLibgpioIF::checkForConflicts: ID already exists for "
"different GPIO type %d. Removing duplicate from map to add\n",
gpioIdToCheck);
#endif
mapToAdd.erase(gpioIdToCheck);
return GPIO_DUPLICATE_DETECTED;
}
// Remove element from map to add because a entry for this GPIO already exists
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO "
"definition with ID "
<< gpioIdToCheck << " detected. "
<< "Duplicate will be removed from map to add" << std::endl;
#else
sif::printWarning(
"LinuxLibgpioIF::checkForConflictsRegularGpio: Duplicate GPIO definition "
"with ID %d detected. Duplicate will be removed from map to add\n",
gpioIdToCheck);
#endif
mapToAdd.erase(gpioIdToCheck);
return GPIO_DUPLICATE_DETECTED;
}
return HasReturnvaluesIF::RETURN_OK;
} }
void LinuxLibgpioIF::parseFindeLineResult(int result, std::string& lineName) { void LinuxLibgpioIF::parseFindeLineResult(int result, std::string& lineName) {
switch (result) { switch (result) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
case LINE_NOT_EXISTS: case LINE_NOT_EXISTS:
case LINE_ERROR: { case LINE_ERROR: {
sif::warning << "LinuxLibgpioIF::parseFindeLineResult: Line with name " << lineName << sif::warning << "LinuxLibgpioIF::parseFindeLineResult: Line with name " << lineName
" does not exist" << std::endl; << " does not exist" << std::endl;
break; break;
} }
default: { default: {
sif::warning << "LinuxLibgpioIF::parseFindeLineResult: Unknown return code for line " sif::warning << "LinuxLibgpioIF::parseFindeLineResult: Unknown return code for line "
"with name " << lineName << std::endl; "with name "
break; << lineName << std::endl;
break;
} }
#else #else
case LINE_NOT_EXISTS: case LINE_NOT_EXISTS:
case LINE_ERROR: { case LINE_ERROR: {
sif::printWarning("LinuxLibgpioIF::parseFindeLineResult: Line with name %s " sif::printWarning(
"does not exist\n", lineName); "LinuxLibgpioIF::parseFindeLineResult: Line with name %s "
break; "does not exist\n",
lineName);
break;
} }
default: { default: {
sif::printWarning("LinuxLibgpioIF::parseFindeLineResult: Unknown return code for line " sif::printWarning(
"with name %s\n", lineName); "LinuxLibgpioIF::parseFindeLineResult: Unknown return code for line "
break; "with name %s\n",
lineName);
break;
} }
#endif #endif
} }
} }

View File

@ -1,9 +1,9 @@
#ifndef LINUX_GPIO_LINUXLIBGPIOIF_H_ #ifndef LINUX_GPIO_LINUXLIBGPIOIF_H_
#define LINUX_GPIO_LINUXLIBGPIOIF_H_ #define LINUX_GPIO_LINUXLIBGPIOIF_H_
#include "fsfw/objectmanager/SystemObject.h"
#include "fsfw/returnvalues/FwClassIds.h" #include "fsfw/returnvalues/FwClassIds.h"
#include "fsfw_hal/common/gpio/GpioIF.h" #include "fsfw_hal/common/gpio/GpioIF.h"
#include "fsfw/objectmanager/SystemObject.h"
class GpioCookie; class GpioCookie;
class GpiodRegularIF; class GpiodRegularIF;
@ -16,76 +16,71 @@ class GpiodRegularIF;
* The Petalinux SDK from Xilinx supports libgpiod since Petalinux 2019.1. * The Petalinux SDK from Xilinx supports libgpiod since Petalinux 2019.1.
*/ */
class LinuxLibgpioIF : public GpioIF, public SystemObject { class LinuxLibgpioIF : public GpioIF, public SystemObject {
public: public:
static const uint8_t gpioRetvalId = CLASS_ID::HAL_GPIO;
static const uint8_t gpioRetvalId = CLASS_ID::HAL_GPIO; static constexpr ReturnValue_t UNKNOWN_GPIO_ID =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 1);
static constexpr ReturnValue_t DRIVE_GPIO_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 2);
static constexpr ReturnValue_t GPIO_TYPE_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 3);
static constexpr ReturnValue_t GPIO_INVALID_INSTANCE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 4);
static constexpr ReturnValue_t GPIO_DUPLICATE_DETECTED =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 5);
static constexpr ReturnValue_t UNKNOWN_GPIO_ID = LinuxLibgpioIF(object_id_t objectId);
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 1); virtual ~LinuxLibgpioIF();
static constexpr ReturnValue_t DRIVE_GPIO_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 2);
static constexpr ReturnValue_t GPIO_TYPE_FAILURE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 3);
static constexpr ReturnValue_t GPIO_INVALID_INSTANCE =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 4);
static constexpr ReturnValue_t GPIO_DUPLICATE_DETECTED =
HasReturnvaluesIF::makeReturnCode(gpioRetvalId, 5);
LinuxLibgpioIF(object_id_t objectId); ReturnValue_t addGpios(GpioCookie* gpioCookie) override;
virtual ~LinuxLibgpioIF(); ReturnValue_t pullHigh(gpioId_t gpioId) override;
ReturnValue_t pullLow(gpioId_t gpioId) override;
ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) override;
ReturnValue_t addGpios(GpioCookie* gpioCookie) override; private:
ReturnValue_t pullHigh(gpioId_t gpioId) override; static const size_t MAX_CHIPNAME_LENGTH = 11;
ReturnValue_t pullLow(gpioId_t gpioId) override; static const int LINE_NOT_EXISTS = 0;
ReturnValue_t readGpio(gpioId_t gpioId, int* gpioState) override; static const int LINE_ERROR = -1;
static const int LINE_FOUND = 1;
private: // Holds the information and configuration of all used GPIOs
GpioUnorderedMap gpioMap;
GpioUnorderedMapIter gpioMapIter;
static const size_t MAX_CHIPNAME_LENGTH = 11; /**
static const int LINE_NOT_EXISTS = 0; * @brief This functions drives line of a GPIO specified by the GPIO ID.
static const int LINE_ERROR = -1; *
static const int LINE_FOUND = 1; * @param gpioId The GPIO ID of the GPIO to drive.
* @param logiclevel The logic level to set. O or 1.
*/
ReturnValue_t driveGpio(gpioId_t gpioId, GpiodRegularBase& regularGpio, gpio::Levels logicLevel);
// Holds the information and configuration of all used GPIOs ReturnValue_t configureGpioByLabel(gpioId_t gpioId, GpiodRegularByLabel& gpioByLabel);
GpioUnorderedMap gpioMap; ReturnValue_t configureGpioByChip(gpioId_t gpioId, GpiodRegularByChip& gpioByChip);
GpioUnorderedMapIter gpioMapIter; ReturnValue_t configureGpioByLineName(gpioId_t gpioId, GpiodRegularByLineName& gpioByLineName);
ReturnValue_t configureRegularGpio(gpioId_t gpioId, struct gpiod_chip* chip,
GpiodRegularBase& regularGpio, std::string failOutput);
/** /**
* @brief This functions drives line of a GPIO specified by the GPIO ID. * @brief This function checks if GPIOs are already registered and whether
* * there exists a conflict in the GPIO configuration. E.g. the
* @param gpioId The GPIO ID of the GPIO to drive. * direction.
* @param logiclevel The logic level to set. O or 1. *
*/ * @param mapToAdd The GPIOs which shall be added to the gpioMap.
ReturnValue_t driveGpio(gpioId_t gpioId, GpiodRegularBase& regularGpio, *
gpio::Levels logicLevel); * @return RETURN_OK if successful, otherwise RETURN_FAILED
*/
ReturnValue_t checkForConflicts(GpioMap& mapToAdd);
ReturnValue_t configureGpioByLabel(gpioId_t gpioId, GpiodRegularByLabel& gpioByLabel); ReturnValue_t checkForConflictsById(gpioId_t gpiodId, gpio::GpioTypes type, GpioMap& mapToAdd);
ReturnValue_t configureGpioByChip(gpioId_t gpioId, GpiodRegularByChip& gpioByChip);
ReturnValue_t configureGpioByLineName(gpioId_t gpioId,
GpiodRegularByLineName &gpioByLineName);
ReturnValue_t configureRegularGpio(gpioId_t gpioId, struct gpiod_chip* chip,
GpiodRegularBase& regularGpio, std::string failOutput);
/** /**
* @brief This function checks if GPIOs are already registered and whether * @brief Performs the initial configuration of all GPIOs specified in the GpioMap mapToAdd.
* there exists a conflict in the GPIO configuration. E.g. the */
* direction. ReturnValue_t configureGpios(GpioMap& mapToAdd);
*
* @param mapToAdd The GPIOs which shall be added to the gpioMap.
*
* @return RETURN_OK if successful, otherwise RETURN_FAILED
*/
ReturnValue_t checkForConflicts(GpioMap& mapToAdd);
ReturnValue_t checkForConflictsById(gpioId_t gpiodId, gpio::GpioTypes type, void parseFindeLineResult(int result, std::string& lineName);
GpioMap& mapToAdd);
/**
* @brief Performs the initial configuration of all GPIOs specified in the GpioMap mapToAdd.
*/
ReturnValue_t configureGpios(GpioMap& mapToAdd);
void parseFindeLineResult(int result, std::string& lineName);
}; };
#endif /* LINUX_GPIO_LINUXLIBGPIOIF_H_ */ #endif /* LINUX_GPIO_LINUXLIBGPIOIF_H_ */

View File

@ -1,205 +1,237 @@
#include "fsfw_hal/linux/i2c/I2cComIF.h" #include "I2cComIF.h"
#include "fsfw_hal/linux/utility.h"
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface.h"
#include "fsfw_hal/linux/UnixFileGuard.h" #include "fsfw_hal/linux/UnixFileGuard.h"
#include "fsfw_hal/linux/utility.h"
#include "fsfw/serviceinterface/ServiceInterface.h" #if FSFW_HAL_I2C_WIRETAPPING == 1
#include "fsfw/globalfunctions/arrayprinter.h"
#endif
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <errno.h> #include <errno.h>
#include <fcntl.h>
#include <linux/i2c-dev.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <cstring> #include <cstring>
I2cComIF::I2cComIF(object_id_t objectId) : SystemObject(objectId) {}
I2cComIF::I2cComIF(object_id_t objectId): SystemObject(objectId){
}
I2cComIF::~I2cComIF() {} I2cComIF::~I2cComIF() {}
ReturnValue_t I2cComIF::initializeInterface(CookieIF* cookie) { ReturnValue_t I2cComIF::initializeInterface(CookieIF* cookie) {
address_t i2cAddress;
std::string deviceFile;
address_t i2cAddress; if (cookie == nullptr) {
std::string deviceFile; #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::initializeInterface: Invalid cookie!" << std::endl;
if(cookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid cookie!" << std::endl;
return NULLPOINTER;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::initializeInterface: Invalid I2C cookie!" << std::endl;
return NULLPOINTER;
}
i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if(i2cDeviceMapIter == i2cDeviceMap.end()) {
size_t maxReplyLen = i2cCookie->getMaxReplyLen();
I2cInstance i2cInstance = {std::vector<uint8_t>(maxReplyLen), 0};
auto statusPair = i2cDeviceMap.emplace(i2cAddress, i2cInstance);
if (not statusPair.second) {
sif::error << "I2cComIF::initializeInterface: Failed to insert device with address " <<
i2cAddress << "to I2C device " << "map" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
sif::error << "I2cComIF::initializeInterface: Device with address " << i2cAddress <<
"already in use" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t I2cComIF::sendMessage(CookieIF *cookie,
const uint8_t *sendData, size_t sendLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if(sendData == nullptr) {
sif::error << "I2cComIF::sendMessage: Send Data is nullptr"
<< std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
if(sendLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::sendMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::sendMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::sendMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
return result;
}
if (write(fd, sendData, sendLen) != (int)sendLen) {
sif::error << "I2cComIF::sendMessage: Failed to send data to I2C "
"device with error code " << errno << ". Error description: "
<< strerror(errno) << std::endl;
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::getSendSuccess(CookieIF *cookie) {
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::requestReceiveMessage(CookieIF *cookie,
size_t requestLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if (requestLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if(i2cCookie == nullptr) {
sif::error << "I2cComIF::requestReceiveMessage: Invalid I2C Cookie!" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
sif::error << "I2cComIF::requestReceiveMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
i2cDeviceMapIter->second.replyLen = 0;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::requestReceiveMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK){
i2cDeviceMapIter->second.replyLen = 0;
return result;
}
uint8_t* replyBuffer = i2cDeviceMapIter->second.replyBuffer.data();
int readLen = read(fd, replyBuffer, requestLen);
if (readLen != static_cast<int>(requestLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 and FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Reading from I2C "
<< "device failed with error code " << errno <<". Description"
<< " of error: " << strerror(errno) << std::endl;
sif::error << "I2cComIF::requestReceiveMessage: Read only " << readLen << " from "
<< requestLen << " bytes" << std::endl;
#endif #endif
i2cDeviceMapIter->second.replyLen = 0; return NULLPOINTER;
sif::debug << "I2cComIF::requestReceiveMessage: Read " << readLen << " of " << requestLen << " bytes" << std::endl; }
return HasReturnvaluesIF::RETURN_FAILED; I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
} if (i2cCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::initializeInterface: Invalid I2C cookie!" << std::endl;
#endif
return NULLPOINTER;
}
i2cDeviceMapIter->second.replyLen = requestLen; i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
size_t maxReplyLen = i2cCookie->getMaxReplyLen();
I2cInstance i2cInstance = {std::vector<uint8_t>(maxReplyLen), 0};
auto statusPair = i2cDeviceMap.emplace(i2cAddress, i2cInstance);
if (not statusPair.second) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::initializeInterface: Failed to insert device with address "
<< i2cAddress << "to I2C device "
<< "map" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
}
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::initializeInterface: Device with address " << i2cAddress
<< "already in use" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
} }
ReturnValue_t I2cComIF::readReceivedMessage(CookieIF *cookie, ReturnValue_t I2cComIF::sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) {
uint8_t **buffer, size_t* size) { ReturnValue_t result;
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie); int fd;
if(i2cCookie == nullptr) { std::string deviceFile;
sif::error << "I2cComIF::readReceivedMessage: Invalid I2C Cookie!" << std::endl;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress(); if (sendData == nullptr) {
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress); #if FSFW_CPP_OSTREAM_ENABLED == 1
if (i2cDeviceMapIter == i2cDeviceMap.end()) { sif::error << "I2cComIF::sendMessage: Send Data is nullptr" << std::endl;
sif::error << "I2cComIF::readReceivedMessage: i2cAddress of Cookie not " #endif
<< "found in i2cDeviceMap" << std::endl; return HasReturnvaluesIF::RETURN_FAILED;
return HasReturnvaluesIF::RETURN_FAILED; }
}
*buffer = i2cDeviceMapIter->second.replyBuffer.data();
*size = i2cDeviceMapIter->second.replyLen;
if (sendLen == 0) {
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if (i2cCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::sendMessage: Invalid I2C Cookie!" << std::endl;
#endif
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::sendMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::sendMessage");
if (fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
if (write(fd, sendData, sendLen) != static_cast<int>(sendLen)) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::sendMessage: Failed to send data to I2C "
"device with error code "
<< errno << ". Error description: " << strerror(errno) << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
#if FSFW_HAL_I2C_WIRETAPPING == 1
sif::info << "Sent I2C data to bus " << deviceFile << ":" << std::endl;
arrayprinter::print(sendData, sendLen);
#endif
return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t I2cComIF::openDevice(std::string deviceFile, ReturnValue_t I2cComIF::getSendSuccess(CookieIF* cookie) { return HasReturnvaluesIF::RETURN_OK; }
address_t i2cAddress, int* fileDescriptor) {
if (ioctl(*fileDescriptor, I2C_SLAVE, i2cAddress) < 0) { ReturnValue_t I2cComIF::requestReceiveMessage(CookieIF* cookie, size_t requestLen) {
ReturnValue_t result;
int fd;
std::string deviceFile;
if (requestLen == 0) {
return HasReturnvaluesIF::RETURN_OK;
}
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if (i2cCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Invalid I2C Cookie!" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: i2cAddress of Cookie not "
<< "registered in i2cDeviceMap" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
return HasReturnvaluesIF::RETURN_FAILED;
}
deviceFile = i2cCookie->getDeviceFile();
UnixFileGuard fileHelper(deviceFile, &fd, O_RDWR, "I2cComIF::requestReceiveMessage");
if (fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
result = openDevice(deviceFile, i2cAddress, &fd);
if (result != HasReturnvaluesIF::RETURN_OK) {
i2cDeviceMapIter->second.replyLen = 0;
return result;
}
uint8_t* replyBuffer = i2cDeviceMapIter->second.replyBuffer.data();
int readLen = read(fd, replyBuffer, requestLen);
if (readLen != static_cast<int>(requestLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 and FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::requestReceiveMessage: Reading from I2C "
<< "device failed with error code " << errno << ". Description"
<< " of error: " << strerror(errno) << std::endl;
sif::error << "I2cComIF::requestReceiveMessage: Read only " << readLen << " from " << requestLen
<< " bytes" << std::endl;
#endif
i2cDeviceMapIter->second.replyLen = 0;
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "I2cComIF::requestReceiveMessage: Read " << readLen << " of " << requestLen
<< " bytes" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
#if FSFW_HAL_I2C_WIRETAPPING == 1
sif::info << "I2C read bytes from bus " << deviceFile << ":" << std::endl;
arrayprinter::print(replyBuffer, requestLen);
#endif
i2cDeviceMapIter->second.replyLen = requestLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) {
I2cCookie* i2cCookie = dynamic_cast<I2cCookie*>(cookie);
if (i2cCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::readReceivedMessage: Invalid I2C Cookie!" << std::endl;
#endif
return NULLPOINTER;
}
address_t i2cAddress = i2cCookie->getAddress();
i2cDeviceMapIter = i2cDeviceMap.find(i2cAddress);
if (i2cDeviceMapIter == i2cDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "I2cComIF::readReceivedMessage: i2cAddress of Cookie not "
<< "found in i2cDeviceMap" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = i2cDeviceMapIter->second.replyBuffer.data();
*size = i2cDeviceMapIter->second.replyLen;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t I2cComIF::openDevice(std::string deviceFile, address_t i2cAddress,
int* fileDescriptor) {
if (ioctl(*fileDescriptor, I2C_SLAVE, i2cAddress) < 0) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "I2cComIF: Specifying target device failed with error code " << errno << "." sif::warning << "I2cComIF: Specifying target device failed with error code " << errno << "."
<< std::endl; << std::endl;
sif::warning << "Error description " << strerror(errno) << std::endl; sif::warning << "Error description " << strerror(errno) << std::endl;
#else #else
sif::printWarning("I2cComIF: Specifying target device failed with error code %d.\n"); sif::printWarning("I2cComIF: Specifying target device failed with error code %d.\n");
sif::printWarning("Error description: %s\n", strerror(errno)); sif::printWarning("Error description: %s\n", strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -1,13 +1,14 @@
#ifndef LINUX_I2C_I2COMIF_H_ #ifndef LINUX_I2C_I2COMIF_H_
#define LINUX_I2C_I2COMIF_H_ #define LINUX_I2C_I2COMIF_H_
#include "I2cCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h> #include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "I2cCookie.h"
/** /**
* @brief This is the communication interface for I2C devices connected * @brief This is the communication interface for I2C devices connected
* to a system running a Linux OS. * to a system running a Linux OS.
@ -16,46 +17,41 @@
* *
* @author J. Meier * @author J. Meier
*/ */
class I2cComIF: public DeviceCommunicationIF, public SystemObject { class I2cComIF : public DeviceCommunicationIF, public SystemObject {
public: public:
I2cComIF(object_id_t objectId); I2cComIF(object_id_t objectId);
virtual ~I2cComIF(); virtual ~I2cComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override; ReturnValue_t initializeInterface(CookieIF *cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData, ReturnValue_t sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) override;
size_t sendLen) override; ReturnValue_t getSendSuccess(CookieIF *cookie) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override; ReturnValue_t requestReceiveMessage(CookieIF *cookie, size_t requestLen) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie, ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) override;
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
private: private:
struct I2cInstance {
std::vector<uint8_t> replyBuffer;
size_t replyLen;
};
struct I2cInstance { using I2cDeviceMap = std::unordered_map<address_t, I2cInstance>;
std::vector<uint8_t> replyBuffer; using I2cDeviceMapIter = I2cDeviceMap::iterator;
size_t replyLen;
};
using I2cDeviceMap = std::unordered_map<address_t, I2cInstance>; /* In this map all i2c devices will be registered with their address and
using I2cDeviceMapIter = I2cDeviceMap::iterator; * the appropriate file descriptor will be stored */
I2cDeviceMap i2cDeviceMap;
I2cDeviceMapIter i2cDeviceMapIter;
/* In this map all i2c devices will be registered with their address and /**
* the appropriate file descriptor will be stored */ * @brief This function opens an I2C device and binds the opened file
I2cDeviceMap i2cDeviceMap; * to a specific I2C address.
I2cDeviceMapIter i2cDeviceMapIter; * @param deviceFile The name of the device file. E.g. i2c-0
* @param i2cAddress The address of the i2c slave device.
/** * @param fileDescriptor Pointer to device descriptor.
* @brief This function opens an I2C device and binds the opened file * @return RETURN_OK if successful, otherwise RETURN_FAILED.
* to a specific I2C address. */
* @param deviceFile The name of the device file. E.g. i2c-0 ReturnValue_t openDevice(std::string deviceFile, address_t i2cAddress, int *fileDescriptor);
* @param i2cAddress The address of the i2c slave device.
* @param fileDescriptor Pointer to device descriptor.
* @return RETURN_OK if successful, otherwise RETURN_FAILED.
*/
ReturnValue_t openDevice(std::string deviceFile,
address_t i2cAddress, int* fileDescriptor);
}; };
#endif /* LINUX_I2C_I2COMIF_H_ */ #endif /* LINUX_I2C_I2COMIF_H_ */

View File

@ -1,20 +1,12 @@
#include "fsfw_hal/linux/i2c/I2cCookie.h" #include "fsfw_hal/linux/i2c/I2cCookie.h"
I2cCookie::I2cCookie(address_t i2cAddress_, size_t maxReplyLen_, I2cCookie::I2cCookie(address_t i2cAddress_, size_t maxReplyLen_, std::string deviceFile_)
std::string deviceFile_) : : i2cAddress(i2cAddress_), maxReplyLen(maxReplyLen_), deviceFile(deviceFile_) {}
i2cAddress(i2cAddress_), maxReplyLen(maxReplyLen_), deviceFile(deviceFile_) {
}
address_t I2cCookie::getAddress() const { address_t I2cCookie::getAddress() const { return i2cAddress; }
return i2cAddress;
}
size_t I2cCookie::getMaxReplyLen() const { size_t I2cCookie::getMaxReplyLen() const { return maxReplyLen; }
return maxReplyLen;
}
std::string I2cCookie::getDeviceFile() const { std::string I2cCookie::getDeviceFile() const { return deviceFile; }
return deviceFile;
}
I2cCookie::~I2cCookie() {} I2cCookie::~I2cCookie() {}

View File

@ -2,6 +2,7 @@
#define LINUX_I2C_I2CCOOKIE_H_ #define LINUX_I2C_I2CCOOKIE_H_
#include <fsfw/devicehandlers/CookieIF.h> #include <fsfw/devicehandlers/CookieIF.h>
#include <string> #include <string>
/** /**
@ -9,30 +10,27 @@
* *
* @author J. Meier * @author J. Meier
*/ */
class I2cCookie: public CookieIF { class I2cCookie : public CookieIF {
public: public:
/**
* @brief Constructor for the I2C cookie.
* @param i2cAddress_ The i2c address of the target device.
* @param maxReplyLen_ The maximum expected length of a reply from the
* target device.
* @param devicFile_ The device file specifying the i2c interface to use. E.g. "/dev/i2c-0".
*/
I2cCookie(address_t i2cAddress_, size_t maxReplyLen_, std::string deviceFile_);
/** virtual ~I2cCookie();
* @brief Constructor for the I2C cookie.
* @param i2cAddress_ The i2c address of the target device.
* @param maxReplyLen_ The maximum expected length of a reply from the
* target device.
* @param devicFile_ The device file specifying the i2c interface to use. E.g. "/dev/i2c-0".
*/
I2cCookie(address_t i2cAddress_, size_t maxReplyLen_,
std::string deviceFile_);
virtual ~I2cCookie(); address_t getAddress() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
address_t getAddress() const; private:
size_t getMaxReplyLen() const; address_t i2cAddress = 0;
std::string getDeviceFile() const; size_t maxReplyLen = 0;
std::string deviceFile;
private:
address_t i2cAddress = 0;
size_t maxReplyLen = 0;
std::string deviceFile;
}; };
#endif /* LINUX_I2C_I2CCOOKIE_H_ */ #endif /* LINUX_I2C_I2CCOOKIE_H_ */

View File

@ -1,38 +1,38 @@
#include "fsfw/FSFW.h"
#include "fsfw_hal/linux/rpi/GpioRPi.h" #include "fsfw_hal/linux/rpi/GpioRPi.h"
#include "fsfw_hal/common/gpio/GpioCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h> #include <fsfw/serviceinterface/ServiceInterface.h>
#include "fsfw/FSFW.h"
#include "fsfw_hal/common/gpio/GpioCookie.h"
ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin, ReturnValue_t gpio::createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue) { std::string consumer, gpio::Direction direction,
if(cookie == nullptr) { gpio::Levels initValue) {
return HasReturnvaluesIF::RETURN_FAILED; if (cookie == nullptr) {
} return HasReturnvaluesIF::RETURN_FAILED;
}
auto config = new GpiodRegularByChip(); auto config = new GpiodRegularByChip();
/* Default chipname for Raspberry Pi. There is still gpiochip1 for expansion, but most users /* Default chipname for Raspberry Pi. There is still gpiochip1 for expansion, but most users
will not need this */ will not need this */
config->chipname = "gpiochip0"; config->chipname = "gpiochip0";
config->consumer = consumer; config->consumer = consumer;
config->direction = direction; config->direction = direction;
config->initValue = initValue; config->initValue = initValue;
/* Sanity check for the BCM pins before assigning it */ /* Sanity check for the BCM pins before assigning it */
if(bcmPin > 27) { if (bcmPin > 27) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "createRpiGpioConfig: BCM pin " << bcmPin << " invalid!" << std::endl; sif::error << "createRpiGpioConfig: BCM pin " << bcmPin << " invalid!" << std::endl;
#else #else
sif::printError("createRpiGpioConfig: BCM pin %d invalid!\n", bcmPin); sif::printError("createRpiGpioConfig: BCM pin %d invalid!\n", bcmPin);
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
config->lineNum = bcmPin; config->lineNum = bcmPin;
cookie->addGpio(gpioId, config); cookie->addGpio(gpioId, config);
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }

View File

@ -2,6 +2,7 @@
#define BSP_RPI_GPIO_GPIORPI_H_ #define BSP_RPI_GPIO_GPIORPI_H_
#include <fsfw/returnvalues/HasReturnvaluesIF.h> #include <fsfw/returnvalues/HasReturnvaluesIF.h>
#include "../../common/gpio/gpioDefinitions.h" #include "../../common/gpio/gpioDefinitions.h"
class GpioCookie; class GpioCookie;
@ -20,7 +21,8 @@ namespace gpio {
* @return * @return
*/ */
ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin, ReturnValue_t createRpiGpioConfig(GpioCookie* cookie, gpioId_t gpioId, int bcmPin,
std::string consumer, gpio::Direction direction, int initValue); std::string consumer, gpio::Direction direction,
} gpio::Levels initValue);
} // namespace gpio
#endif /* BSP_RPI_GPIO_GPIORPI_H_ */ #endif /* BSP_RPI_GPIO_GPIORPI_H_ */

View File

@ -1,408 +1,412 @@
#include "fsfw/FSFW.h"
#include "fsfw_hal/linux/spi/SpiComIF.h" #include "fsfw_hal/linux/spi/SpiComIF.h"
#include "fsfw_hal/linux/spi/SpiCookie.h"
#include "fsfw_hal/linux/utility.h"
#include "fsfw_hal/linux/UnixFileGuard.h"
#include <fsfw/ipc/MutexFactory.h>
#include <fsfw/globalfunctions/arrayprinter.h>
#include <linux/spi/spidev.h>
#include <fcntl.h> #include <fcntl.h>
#include <unistd.h> #include <fsfw/globalfunctions/arrayprinter.h>
#include <fsfw/ipc/MutexFactory.h>
#include <linux/spi/spidev.h>
#include <sys/ioctl.h> #include <sys/ioctl.h>
#include <unistd.h>
#include <cerrno> #include <cerrno>
#include <cstring> #include <cstring>
SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF): #include "fsfw/FSFW.h"
SystemObject(objectId), gpioComIF(gpioComIF) { #include "fsfw_hal/linux/UnixFileGuard.h"
if(gpioComIF == nullptr) { #include "fsfw_hal/linux/spi/SpiCookie.h"
#include "fsfw_hal/linux/utility.h"
SpiComIF::SpiComIF(object_id_t objectId, GpioIF* gpioComIF)
: SystemObject(objectId), gpioComIF(gpioComIF) {
if (gpioComIF == nullptr) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl; sif::error << "SpiComIF::SpiComIF: GPIO communication interface invalid!" << std::endl;
#else #else
sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n"); sif::printError("SpiComIF::SpiComIF: GPIO communication interface invalid!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
} }
spiMutex = MutexFactory::instance()->createMutex(); spiMutex = MutexFactory::instance()->createMutex();
} }
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) { ReturnValue_t SpiComIF::initializeInterface(CookieIF* cookie) {
int retval = 0; int retval = 0;
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return NULLPOINTER; return NULLPOINTER;
} }
address_t spiAddress = spiCookie->getSpiAddress(); address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress); auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) { if (iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxBufferSize(); size_t bufferSize = spiCookie->getMaxBufferSize();
SpiInstance spiInstance(bufferSize); SpiInstance spiInstance(bufferSize);
auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance); auto statusPair = spiDeviceMap.emplace(spiAddress, spiInstance);
if (not statusPair.second) { if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " << sif::error << "SpiComIF::initializeInterface: Failed to insert device with address "
spiAddress << "to SPI device map" << std::endl; << spiAddress << "to SPI device map" << std::endl;
#else #else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address " sif::printError(
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress)); "SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n",
static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
/* Now we emplaced the read buffer in the map, we still need to assign that location
to the SPI driver transfer struct */
spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data());
} }
else { /* Now we emplaced the read buffer in the map, we still need to assign that location
to the SPI driver transfer struct */
spiCookie->assignReadBuffer(statusPair.first->second.replyBuffer.data());
} else {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl; sif::error << "SpiComIF::initializeInterface: SPI address already exists!" << std::endl;
#else #else
sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n"); sif::printError("SpiComIF::initializeInterface: SPI address already exists!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
/* Pull CS high in any case to be sure that device is inactive */
gpioId_t gpioId = spiCookie->getChipSelectPin();
if (gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
}
uint32_t spiSpeed = 0;
spi::SpiModes spiMode = spi::SpiModes::MODE_0;
SpiCookie::UncommonParameters params;
spiCookie->getSpiParameters(spiMode, spiSpeed, &params);
int fileDescriptor = 0;
UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface");
if (fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
}
/* These flags are rather uncommon */
if (params.threeWireSpi or params.noCs or params.csHigh) {
uint32_t currentMode = 0;
retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, &currentMode);
if (retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!");
} }
/* Pull CS high in any case to be sure that device is inactive */ if (params.threeWireSpi) {
gpioId_t gpioId = spiCookie->getChipSelectPin(); currentMode |= SPI_3WIRE;
if(gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId);
} }
if (params.noCs) {
uint32_t spiSpeed = 0; /* Some drivers like the Raspberry Pi ignore this flag in any case */
spi::SpiModes spiMode = spi::SpiModes::MODE_0; currentMode |= SPI_NO_CS;
SpiCookie::UncommonParameters params;
spiCookie->getSpiParameters(spiMode, spiSpeed, &params);
int fileDescriptor = 0;
UnixFileGuard fileHelper(spiCookie->getSpiDevice(), &fileDescriptor, O_RDWR,
"SpiComIF::initializeInterface");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return fileHelper.getOpenResult();
} }
if (params.csHigh) {
/* These flags are rather uncommon */ currentMode |= SPI_CS_HIGH;
if(params.threeWireSpi or params.noCs or params.csHigh) {
uint32_t currentMode = 0;
retval = ioctl(fileDescriptor, SPI_IOC_RD_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not read full mode!");
}
if(params.threeWireSpi) {
currentMode |= SPI_3WIRE;
}
if(params.noCs) {
/* Some drivers like the Raspberry Pi ignore this flag in any case */
currentMode |= SPI_NO_CS;
}
if(params.csHigh) {
currentMode |= SPI_CS_HIGH;
}
/* Write adapted mode */
retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, &currentMode);
if(retval != 0) {
utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!");
}
} }
if(params.lsbFirst) { /* Write adapted mode */
retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, &params.lsbFirst); retval = ioctl(fileDescriptor, SPI_IOC_WR_MODE32, &currentMode);
if(retval != 0) { if (retval != 0) {
utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed"); utility::handleIoctlError("SpiComIF::initialiezInterface: Could not write full mode!");
}
} }
if(params.bitsPerWord != 8) { }
retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, &params.bitsPerWord); if (params.lsbFirst) {
if(retval != 0) { retval = ioctl(fileDescriptor, SPI_IOC_WR_LSB_FIRST, &params.lsbFirst);
utility::handleIoctlError("SpiComIF::initializeInterface: " if (retval != 0) {
"Could not write bits per word!"); utility::handleIoctlError("SpiComIF::initializeInterface: Setting LSB first failed");
}
} }
return HasReturnvaluesIF::RETURN_OK; }
if (params.bitsPerWord != 8) {
retval = ioctl(fileDescriptor, SPI_IOC_WR_BITS_PER_WORD, &params.bitsPerWord);
if (retval != 0) {
utility::handleIoctlError(
"SpiComIF::initializeInterface: "
"Could not write bits per word!");
}
}
return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) { ReturnValue_t SpiComIF::sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return NULLPOINTER; return NULLPOINTER;
} }
if(sendLen > spiCookie->getMaxBufferSize()) { if (sendLen > spiCookie->getMaxBufferSize()) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Too much data sent, send length " << sendLen << sif::warning << "SpiComIF::sendMessage: Too much data sent, send length " << sendLen
"larger than maximum buffer length " << spiCookie->getMaxBufferSize() << std::endl; << "larger than maximum buffer length " << spiCookie->getMaxBufferSize()
<< std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Too much data sent, send length %lu larger " sif::printWarning(
"than maximum buffer length %lu!\n", static_cast<unsigned long>(sendLen), "SpiComIF::sendMessage: Too much data sent, send length %lu larger "
static_cast<unsigned long>(spiCookie->getMaxBufferSize())); "than maximum buffer length %lu!\n",
static_cast<unsigned long>(sendLen),
static_cast<unsigned long>(spiCookie->getMaxBufferSize()));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return DeviceCommunicationIF::TOO_MUCH_DATA; return DeviceCommunicationIF::TOO_MUCH_DATA;
} }
if(spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) { if (spiCookie->getComIfMode() == spi::SpiComIfModes::REGULAR) {
result = performRegularSendOperation(spiCookie, sendData, sendLen); result = performRegularSendOperation(spiCookie, sendData, sendLen);
} else if (spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) {
spi::send_callback_function_t sendFunc = nullptr;
void* funcArgs = nullptr;
spiCookie->getCallback(&sendFunc, &funcArgs);
if (sendFunc != nullptr) {
result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs);
} }
else if(spiCookie->getComIfMode() == spi::SpiComIfModes::CALLBACK) { }
spi::send_callback_function_t sendFunc = nullptr; return result;
void* funcArgs = nullptr;
spiCookie->getCallback(&sendFunc, &funcArgs);
if(sendFunc != nullptr) {
result = sendFunc(this, spiCookie, sendData, sendLen, funcArgs);
}
}
return result;
} }
ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie *spiCookie, const uint8_t *sendData, ReturnValue_t SpiComIF::performRegularSendOperation(SpiCookie* spiCookie, const uint8_t* sendData,
size_t sendLen) { size_t sendLen) {
address_t spiAddress = spiCookie->getSpiAddress(); address_t spiAddress = spiCookie->getSpiAddress();
auto iter = spiDeviceMap.find(spiAddress); auto iter = spiDeviceMap.find(spiAddress);
if(iter != spiDeviceMap.end()) { if (iter != spiDeviceMap.end()) {
spiCookie->assignReadBuffer(iter->second.replyBuffer.data()); spiCookie->assignReadBuffer(iter->second.replyBuffer.data());
} }
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
int retval = 0; int retval = 0;
/* Prepare transfer */ /* Prepare transfer */
int fileDescriptor = 0; int fileDescriptor = 0;
std::string device = spiCookie->getSpiDevice(); std::string device = spiCookie->getSpiDevice();
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage"); UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::sendMessage");
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { if (fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
return OPENING_FILE_FAILED; return OPENING_FILE_FAILED;
} }
spi::SpiModes spiMode = spi::SpiModes::MODE_0; spi::SpiModes spiMode = spi::SpiModes::MODE_0;
uint32_t spiSpeed = 0; uint32_t spiSpeed = 0;
spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr); spiCookie->getSpiParameters(spiMode, spiSpeed, nullptr);
setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed); setSpiSpeedAndMode(fileDescriptor, spiMode, spiSpeed);
spiCookie->assignWriteBuffer(sendData); spiCookie->assignWriteBuffer(sendData);
spiCookie->setTransferSize(sendLen); spiCookie->setTransferSize(sendLen);
bool fullDuplex = spiCookie->isFullDuplex(); bool fullDuplex = spiCookie->isFullDuplex();
gpioId_t gpioId = spiCookie->getChipSelectPin(); gpioId_t gpioId = spiCookie->getChipSelectPin();
/* Pull SPI CS low. For now, no support for active high given */ /* Pull SPI CS low. For now, no support for active high given */
if(gpioId != gpio::NO_GPIO) { if (gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs); result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) { if (result != RETURN_OK) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl; sif::error << "SpiComIF::sendMessage: Failed to lock mutex" << std::endl;
#else #else
sif::printError("SpiComIF::sendMessage: Failed to lock mutex\n"); sif::printError("SpiComIF::sendMessage: Failed to lock mutex\n");
#endif #endif
#endif #endif
return result; return result;
} }
ReturnValue_t result = gpioComIF->pullLow(gpioId); ReturnValue_t result = gpioComIF->pullLow(gpioId);
if(result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Pulling low CS pin failed" << std::endl; sif::warning << "SpiComIF::sendMessage: Pulling low CS pin failed" << std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Pulling low CS pin failed"); sif::printWarning("SpiComIF::sendMessage: Pulling low CS pin failed");
#endif #endif
#endif #endif
return result; return result;
}
} }
}
/* Execute transfer */ /* Execute transfer */
if(fullDuplex) { if (fullDuplex) {
/* Initiate a full duplex SPI transfer. */ /* Initiate a full duplex SPI transfer. */
retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle()); retval = ioctl(fileDescriptor, SPI_IOC_MESSAGE(1), spiCookie->getTransferStructHandle());
if(retval < 0) { if (retval < 0) {
utility::handleIoctlError("SpiComIF::sendMessage: ioctl error."); utility::handleIoctlError("SpiComIF::sendMessage: ioctl error.");
result = FULL_DUPLEX_TRANSFER_FAILED; result = FULL_DUPLEX_TRANSFER_FAILED;
} }
#if FSFW_HAL_SPI_WIRETAPPING == 1 #if FSFW_HAL_SPI_WIRETAPPING == 1
performSpiWiretapping(spiCookie); performSpiWiretapping(spiCookie);
#endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */ #endif /* FSFW_LINUX_SPI_WIRETAPPING == 1 */
} } else {
else { /* We write with a blocking half-duplex transfer here */
/* We write with a blocking half-duplex transfer here */ if (write(fileDescriptor, sendData, sendLen) != static_cast<ssize_t>(sendLen)) {
if (write(fileDescriptor, sendData, sendLen) != static_cast<ssize_t>(sendLen)) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" << sif::warning << "SpiComIF::sendMessage: Half-Duplex write operation failed!" << std::endl;
std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n"); sif::printWarning("SpiComIF::sendMessage: Half-Duplex write operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED; result = HALF_DUPLEX_TRANSFER_FAILED;
}
} }
}
if(gpioId != gpio::NO_GPIO) { if (gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId); gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex(); result = spiMutex->unlockMutex();
if (result != RETURN_OK) { if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl; sif::error << "SpiComIF::sendMessage: Failed to unlock mutex" << std::endl;
#endif #endif
return result; return result;
}
} }
return result; }
return result;
} }
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) { ReturnValue_t SpiComIF::getSendSuccess(CookieIF* cookie) { return HasReturnvaluesIF::RETURN_OK; }
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF* cookie, size_t requestLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if (spiCookie == nullptr) {
return NULLPOINTER;
}
if (spiCookie->isFullDuplex()) {
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
}
return performHalfDuplexReception(spiCookie);
} }
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) {
return NULLPOINTER;
}
if(spiCookie->isFullDuplex()) {
return HasReturnvaluesIF::RETURN_OK;
}
return performHalfDuplexReception(spiCookie);
}
ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) { ReturnValue_t SpiComIF::performHalfDuplexReception(SpiCookie* spiCookie) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK; ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
std::string device = spiCookie->getSpiDevice(); std::string device = spiCookie->getSpiDevice();
int fileDescriptor = 0; int fileDescriptor = 0;
UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, UnixFileGuard fileHelper(device, &fileDescriptor, O_RDWR, "SpiComIF::requestReceiveMessage");
"SpiComIF::requestReceiveMessage"); if (fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) {
if(fileHelper.getOpenResult() != HasReturnvaluesIF::RETURN_OK) { return OPENING_FILE_FAILED;
return OPENING_FILE_FAILED; }
}
uint8_t* rxBuf = nullptr; uint8_t* rxBuf = nullptr;
size_t readSize = spiCookie->getCurrentTransferSize(); size_t readSize = spiCookie->getCurrentTransferSize();
result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf); result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
gpioId_t gpioId = spiCookie->getChipSelectPin(); gpioId_t gpioId = spiCookie->getChipSelectPin();
if(gpioId != gpio::NO_GPIO) { if (gpioId != gpio::NO_GPIO) {
result = spiMutex->lockMutex(timeoutType, timeoutMs); result = spiMutex->lockMutex(timeoutType, timeoutMs);
if (result != RETURN_OK) { if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl; sif::error << "SpiComIF::getSendSuccess: Failed to lock mutex" << std::endl;
#endif #endif
return result; return result;
}
gpioComIF->pullLow(gpioId);
} }
gpioComIF->pullLow(gpioId);
}
if(read(fileDescriptor, rxBuf, readSize) != static_cast<ssize_t>(readSize)) { if (read(fileDescriptor, rxBuf, readSize) != static_cast<ssize_t>(readSize)) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl; sif::warning << "SpiComIF::sendMessage: Half-Duplex read operation failed!" << std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n"); sif::printWarning("SpiComIF::sendMessage: Half-Duplex read operation failed!\n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
result = HALF_DUPLEX_TRANSFER_FAILED; result = HALF_DUPLEX_TRANSFER_FAILED;
} }
if(gpioId != gpio::NO_GPIO) { if (gpioId != gpio::NO_GPIO) {
gpioComIF->pullHigh(gpioId); gpioComIF->pullHigh(gpioId);
result = spiMutex->unlockMutex(); result = spiMutex->unlockMutex();
if (result != RETURN_OK) { if (result != RETURN_OK) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl; sif::error << "SpiComIF::getSendSuccess: Failed to unlock mutex" << std::endl;
#endif #endif
return result; return result;
}
} }
}
return result; return result;
} }
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) { ReturnValue_t SpiComIF::readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie);
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
uint8_t* rxBuf = nullptr; uint8_t* rxBuf = nullptr;
ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf); ReturnValue_t result = getReadBuffer(spiCookie->getSpiAddress(), &rxBuf);
if(result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
return result; return result;
} }
*buffer = rxBuf; *buffer = rxBuf;
*size = spiCookie->getCurrentTransferSize(); *size = spiCookie->getCurrentTransferSize();
spiCookie->setTransferSize(0); spiCookie->setTransferSize(0);
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
MutexIF* SpiComIF::getMutex(MutexIF::TimeoutType* timeoutType, uint32_t* timeoutMs) { MutexIF* SpiComIF::getMutex(MutexIF::TimeoutType* timeoutType, uint32_t* timeoutMs) {
if(timeoutType != nullptr) { if (timeoutType != nullptr) {
*timeoutType = this->timeoutType; *timeoutType = this->timeoutType;
} }
if(timeoutMs != nullptr) { if (timeoutMs != nullptr) {
*timeoutMs = this->timeoutMs; *timeoutMs = this->timeoutMs;
} }
return spiMutex; return spiMutex;
} }
void SpiComIF::performSpiWiretapping(SpiCookie* spiCookie) { void SpiComIF::performSpiWiretapping(SpiCookie* spiCookie) {
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return; return;
} }
size_t dataLen = spiCookie->getTransferStructHandle()->len; size_t dataLen = spiCookie->getTransferStructHandle()->len;
uint8_t* dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->tx_buf); uint8_t* dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->tx_buf);
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::info << "Sent SPI data: " << std::endl; sif::info << "Sent SPI data: " << std::endl;
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::info << "Received SPI data: " << std::endl; sif::info << "Received SPI data: " << std::endl;
#else #else
sif::printInfo("Sent SPI data: \n"); sif::printInfo("Sent SPI data: \n");
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
sif::printInfo("Received SPI data: \n"); sif::printInfo("Received SPI data: \n");
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->rx_buf); dataPtr = reinterpret_cast<uint8_t*>(spiCookie->getTransferStructHandle()->rx_buf);
arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false); arrayprinter::print(dataPtr, dataLen, OutputType::HEX, false);
} }
ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) { ReturnValue_t SpiComIF::getReadBuffer(address_t spiAddress, uint8_t** buffer) {
if(buffer == nullptr) { if (buffer == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
auto iter = spiDeviceMap.find(spiAddress); auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) { if (iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
*buffer = iter->second.replyBuffer.data(); *buffer = iter->second.replyBuffer.data();
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
GpioIF* SpiComIF::getGpioInterface() { GpioIF* SpiComIF::getGpioInterface() { return gpioComIF; }
return gpioComIF;
}
void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) { void SpiComIF::setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed) {
int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast<uint8_t*>(&mode)); int retval = ioctl(spiFd, SPI_IOC_WR_MODE, reinterpret_cast<uint8_t*>(&mode));
if(retval != 0) { if (retval != 0) {
utility::handleIoctlError("SpiComIF::setSpiSpeedAndMode: Setting SPI mode failed"); utility::handleIoctlError("SpiComIF::setSpiSpeedAndMode: Setting SPI mode failed");
} }
retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); retval = ioctl(spiFd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if(retval != 0) { if (retval != 0) {
utility::handleIoctlError("SpiComIF::setSpiSpeedAndMode: Setting SPI speed failed"); utility::handleIoctlError("SpiComIF::setSpiSpeedAndMode: Setting SPI speed failed");
} }
// This updates the SPI clock default polarity. Only setting the mode does not update
// the line state, which can be an issue on mode switches because the clock line will
// switch the state after the chip select is pulled low
clockUpdateTransfer.len = 0;
retval = ioctl(spiFd, SPI_IOC_MESSAGE(1), &clockUpdateTransfer);
if (retval != 0) {
utility::handleIoctlError("SpiComIF::setSpiSpeedAndMode: Updating SPI default clock failed");
}
} }

View File

@ -1,16 +1,15 @@
#ifndef LINUX_SPI_SPICOMIF_H_ #ifndef LINUX_SPI_SPICOMIF_H_
#define LINUX_SPI_SPICOMIF_H_ #define LINUX_SPI_SPICOMIF_H_
#include "fsfw/FSFW.h" #include <unordered_map>
#include "spiDefinitions.h" #include <vector>
#include "returnvalues/classIds.h"
#include "fsfw_hal/common/gpio/GpioIF.h"
#include "fsfw/FSFW.h"
#include "fsfw/devicehandlers/DeviceCommunicationIF.h" #include "fsfw/devicehandlers/DeviceCommunicationIF.h"
#include "fsfw/objectmanager/SystemObject.h" #include "fsfw/objectmanager/SystemObject.h"
#include "fsfw_hal/common/gpio/GpioIF.h"
#include <vector> #include "returnvalues/classIds.h"
#include <unordered_map> #include "spiDefinitions.h"
class SpiCookie; class SpiCookie;
@ -21,71 +20,68 @@ class SpiCookie;
* are contained in the SPI cookie. * are contained in the SPI cookie.
* @author R. Mueller * @author R. Mueller
*/ */
class SpiComIF: public DeviceCommunicationIF, public SystemObject { class SpiComIF : public DeviceCommunicationIF, public SystemObject {
public: public:
static constexpr uint8_t spiRetvalId = CLASS_ID::HAL_SPI; static constexpr uint8_t spiRetvalId = CLASS_ID::HAL_SPI;
static constexpr ReturnValue_t OPENING_FILE_FAILED = static constexpr ReturnValue_t OPENING_FILE_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 0); HasReturnvaluesIF::makeReturnCode(spiRetvalId, 0);
/* Full duplex (ioctl) transfer failure */ /* Full duplex (ioctl) transfer failure */
static constexpr ReturnValue_t FULL_DUPLEX_TRANSFER_FAILED = static constexpr ReturnValue_t FULL_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 1); HasReturnvaluesIF::makeReturnCode(spiRetvalId, 1);
/* Half duplex (read/write) transfer failure */ /* Half duplex (read/write) transfer failure */
static constexpr ReturnValue_t HALF_DUPLEX_TRANSFER_FAILED = static constexpr ReturnValue_t HALF_DUPLEX_TRANSFER_FAILED =
HasReturnvaluesIF::makeReturnCode(spiRetvalId, 2); HasReturnvaluesIF::makeReturnCode(spiRetvalId, 2);
SpiComIF(object_id_t objectId, GpioIF* gpioComIF); SpiComIF(object_id_t objectId, GpioIF* gpioComIF);
ReturnValue_t initializeInterface(CookieIF * cookie) override; ReturnValue_t initializeInterface(CookieIF* cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData, ReturnValue_t sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) override;
size_t sendLen) override; ReturnValue_t getSendSuccess(CookieIF* cookie) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override; ReturnValue_t requestReceiveMessage(CookieIF* cookie, size_t requestLen) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie, ReturnValue_t readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) override;
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/** /**
* @brief This function returns the mutex which can be used to protect the spi bus when * @brief This function returns the mutex which can be used to protect the spi bus when
* the chip select must be driven from outside of the com if. * the chip select must be driven from outside of the com if.
*/ */
MutexIF* getMutex(MutexIF::TimeoutType* timeoutType = nullptr, uint32_t* timeoutMs = nullptr); MutexIF* getMutex(MutexIF::TimeoutType* timeoutType = nullptr, uint32_t* timeoutMs = nullptr);
/** /**
* Perform a regular send operation using Linux iotcl. This is public so it can be used * Perform a regular send operation using Linux iotcl. This is public so it can be used
* in functions like a user callback if special handling is only necessary for certain commands. * in functions like a user callback if special handling is only necessary for certain commands.
* @param spiCookie * @param spiCookie
* @param sendData * @param sendData
* @param sendLen * @param sendLen
* @return * @return
*/ */
ReturnValue_t performRegularSendOperation(SpiCookie* spiCookie, const uint8_t *sendData, ReturnValue_t performRegularSendOperation(SpiCookie* spiCookie, const uint8_t* sendData,
size_t sendLen); size_t sendLen);
GpioIF* getGpioInterface(); GpioIF* getGpioInterface();
void setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed); void setSpiSpeedAndMode(int spiFd, spi::SpiModes mode, uint32_t speed);
void performSpiWiretapping(SpiCookie* spiCookie); void performSpiWiretapping(SpiCookie* spiCookie);
ReturnValue_t getReadBuffer(address_t spiAddress, uint8_t** buffer); ReturnValue_t getReadBuffer(address_t spiAddress, uint8_t** buffer);
private: private:
struct SpiInstance {
SpiInstance(size_t maxRecvSize) : replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
};
struct SpiInstance { GpioIF* gpioComIF = nullptr;
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
};
GpioIF* gpioComIF = nullptr; MutexIF* spiMutex = nullptr;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING;
uint32_t timeoutMs = 20;
spi_ioc_transfer clockUpdateTransfer = {};
MutexIF* spiMutex = nullptr; using SpiDeviceMap = std::unordered_map<address_t, SpiInstance>;
MutexIF::TimeoutType timeoutType = MutexIF::TimeoutType::WAITING; using SpiDeviceMapIter = SpiDeviceMap::iterator;
uint32_t timeoutMs = 20;
using SpiDeviceMap = std::unordered_map<address_t, SpiInstance>; SpiDeviceMap spiDeviceMap;
using SpiDeviceMapIter = SpiDeviceMap::iterator;
SpiDeviceMap spiDeviceMap; ReturnValue_t performHalfDuplexReception(SpiCookie* spiCookie);
ReturnValue_t performHalfDuplexReception(SpiCookie* spiCookie);
}; };
#endif /* LINUX_SPI_SPICOMIF_H_ */ #endif /* LINUX_SPI_SPICOMIF_H_ */

View File

@ -1,144 +1,109 @@
#include "fsfw_hal/linux/spi/SpiCookie.h" #include "fsfw_hal/linux/spi/SpiCookie.h"
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed): const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed)
SpiCookie(spi::SpiComIfModes::REGULAR, spiAddress, chipSelect, spiDev, maxSize, spiMode, : SpiCookie(spi::SpiComIfModes::REGULAR, spiAddress, chipSelect, spiDev, maxSize, spiMode,
spiSpeed, nullptr, nullptr) { spiSpeed, nullptr, nullptr) {}
}
SpiCookie::SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxSize, SpiCookie::SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed): spi::SpiModes spiMode, uint32_t spiSpeed)
SpiCookie(spiAddress, gpio::NO_GPIO, spiDev, maxSize, spiMode, spiSpeed) { : SpiCookie(spiAddress, gpio::NO_GPIO, spiDev, maxSize, spiMode, spiSpeed) {}
}
SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, SpiCookie::SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void *args): spi::send_callback_function_t callback, void* args)
SpiCookie(spi::SpiComIfModes::CALLBACK, spiAddress, chipSelect, spiDev, maxSize, : SpiCookie(spi::SpiComIfModes::CALLBACK, spiAddress, chipSelect, spiDev, maxSize, spiMode,
spiMode, spiSpeed, callback, args) { spiSpeed, callback, args) {}
}
SpiCookie::SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect, SpiCookie::SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed, std::string spiDev, const size_t maxSize, spi::SpiModes spiMode,
spi::send_callback_function_t callback, void* args): uint32_t spiSpeed, spi::send_callback_function_t callback, void* args)
spiAddress(spiAddress), chipSelectPin(chipSelect), spiDevice(spiDev), : spiAddress(spiAddress),
comIfMode(comIfMode), maxSize(maxSize), spiMode(spiMode), spiSpeed(spiSpeed), chipSelectPin(chipSelect),
sendCallback(callback), callbackArgs(args) { spiDevice(spiDev),
} comIfMode(comIfMode),
maxSize(maxSize),
spiMode(spiMode),
spiSpeed(spiSpeed),
sendCallback(callback),
callbackArgs(args) {}
spi::SpiComIfModes SpiCookie::getComIfMode() const { spi::SpiComIfModes SpiCookie::getComIfMode() const { return this->comIfMode; }
return this->comIfMode;
}
void SpiCookie::getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed, void SpiCookie::getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters) const { UncommonParameters* parameters) const {
spiMode = this->spiMode; spiMode = this->spiMode;
spiSpeed = this->spiSpeed; spiSpeed = this->spiSpeed;
if(parameters != nullptr) { if (parameters != nullptr) {
parameters->threeWireSpi = uncommonParameters.threeWireSpi; parameters->threeWireSpi = uncommonParameters.threeWireSpi;
parameters->lsbFirst = uncommonParameters.lsbFirst; parameters->lsbFirst = uncommonParameters.lsbFirst;
parameters->noCs = uncommonParameters.noCs; parameters->noCs = uncommonParameters.noCs;
parameters->bitsPerWord = uncommonParameters.bitsPerWord; parameters->bitsPerWord = uncommonParameters.bitsPerWord;
parameters->csHigh = uncommonParameters.csHigh; parameters->csHigh = uncommonParameters.csHigh;
} }
} }
gpioId_t SpiCookie::getChipSelectPin() const { gpioId_t SpiCookie::getChipSelectPin() const { return chipSelectPin; }
return chipSelectPin;
}
size_t SpiCookie::getMaxBufferSize() const { size_t SpiCookie::getMaxBufferSize() const { return maxSize; }
return maxSize;
}
address_t SpiCookie::getSpiAddress() const { address_t SpiCookie::getSpiAddress() const { return spiAddress; }
return spiAddress;
}
std::string SpiCookie::getSpiDevice() const { std::string SpiCookie::getSpiDevice() const { return spiDevice; }
return spiDevice;
}
void SpiCookie::setThreeWireSpi(bool enable) { void SpiCookie::setThreeWireSpi(bool enable) { uncommonParameters.threeWireSpi = enable; }
uncommonParameters.threeWireSpi = enable;
}
void SpiCookie::setLsbFirst(bool enable) { void SpiCookie::setLsbFirst(bool enable) { uncommonParameters.lsbFirst = enable; }
uncommonParameters.lsbFirst = enable;
}
void SpiCookie::setNoCs(bool enable) { void SpiCookie::setNoCs(bool enable) { uncommonParameters.noCs = enable; }
uncommonParameters.noCs = enable;
}
void SpiCookie::setBitsPerWord(uint8_t bitsPerWord) { void SpiCookie::setBitsPerWord(uint8_t bitsPerWord) {
uncommonParameters.bitsPerWord = bitsPerWord; uncommonParameters.bitsPerWord = bitsPerWord;
} }
void SpiCookie::setCsHigh(bool enable) { void SpiCookie::setCsHigh(bool enable) { uncommonParameters.csHigh = enable; }
uncommonParameters.csHigh = enable;
}
void SpiCookie::activateCsDeselect(bool deselectCs, uint16_t delayUsecs) { void SpiCookie::activateCsDeselect(bool deselectCs, uint16_t delayUsecs) {
spiTransferStruct.cs_change = deselectCs; spiTransferStruct.cs_change = deselectCs;
spiTransferStruct.delay_usecs = delayUsecs; spiTransferStruct.delay_usecs = delayUsecs;
} }
void SpiCookie::assignReadBuffer(uint8_t* rx) { void SpiCookie::assignReadBuffer(uint8_t* rx) {
if(rx != nullptr) { if (rx != nullptr) {
spiTransferStruct.rx_buf = reinterpret_cast<__u64>(rx); spiTransferStruct.rx_buf = reinterpret_cast<__u64>(rx);
} }
} }
void SpiCookie::assignWriteBuffer(const uint8_t* tx) { void SpiCookie::assignWriteBuffer(const uint8_t* tx) {
if(tx != nullptr) { if (tx != nullptr) {
spiTransferStruct.tx_buf = reinterpret_cast<__u64>(tx); spiTransferStruct.tx_buf = reinterpret_cast<__u64>(tx);
} }
} }
void SpiCookie::setCallbackMode(spi::send_callback_function_t callback, void SpiCookie::setCallbackMode(spi::send_callback_function_t callback, void* args) {
void *args) { this->comIfMode = spi::SpiComIfModes::CALLBACK;
this->comIfMode = spi::SpiComIfModes::CALLBACK; this->sendCallback = callback;
this->sendCallback = callback; this->callbackArgs = args;
this->callbackArgs = args;
} }
void SpiCookie::setCallbackArgs(void *args) { void SpiCookie::setCallbackArgs(void* args) { this->callbackArgs = args; }
this->callbackArgs = args;
}
spi_ioc_transfer* SpiCookie::getTransferStructHandle() { spi_ioc_transfer* SpiCookie::getTransferStructHandle() { return &spiTransferStruct; }
return &spiTransferStruct;
}
void SpiCookie::setFullOrHalfDuplex(bool halfDuplex) { void SpiCookie::setFullOrHalfDuplex(bool halfDuplex) { this->halfDuplex = halfDuplex; }
this->halfDuplex = halfDuplex;
}
bool SpiCookie::isFullDuplex() const { bool SpiCookie::isFullDuplex() const { return not this->halfDuplex; }
return not this->halfDuplex;
}
void SpiCookie::setTransferSize(size_t transferSize) { void SpiCookie::setTransferSize(size_t transferSize) { spiTransferStruct.len = transferSize; }
spiTransferStruct.len = transferSize;
}
size_t SpiCookie::getCurrentTransferSize() const { size_t SpiCookie::getCurrentTransferSize() const { return spiTransferStruct.len; }
return spiTransferStruct.len;
}
void SpiCookie::setSpiSpeed(uint32_t newSpeed) { void SpiCookie::setSpiSpeed(uint32_t newSpeed) { this->spiSpeed = newSpeed; }
this->spiSpeed = newSpeed;
}
void SpiCookie::setSpiMode(spi::SpiModes newMode) { void SpiCookie::setSpiMode(spi::SpiModes newMode) { this->spiMode = newMode; }
this->spiMode = newMode;
}
void SpiCookie::getCallback(spi::send_callback_function_t *callback, void SpiCookie::getCallback(spi::send_callback_function_t* callback, void** args) {
void **args) { *callback = this->sendCallback;
*callback = this->sendCallback; *args = this->callbackArgs;
*args = this->callbackArgs;
} }

View File

@ -1,13 +1,12 @@
#ifndef LINUX_SPI_SPICOOKIE_H_ #ifndef LINUX_SPI_SPICOOKIE_H_
#define LINUX_SPI_SPICOOKIE_H_ #define LINUX_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "../../common/gpio/gpioDefinitions.h"
#include <fsfw/devicehandlers/CookieIF.h> #include <fsfw/devicehandlers/CookieIF.h>
#include <linux/spi/spidev.h> #include <linux/spi/spidev.h>
#include "../../common/gpio/gpioDefinitions.h"
#include "spiDefinitions.h"
/** /**
* @brief This cookie class is passed to the SPI communication interface * @brief This cookie class is passed to the SPI communication interface
* @details * @details
@ -19,165 +18,163 @@
* special requirements like expander slave select switching (e.g. GPIO or I2C expander) * special requirements like expander slave select switching (e.g. GPIO or I2C expander)
* or special timing related requirements. * or special timing related requirements.
*/ */
class SpiCookie: public CookieIF { class SpiCookie : public CookieIF {
public: public:
/** /**
* Each SPI device will have a corresponding cookie. The cookie is used by the communication * Each SPI device will have a corresponding cookie. The cookie is used by the communication
* interface and contains device specific information like the largest expected size to be * interface and contains device specific information like the largest expected size to be
* sent and received and the GPIO pin used to toggle the SPI slave select pin. * sent and received and the GPIO pin used to toggle the SPI slave select pin.
* @param spiAddress * @param spiAddress
* @param chipSelect Chip select. gpio::NO_GPIO can be used for hardware slave selects. * @param chipSelect Chip select. gpio::NO_GPIO can be used for hardware slave selects.
* @param spiDev * @param spiDev
* @param maxSize * @param maxSize
*/ */
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize,
const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Like constructor above, but without a dedicated GPIO CS. Can be used for hardware
* slave select or if CS logic is performed with decoders.
*/
SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxReplySize,
spi::SpiModes spiMode, uint32_t spiSpeed); spi::SpiModes spiMode, uint32_t spiSpeed);
/** /**
* Use the callback mode of the SPI communication interface. The user can pass the callback * Like constructor above, but without a dedicated GPIO CS. Can be used for hardware
* function here or by using the setter function #setCallbackMode * slave select or if CS logic is performed with decoders.
*/ */
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize, SpiCookie(address_t spiAddress, std::string spiDev, const size_t maxReplySize,
spi::SpiModes spiMode, uint32_t spiSpeed);
/**
* Use the callback mode of the SPI communication interface. The user can pass the callback
* function here or by using the setter function #setCallbackMode
*/
SpiCookie(address_t spiAddress, gpioId_t chipSelect, std::string spiDev, const size_t maxSize,
spi::SpiModes spiMode, uint32_t spiSpeed, spi::send_callback_function_t callback, spi::SpiModes spiMode, uint32_t spiSpeed, spi::send_callback_function_t callback,
void *args); void* args);
/** /**
* Get the callback function * Get the callback function
* @param callback * @param callback
* @param args * @param args
*/ */
void getCallback(spi::send_callback_function_t* callback, void** args); void getCallback(spi::send_callback_function_t* callback, void** args);
address_t getSpiAddress() const; address_t getSpiAddress() const;
std::string getSpiDevice() const; std::string getSpiDevice() const;
gpioId_t getChipSelectPin() const; gpioId_t getChipSelectPin() const;
size_t getMaxBufferSize() const; size_t getMaxBufferSize() const;
spi::SpiComIfModes getComIfMode() const; spi::SpiComIfModes getComIfMode() const;
/** Enables changing SPI speed at run-time */ /** Enables changing SPI speed at run-time */
void setSpiSpeed(uint32_t newSpeed); void setSpiSpeed(uint32_t newSpeed);
/** Enables changing the SPI mode at run-time */ /** Enables changing the SPI mode at run-time */
void setSpiMode(spi::SpiModes newMode); void setSpiMode(spi::SpiModes newMode);
/** /**
* Set the SPI to callback mode and assigns the user supplied callback and an argument * Set the SPI to callback mode and assigns the user supplied callback and an argument
* passed to the callback. * passed to the callback.
* @param callback * @param callback
* @param args * @param args
*/ */
void setCallbackMode(spi::send_callback_function_t callback, void* args); void setCallbackMode(spi::send_callback_function_t callback, void* args);
/** /**
* Can be used to set the callback arguments and a later point than initialization. * Can be used to set the callback arguments and a later point than initialization.
* @param args * @param args
*/ */
void setCallbackArgs(void* args); void setCallbackArgs(void* args);
/** /**
* True if SPI transfers should be performed in full duplex mode * True if SPI transfers should be performed in full duplex mode
* @return * @return
*/ */
bool isFullDuplex() const; bool isFullDuplex() const;
/** /**
* Set transfer type to full duplex or half duplex. Full duplex is the default setting, * Set transfer type to full duplex or half duplex. Full duplex is the default setting,
* ressembling common SPI hardware implementation with shift registers, where read and writes * ressembling common SPI hardware implementation with shift registers, where read and writes
* happen simultaneosly. * happen simultaneosly.
* @param fullDuplex * @param fullDuplex
*/ */
void setFullOrHalfDuplex(bool halfDuplex); void setFullOrHalfDuplex(bool halfDuplex);
/** /**
* This needs to be called to specify where the SPI driver writes to or reads from. * This needs to be called to specify where the SPI driver writes to or reads from.
* @param readLocation * @param readLocation
* @param writeLocation * @param writeLocation
*/ */
void assignReadBuffer(uint8_t* rx); void assignReadBuffer(uint8_t* rx);
void assignWriteBuffer(const uint8_t* tx); void assignWriteBuffer(const uint8_t* tx);
/** /**
* Set size for the next transfer. Set to 0 for no transfer * Set size for the next transfer. Set to 0 for no transfer
* @param transferSize * @param transferSize
*/ */
void setTransferSize(size_t transferSize); void setTransferSize(size_t transferSize);
size_t getCurrentTransferSize() const; size_t getCurrentTransferSize() const;
struct UncommonParameters { struct UncommonParameters {
uint8_t bitsPerWord = 8; uint8_t bitsPerWord = 8;
bool noCs = false; bool noCs = false;
bool csHigh = false; bool csHigh = false;
bool threeWireSpi = false; bool threeWireSpi = false;
/* MSB first is more common */ /* MSB first is more common */
bool lsbFirst = false; bool lsbFirst = false;
}; };
/** /**
* Can be used to explicitely disable hardware chip select. * Can be used to explicitely disable hardware chip select.
* Some drivers like the Raspberry Pi Linux driver will not use hardware chip select by default * Some drivers like the Raspberry Pi Linux driver will not use hardware chip select by default
* (see https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md) * (see https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md)
* @param enable * @param enable
*/ */
void setNoCs(bool enable); void setNoCs(bool enable);
void setThreeWireSpi(bool enable); void setThreeWireSpi(bool enable);
void setLsbFirst(bool enable); void setLsbFirst(bool enable);
void setCsHigh(bool enable); void setCsHigh(bool enable);
void setBitsPerWord(uint8_t bitsPerWord); void setBitsPerWord(uint8_t bitsPerWord);
void getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed, void getSpiParameters(spi::SpiModes& spiMode, uint32_t& spiSpeed,
UncommonParameters* parameters = nullptr) const; UncommonParameters* parameters = nullptr) const;
/** /**
* See spidev.h cs_change and delay_usecs * See spidev.h cs_change and delay_usecs
* @param deselectCs * @param deselectCs
* @param delayUsecs * @param delayUsecs
*/ */
void activateCsDeselect(bool deselectCs, uint16_t delayUsecs); void activateCsDeselect(bool deselectCs, uint16_t delayUsecs);
spi_ioc_transfer* getTransferStructHandle(); spi_ioc_transfer* getTransferStructHandle();
private:
/** private:
* Internal constructor which initializes every field /**
* @param spiAddress * Internal constructor which initializes every field
* @param chipSelect * @param spiAddress
* @param spiDev * @param chipSelect
* @param maxSize * @param spiDev
* @param spiMode * @param maxSize
* @param spiSpeed * @param spiMode
* @param callback * @param spiSpeed
* @param args * @param callback
*/ * @param args
SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect, */
SpiCookie(spi::SpiComIfModes comIfMode, address_t spiAddress, gpioId_t chipSelect,
std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed, std::string spiDev, const size_t maxSize, spi::SpiModes spiMode, uint32_t spiSpeed,
spi::send_callback_function_t callback, void* args); spi::send_callback_function_t callback, void* args);
address_t spiAddress; address_t spiAddress;
gpioId_t chipSelectPin; gpioId_t chipSelectPin;
std::string spiDevice; std::string spiDevice;
spi::SpiComIfModes comIfMode; spi::SpiComIfModes comIfMode;
// Required for regular mode // Required for regular mode
const size_t maxSize; const size_t maxSize;
spi::SpiModes spiMode; spi::SpiModes spiMode;
uint32_t spiSpeed; uint32_t spiSpeed;
bool halfDuplex = false; bool halfDuplex = false;
// Required for callback mode // Required for callback mode
spi::send_callback_function_t sendCallback = nullptr; spi::send_callback_function_t sendCallback = nullptr;
void* callbackArgs = nullptr; void* callbackArgs = nullptr;
struct spi_ioc_transfer spiTransferStruct = {}; struct spi_ioc_transfer spiTransferStruct = {};
UncommonParameters uncommonParameters; UncommonParameters uncommonParameters;
}; };
#endif /* LINUX_SPI_SPICOOKIE_H_ */ #endif /* LINUX_SPI_SPICOOKIE_H_ */

View File

@ -1,28 +1,25 @@
#ifndef LINUX_SPI_SPIDEFINITONS_H_ #ifndef LINUX_SPI_SPIDEFINITONS_H_
#define LINUX_SPI_SPIDEFINITONS_H_ #define LINUX_SPI_SPIDEFINITONS_H_
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include <linux/spi/spidev.h> #include <linux/spi/spidev.h>
#include <cstdint> #include <cstdint>
#include "../../common/gpio/gpioDefinitions.h"
#include "../../common/spi/spiCommon.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
class SpiCookie; class SpiCookie;
class SpiComIF; class SpiComIF;
namespace spi { namespace spi {
enum SpiComIfModes { enum SpiComIfModes { REGULAR, CALLBACK };
REGULAR,
CALLBACK
};
using send_callback_function_t = ReturnValue_t (*)(SpiComIF* comIf, SpiCookie* cookie,
const uint8_t* sendData, size_t sendLen,
void* args);
using send_callback_function_t = ReturnValue_t (*) (SpiComIF* comIf, SpiCookie *cookie, } // namespace spi
const uint8_t *sendData, size_t sendLen, void* args);
}
#endif /* LINUX_SPI_SPIDEFINITONS_H_ */ #endif /* LINUX_SPI_SPIDEFINITONS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +1,14 @@
#ifndef BSP_Q7S_COMIF_UARTCOMIF_H_ #ifndef BSP_Q7S_COMIF_UARTCOMIF_H_
#define BSP_Q7S_COMIF_UARTCOMIF_H_ #define BSP_Q7S_COMIF_UARTCOMIF_H_
#include "UartCookie.h"
#include <fsfw/objectmanager/SystemObject.h>
#include <fsfw/devicehandlers/DeviceCommunicationIF.h> #include <fsfw/devicehandlers/DeviceCommunicationIF.h>
#include <fsfw/objectmanager/SystemObject.h>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "UartCookie.h"
/** /**
* @brief This is the communication interface to access serial ports on linux based operating * @brief This is the communication interface to access serial ports on linux based operating
* systems. * systems.
@ -17,109 +18,104 @@
* *
* @author J. Meier * @author J. Meier
*/ */
class UartComIF: public DeviceCommunicationIF, public SystemObject { class UartComIF : public DeviceCommunicationIF, public SystemObject {
public: public:
static constexpr uint8_t uartRetvalId = CLASS_ID::HAL_UART; static constexpr uint8_t uartRetvalId = CLASS_ID::HAL_UART;
static constexpr ReturnValue_t UART_READ_FAILURE = static constexpr ReturnValue_t UART_READ_FAILURE =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 1); HasReturnvaluesIF::makeReturnCode(uartRetvalId, 1);
static constexpr ReturnValue_t UART_READ_SIZE_MISSMATCH = static constexpr ReturnValue_t UART_READ_SIZE_MISSMATCH =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 2); HasReturnvaluesIF::makeReturnCode(uartRetvalId, 2);
static constexpr ReturnValue_t UART_RX_BUFFER_TOO_SMALL = static constexpr ReturnValue_t UART_RX_BUFFER_TOO_SMALL =
HasReturnvaluesIF::makeReturnCode(uartRetvalId, 3); HasReturnvaluesIF::makeReturnCode(uartRetvalId, 3);
UartComIF(object_id_t objectId); UartComIF(object_id_t objectId);
virtual ~UartComIF(); virtual ~UartComIF();
ReturnValue_t initializeInterface(CookieIF * cookie) override; ReturnValue_t initializeInterface(CookieIF* cookie) override;
ReturnValue_t sendMessage(CookieIF *cookie,const uint8_t *sendData, ReturnValue_t sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) override;
size_t sendLen) override; ReturnValue_t getSendSuccess(CookieIF* cookie) override;
ReturnValue_t getSendSuccess(CookieIF *cookie) override; ReturnValue_t requestReceiveMessage(CookieIF* cookie, size_t requestLen) override;
ReturnValue_t requestReceiveMessage(CookieIF *cookie, ReturnValue_t readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) override;
size_t requestLen) override;
ReturnValue_t readReceivedMessage(CookieIF *cookie, uint8_t **buffer,
size_t *size) override;
/** /**
* @brief This function discards all data received but not read in the UART buffer. * @brief This function discards all data received but not read in the UART buffer.
*/ */
ReturnValue_t flushUartRxBuffer(CookieIF *cookie); ReturnValue_t flushUartRxBuffer(CookieIF* cookie);
/** /**
* @brief This function discards all data in the transmit buffer of the UART driver. * @brief This function discards all data in the transmit buffer of the UART driver.
*/ */
ReturnValue_t flushUartTxBuffer(CookieIF *cookie); ReturnValue_t flushUartTxBuffer(CookieIF* cookie);
/** /**
* @brief This function discards both data in the transmit and receive buffer of the UART. * @brief This function discards both data in the transmit and receive buffer of the UART.
*/ */
ReturnValue_t flushUartTxAndRxBuf(CookieIF *cookie); ReturnValue_t flushUartTxAndRxBuf(CookieIF* cookie);
private: private:
using UartDeviceFile_t = std::string;
using UartDeviceFile_t = std::string; struct UartElements {
int fileDescriptor;
std::vector<uint8_t> replyBuffer;
/** Number of bytes read will be written to this variable */
size_t replyLen;
};
struct UartElements { using UartDeviceMap = std::unordered_map<UartDeviceFile_t, UartElements>;
int fileDescriptor; using UartDeviceMapIter = UartDeviceMap::iterator;
std::vector<uint8_t> replyBuffer;
/** Number of bytes read will be written to this variable */
size_t replyLen;
};
using UartDeviceMap = std::unordered_map<UartDeviceFile_t, UartElements>; /**
using UartDeviceMapIter = UartDeviceMap::iterator; * The uart devie map stores informations of initialized uart ports.
*/
UartDeviceMap uartDeviceMap;
/** /**
* The uart devie map stores informations of initialized uart ports. * @brief This function opens and configures a uart device by using the information stored
*/ * in the uart cookie.
UartDeviceMap uartDeviceMap; * @param uartCookie Pointer to uart cookie with information about the uart. Contains the
* uart device file, baudrate, parity, stopbits etc.
* @return The file descriptor of the configured uart.
*/
int configureUartPort(UartCookie* uartCookie);
/** /**
* @brief This function opens and configures a uart device by using the information stored * @brief This function adds the parity settings to the termios options struct.
* in the uart cookie. *
* @param uartCookie Pointer to uart cookie with information about the uart. Contains the * @param options Pointer to termios options struct which will be modified to enable or disable
* uart device file, baudrate, parity, stopbits etc. * parity checking.
* @return The file descriptor of the configured uart. * @param uartCookie Pointer to uart cookie containing the information about the desired
*/ * parity settings.
int configureUartPort(UartCookie* uartCookie); *
*/
void setParityOptions(struct termios* options, UartCookie* uartCookie);
/** void setStopBitOptions(struct termios* options, UartCookie* uartCookie);
* @brief This function adds the parity settings to the termios options struct.
*
* @param options Pointer to termios options struct which will be modified to enable or disable
* parity checking.
* @param uartCookie Pointer to uart cookie containing the information about the desired
* parity settings.
*
*/
void setParityOptions(struct termios* options, UartCookie* uartCookie);
void setStopBitOptions(struct termios* options, UartCookie* uartCookie); /**
* @brief This function sets options which are not configurable by the uartCookie.
*/
void setFixedOptions(struct termios* options);
/** /**
* @brief This function sets options which are not configurable by the uartCookie. * @brief With this function the datasize settings are added to the termios options struct.
*/ */
void setFixedOptions(struct termios* options); void setDatasizeOptions(struct termios* options, UartCookie* uartCookie);
/** /**
* @brief With this function the datasize settings are added to the termios options struct. * @brief This functions adds the baudrate specified in the uartCookie to the termios options
*/ * struct.
void setDatasizeOptions(struct termios* options, UartCookie* uartCookie); */
void configureBaudrate(struct termios* options, UartCookie* uartCookie);
/** void setUartMode(struct termios* options, UartCookie& uartCookie);
* @brief This functions adds the baudrate specified in the uartCookie to the termios options
* struct.
*/
void configureBaudrate(struct termios* options, UartCookie* uartCookie);
void setUartMode(struct termios* options, UartCookie& uartCookie);
ReturnValue_t handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleNoncanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleCanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
ReturnValue_t handleNoncanonicalRead(UartCookie& uartCookie, UartDeviceMapIter& iter,
size_t requestLen);
}; };
#endif /* BSP_Q7S_COMIF_UARTCOMIF_H_ */ #endif /* BSP_Q7S_COMIF_UARTCOMIF_H_ */

View File

@ -1,97 +1,65 @@
#include "fsfw_hal/linux/uart/UartCookie.h" #include "UartCookie.h"
#include <fsfw/serviceinterface/ServiceInterface.h> #include <fsfw/serviceinterface.h>
UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode, UartCookie::UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen): uint32_t baudrate, size_t maxReplyLen)
handlerId(handlerId), deviceFile(deviceFile), uartMode(uartMode), : handlerId(handlerId),
baudrate(baudrate), maxReplyLen(maxReplyLen) { deviceFile(deviceFile),
} uartMode(uartMode),
baudrate(baudrate),
maxReplyLen(maxReplyLen) {}
UartCookie::~UartCookie() {} UartCookie::~UartCookie() {}
uint32_t UartCookie::getBaudrate() const { uint32_t UartCookie::getBaudrate() const { return baudrate; }
return baudrate;
}
size_t UartCookie::getMaxReplyLen() const { size_t UartCookie::getMaxReplyLen() const { return maxReplyLen; }
return maxReplyLen;
}
std::string UartCookie::getDeviceFile() const { std::string UartCookie::getDeviceFile() const { return deviceFile; }
return deviceFile;
}
void UartCookie::setParityOdd() { void UartCookie::setParityOdd() { parity = Parity::ODD; }
parity = Parity::ODD;
}
void UartCookie::setParityEven() { void UartCookie::setParityEven() { parity = Parity::EVEN; }
parity = Parity::EVEN;
}
Parity UartCookie::getParity() const { Parity UartCookie::getParity() const { return parity; }
return parity;
}
void UartCookie::setBitsPerWord(uint8_t bitsPerWord_) { void UartCookie::setBitsPerWord(uint8_t bitsPerWord_) {
switch(bitsPerWord_) { switch (bitsPerWord_) {
case 5: case 5:
case 6: case 6:
case 7: case 7:
case 8: case 8:
break; break;
default: default:
sif::debug << "UartCookie::setBitsPerWord: Invalid bits per word specified" << std::endl; #if FSFW_CPP_OSTREAM_ENABLED == 1
return; sif::debug << "UartCookie::setBitsPerWord: Invalid bits per word specified" << std::endl;
} #endif
bitsPerWord = bitsPerWord_; return;
}
bitsPerWord = bitsPerWord_;
} }
uint8_t UartCookie::getBitsPerWord() const { uint8_t UartCookie::getBitsPerWord() const { return bitsPerWord; }
return bitsPerWord;
}
StopBits UartCookie::getStopBits() const { StopBits UartCookie::getStopBits() const { return stopBits; }
return stopBits;
}
void UartCookie::setTwoStopBits() { void UartCookie::setTwoStopBits() { stopBits = StopBits::TWO_STOP_BITS; }
stopBits = StopBits::TWO_STOP_BITS;
}
void UartCookie::setOneStopBit() { void UartCookie::setOneStopBit() { stopBits = StopBits::ONE_STOP_BIT; }
stopBits = StopBits::ONE_STOP_BIT;
}
UartModes UartCookie::getUartMode() const { UartModes UartCookie::getUartMode() const { return uartMode; }
return uartMode;
}
void UartCookie::setReadCycles(uint8_t readCycles) { void UartCookie::setReadCycles(uint8_t readCycles) { this->readCycles = readCycles; }
this->readCycles = readCycles;
}
void UartCookie::setToFlushInput(bool enable) { void UartCookie::setToFlushInput(bool enable) { this->flushInput = enable; }
this->flushInput = enable;
}
uint8_t UartCookie::getReadCycles() const { uint8_t UartCookie::getReadCycles() const { return readCycles; }
return readCycles;
}
bool UartCookie::getInputShouldBeFlushed() { bool UartCookie::getInputShouldBeFlushed() { return this->flushInput; }
return this->flushInput;
}
object_id_t UartCookie::getHandlerId() const { object_id_t UartCookie::getHandlerId() const { return this->handlerId; }
return this->handlerId;
}
void UartCookie::setNoFixedSizeReply() { void UartCookie::setNoFixedSizeReply() { replySizeFixed = false; }
replySizeFixed = false;
}
bool UartCookie::isReplySizeFixed() { bool UartCookie::isReplySizeFixed() { return replySizeFixed; }
return replySizeFixed;
}

View File

@ -6,21 +6,11 @@
#include <string> #include <string>
enum class Parity { enum class Parity { NONE, EVEN, ODD };
NONE,
EVEN,
ODD
};
enum class StopBits { enum class StopBits { ONE_STOP_BIT, TWO_STOP_BITS };
ONE_STOP_BIT,
TWO_STOP_BITS
};
enum class UartModes { enum class UartModes { CANONICAL, NON_CANONICAL };
CANONICAL,
NON_CANONICAL
};
/** /**
* @brief Cookie for the UartComIF. There are many options available to configure the UART driver. * @brief Cookie for the UartComIF. There are many options available to configure the UART driver.
@ -29,93 +19,91 @@ enum class UartModes {
* *
* @author J. Meier * @author J. Meier
*/ */
class UartCookie: public CookieIF { class UartCookie : public CookieIF {
public: public:
/**
* @brief Constructor for the uart cookie.
* @param deviceFile The device file specifying the uart to use, e.g. "/dev/ttyPS1"
* @param uartMode Specify the UART mode. The canonical mode should be used if the
* messages are separated by a delimited character like '\n'. See the
* termios documentation for more information
* @param baudrate The baudrate to use for input and output. Possible Baudrates are: 50,
* 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, B19200,
* 38400, 57600, 115200, 230400, 460800
* @param maxReplyLen The maximum size an object using this cookie expects
* @details
* Default configuration: No parity
* 8 databits (number of bits transfered with one uart frame)
* One stop bit
*/
UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode, uint32_t baudrate,
size_t maxReplyLen);
/** virtual ~UartCookie();
* @brief Constructor for the uart cookie.
* @param deviceFile The device file specifying the uart to use, e.g. "/dev/ttyPS1"
* @param uartMode Specify the UART mode. The canonical mode should be used if the
* messages are separated by a delimited character like '\n'. See the
* termios documentation for more information
* @param baudrate The baudrate to use for input and output. Possible Baudrates are: 50,
* 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, B19200,
* 38400, 57600, 115200, 230400, 460800
* @param maxReplyLen The maximum size an object using this cookie expects
* @details
* Default configuration: No parity
* 8 databits (number of bits transfered with one uart frame)
* One stop bit
*/
UartCookie(object_id_t handlerId, std::string deviceFile, UartModes uartMode,
uint32_t baudrate, size_t maxReplyLen);
virtual ~UartCookie(); uint32_t getBaudrate() const;
size_t getMaxReplyLen() const;
std::string getDeviceFile() const;
Parity getParity() const;
uint8_t getBitsPerWord() const;
StopBits getStopBits() const;
UartModes getUartMode() const;
object_id_t getHandlerId() const;
uint32_t getBaudrate() const; /**
size_t getMaxReplyLen() const; * The UART ComIF will only perform a specified number of read cycles for the canonical mode.
std::string getDeviceFile() const; * The user can specify how many of those read cycles are performed for one device handler
Parity getParity() const; * communication cycle. An example use-case would be to read all available GPS NMEA strings
uint8_t getBitsPerWord() const; * at once.
StopBits getStopBits() const; * @param readCycles
UartModes getUartMode() const; */
object_id_t getHandlerId() const; void setReadCycles(uint8_t readCycles);
uint8_t getReadCycles() const;
/** /**
* The UART ComIF will only perform a specified number of read cycles for the canonical mode. * Allows to flush the data which was received but has not been read yet. This is useful
* The user can specify how many of those read cycles are performed for one device handler * to discard obsolete data at software startup.
* communication cycle. An example use-case would be to read all available GPS NMEA strings */
* at once. void setToFlushInput(bool enable);
* @param readCycles bool getInputShouldBeFlushed();
*/
void setReadCycles(uint8_t readCycles);
uint8_t getReadCycles() const;
/** /**
* Allows to flush the data which was received but has not been read yet. This is useful * Functions two enable parity checking.
* to discard obsolete data at software startup. */
*/ void setParityOdd();
void setToFlushInput(bool enable); void setParityEven();
bool getInputShouldBeFlushed();
/** /**
* Functions two enable parity checking. * Function two set number of bits per UART frame.
*/ */
void setParityOdd(); void setBitsPerWord(uint8_t bitsPerWord_);
void setParityEven();
/** /**
* Function two set number of bits per UART frame. * Function to specify the number of stopbits.
*/ */
void setBitsPerWord(uint8_t bitsPerWord_); void setTwoStopBits();
void setOneStopBit();
/** /**
* Function to specify the number of stopbits. * Calling this function prevents the UartComIF to return failed if not all requested bytes
*/ * could be read. This is required by a device handler when the size of a reply is not known.
void setTwoStopBits(); */
void setOneStopBit(); void setNoFixedSizeReply();
/** bool isReplySizeFixed();
* Calling this function prevents the UartComIF to return failed if not all requested bytes
* could be read. This is required by a device handler when the size of a reply is not known.
*/
void setNoFixedSizeReply();
bool isReplySizeFixed(); private:
const object_id_t handlerId;
private: std::string deviceFile;
const UartModes uartMode;
const object_id_t handlerId; bool flushInput = false;
std::string deviceFile; uint32_t baudrate;
const UartModes uartMode; size_t maxReplyLen = 0;
bool flushInput = false; Parity parity = Parity::NONE;
uint32_t baudrate; uint8_t bitsPerWord = 8;
size_t maxReplyLen = 0; uint8_t readCycles = 1;
Parity parity = Parity::NONE; StopBits stopBits = StopBits::ONE_STOP_BIT;
uint8_t bitsPerWord = 8; bool replySizeFixed = true;
uint8_t readCycles = 1;
StopBits stopBits = StopBits::ONE_STOP_BIT;
bool replySizeFixed = true;
}; };
#endif #endif

View File

@ -0,0 +1,3 @@
target_sources(${LIB_FSFW_NAME} PUBLIC
UioMapper.cpp
)

View File

@ -0,0 +1,86 @@
#include "UioMapper.h"
#include <fcntl.h>
#include <unistd.h>
#include <filesystem>
#include <fstream>
#include <sstream>
#include "fsfw/serviceinterface.h"
const char UioMapper::UIO_PATH_PREFIX[] = "/sys/class/uio/";
const char UioMapper::MAP_SUBSTR[] = "/maps/map";
const char UioMapper::SIZE_FILE_PATH[] = "/size";
UioMapper::UioMapper(std::string uioFile, int mapNum) : uioFile(uioFile), mapNum(mapNum) {}
UioMapper::~UioMapper() {}
ReturnValue_t UioMapper::getMappedAdress(uint32_t** address, Permissions permissions) {
ReturnValue_t result = HasReturnvaluesIF::RETURN_OK;
int fd = open(uioFile.c_str(), O_RDWR);
if (fd < 1) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "PtmeAxiConfig::initialize: Invalid UIO device file" << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
size_t size = 0;
result = getMapSize(&size);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*address = static_cast<uint32_t*>(
mmap(NULL, size, static_cast<int>(permissions), MAP_SHARED, fd, mapNum * getpagesize()));
if (*address == MAP_FAILED) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UioMapper::getMappedAdress: Failed to map physical address of uio device "
<< uioFile.c_str() << " and map" << static_cast<int>(mapNum) << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t UioMapper::getMapSize(size_t* size) {
std::stringstream namestream;
namestream << UIO_PATH_PREFIX << uioFile.substr(5, std::string::npos) << MAP_SUBSTR << mapNum
<< SIZE_FILE_PATH;
FILE* fp;
fp = fopen(namestream.str().c_str(), "r");
if (fp == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UioMapper::getMapSize: Failed to open file " << namestream.str() << std::endl;
#endif
return HasReturnvaluesIF::RETURN_FAILED;
}
char hexstring[SIZE_HEX_STRING] = "";
int items = fscanf(fp, "%s", hexstring);
if (items != 1) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UioMapper::getMapSize: Failed with error code " << errno
<< " to read size "
"string from file "
<< namestream.str() << std::endl;
#endif
fclose(fp);
return HasReturnvaluesIF::RETURN_FAILED;
}
uint32_t sizeTmp = 0;
items = sscanf(hexstring, "%x", &sizeTmp);
if (size != nullptr) {
*size = sizeTmp;
}
if (items != 1) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UioMapper::getMapSize: Failed with error code " << errno << "to convert "
<< "size of map" << mapNum << " to integer" << std::endl;
#endif
fclose(fp);
return HasReturnvaluesIF::RETURN_FAILED;
}
fclose(fp);
return HasReturnvaluesIF::RETURN_OK;
}

View File

@ -0,0 +1,58 @@
#ifndef FSFW_HAL_SRC_FSFW_HAL_LINUX_UIO_UIOMAPPER_H_
#define FSFW_HAL_SRC_FSFW_HAL_LINUX_UIO_UIOMAPPER_H_
#include <sys/mman.h>
#include <string>
#include "fsfw/returnvalues/HasReturnvaluesIF.h"
/**
* @brief Class to help opening uio device files and mapping the physical addresses into the user
* address space.
*
* @author J. Meier
*/
class UioMapper {
public:
enum class Permissions : int {
READ_ONLY = PROT_READ,
WRITE_ONLY = PROT_WRITE,
READ_WRITE = PROT_READ | PROT_WRITE
};
/**
* @brief Constructor
*
* @param uioFile The device file of the uiO to open
* @param uioMap Number of memory map. Most UIO drivers have only one map which has than 0.
*/
UioMapper(std::string uioFile, int mapNum = 0);
virtual ~UioMapper();
/**
* @brief Maps the physical address into user address space and returns the mapped address
*
* @address The mapped user space address
* @permissions Specifies the read/write permissions of the address region
*/
ReturnValue_t getMappedAdress(uint32_t** address, Permissions permissions);
private:
static const char UIO_PATH_PREFIX[];
static const char MAP_SUBSTR[];
static const char SIZE_FILE_PATH[];
static constexpr int SIZE_HEX_STRING = 10;
std::string uioFile;
int mapNum = 0;
/**
* @brief Reads the map size from the associated sysfs size file
*
* @param size The read map size
*/
ReturnValue_t getMapSize(size_t* size);
};
#endif /* FSFW_HAL_SRC_FSFW_HAL_LINUX_UIO_UIOMAPPER_H_ */

View File

@ -1,26 +1,23 @@
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "fsfw_hal/linux/utility.h" #include "fsfw_hal/linux/utility.h"
#include <cerrno> #include <cerrno>
#include <cstring> #include <cstring>
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
void utility::handleIoctlError(const char* const customPrintout) { void utility::handleIoctlError(const char* const customPrintout) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
if(customPrintout != nullptr) { if (customPrintout != nullptr) {
sif::warning << customPrintout << std::endl; sif::warning << customPrintout << std::endl;
} }
sif::warning << "handleIoctlError: Error code " << errno << ", "<< strerror(errno) << sif::warning << "handleIoctlError: Error code " << errno << ", " << strerror(errno) << std::endl;
std::endl;
#else #else
if(customPrintout != nullptr) { if (customPrintout != nullptr) {
sif::printWarning("%s\n", customPrintout); sif::printWarning("%s\n", customPrintout);
} }
sif::printWarning("handleIoctlError: Error code %d, %s\n", errno, strerror(errno)); sif::printWarning("handleIoctlError: Error code %d, %s\n", errno, strerror(errno));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
} }

View File

@ -2,6 +2,7 @@
#define FSFW_HAL_STM32H7_DEFINITIONS_H_ #define FSFW_HAL_STM32H7_DEFINITIONS_H_
#include <utility> #include <utility>
#include "stm32h7xx.h" #include "stm32h7xx.h"
namespace stm32h7 { namespace stm32h7 {
@ -11,15 +12,15 @@ namespace stm32h7 {
* and the second entry is the pin number * and the second entry is the pin number
*/ */
struct GpioCfg { struct GpioCfg {
GpioCfg(): port(nullptr), pin(0), altFnc(0) {}; GpioCfg() : port(nullptr), pin(0), altFnc(0){};
GpioCfg(GPIO_TypeDef* port, uint16_t pin, uint8_t altFnc = 0): GpioCfg(GPIO_TypeDef* port, uint16_t pin, uint8_t altFnc = 0)
port(port), pin(pin), altFnc(altFnc) {}; : port(port), pin(pin), altFnc(altFnc){};
GPIO_TypeDef* port; GPIO_TypeDef* port;
uint16_t pin; uint16_t pin;
uint8_t altFnc; uint8_t altFnc;
}; };
} } // namespace stm32h7
#endif /* #ifndef FSFW_HAL_STM32H7_DEFINITIONS_H_ */ #endif /* #ifndef FSFW_HAL_STM32H7_DEFINITIONS_H_ */

View File

@ -1,549 +1,547 @@
#include "fsfw_hal/stm32h7/devicetest/GyroL3GD20H.h" #include "fsfw_hal/stm32h7/devicetest/GyroL3GD20H.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/spi/spiDefinitions.h"
#include "fsfw_hal/stm32h7/spi/spiCore.h"
#include "fsfw_hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw_hal/stm32h7/spi/stm32h743zi.h"
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h7xx_hal_rcc.h"
#include <cstring> #include <cstring>
#include "fsfw/serviceinterface/ServiceInterface.h"
#include "fsfw/tasks/TaskFactory.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/spi/spiCore.h"
#include "fsfw_hal/stm32h7/spi/spiDefinitions.h"
#include "fsfw_hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw_hal/stm32h7/spi/stm32h743zi.h"
#include "stm32h7xx_hal_rcc.h"
#include "stm32h7xx_hal_spi.h"
alignas(32) std::array<uint8_t, GyroL3GD20H::recvBufferSize> GyroL3GD20H::rxBuffer; alignas(32) std::array<uint8_t, GyroL3GD20H::recvBufferSize> GyroL3GD20H::rxBuffer;
alignas(32) std::array<uint8_t, GyroL3GD20H::txBufferSize> alignas(32) std::array<uint8_t, GyroL3GD20H::txBufferSize> GyroL3GD20H::txBuffer
GyroL3GD20H::txBuffer __attribute__((section(".dma_buffer"))); __attribute__((section(".dma_buffer")));
TransferStates transferState = TransferStates::IDLE; TransferStates transferState = TransferStates::IDLE;
spi::TransferModes GyroL3GD20H::transferMode = spi::TransferModes::POLLING; spi::TransferModes GyroL3GD20H::transferMode = spi::TransferModes::POLLING;
GyroL3GD20H::GyroL3GD20H(SPI_HandleTypeDef *spiHandle, spi::TransferModes transferMode_)
: spiHandle(spiHandle) {
txDmaHandle = new DMA_HandleTypeDef();
rxDmaHandle = new DMA_HandleTypeDef();
spi::setSpiHandle(spiHandle);
spi::assignSpiUserArgs(spi::SpiBus::SPI_1, spiHandle);
transferMode = transferMode_;
if (transferMode == spi::TransferModes::DMA) {
mspCfg = new spi::MspDmaConfigStruct();
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct *>(mspCfg);
spi::setDmaHandles(txDmaHandle, rxDmaHandle);
stm32h7::h743zi::standardDmaCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiDmaMspFunctions(typedCfg);
} else if (transferMode == spi::TransferModes::INTERRUPT) {
mspCfg = new spi::MspIrqConfigStruct();
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct *>(mspCfg);
stm32h7::h743zi::standardInterruptCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiIrqMspFunctions(typedCfg);
} else if (transferMode == spi::TransferModes::POLLING) {
mspCfg = new spi::MspPollingConfigStruct();
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct *>(mspCfg);
stm32h7::h743zi::standardPollingCfg(*typedCfg);
spi::setSpiPollingMspFunctions(typedCfg);
}
GyroL3GD20H::GyroL3GD20H(SPI_HandleTypeDef *spiHandle, spi::TransferModes transferMode_): spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, nullptr);
spiHandle(spiHandle) { spi::assignTransferErrorCallback(&spiTransferErrorCallback, nullptr);
txDmaHandle = new DMA_HandleTypeDef();
rxDmaHandle = new DMA_HandleTypeDef();
spi::setSpiHandle(spiHandle);
spi::assignSpiUserArgs(spi::SpiBus::SPI_1, spiHandle);
transferMode = transferMode_;
if(transferMode == spi::TransferModes::DMA) {
mspCfg = new spi::MspDmaConfigStruct();
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg);
spi::setDmaHandles(txDmaHandle, rxDmaHandle);
stm32h7::h743zi::standardDmaCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS,
IrqPriorities::HIGHEST_FREERTOS, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiDmaMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::INTERRUPT) {
mspCfg = new spi::MspIrqConfigStruct();
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg);
stm32h7::h743zi::standardInterruptCfg(*typedCfg, IrqPriorities::HIGHEST_FREERTOS);
spi::setSpiIrqMspFunctions(typedCfg);
}
else if(transferMode == spi::TransferModes::POLLING) {
mspCfg = new spi::MspPollingConfigStruct();
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg);
stm32h7::h743zi::standardPollingCfg(*typedCfg);
spi::setSpiPollingMspFunctions(typedCfg);
}
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, nullptr); GPIO_InitTypeDef chipSelect = {};
spi::assignTransferErrorCallback(&spiTransferErrorCallback, nullptr); __HAL_RCC_GPIOD_CLK_ENABLE();
chipSelect.Pin = GPIO_PIN_14;
GPIO_InitTypeDef chipSelect = {}; chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
__HAL_RCC_GPIOD_CLK_ENABLE(); HAL_GPIO_Init(GPIOD, &chipSelect);
chipSelect.Pin = GPIO_PIN_14; HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOD, &chipSelect);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
} }
GyroL3GD20H::~GyroL3GD20H() { GyroL3GD20H::~GyroL3GD20H() {
delete txDmaHandle; delete txDmaHandle;
delete rxDmaHandle; delete rxDmaHandle;
if(mspCfg != nullptr) { if (mspCfg != nullptr) {
delete mspCfg; delete mspCfg;
} }
} }
ReturnValue_t GyroL3GD20H::initialize() { ReturnValue_t GyroL3GD20H::initialize() {
// Configure the SPI peripheral // Configure the SPI peripheral
spiHandle->Instance = SPI1; spiHandle->Instance = SPI1;
spiHandle->Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), 3900000); spiHandle->Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), 3900000);
spiHandle->Init.Direction = SPI_DIRECTION_2LINES; spiHandle->Init.Direction = SPI_DIRECTION_2LINES;
spi::assignSpiMode(spi::SpiModes::MODE_3, *spiHandle); spi::assignSpiMode(spi::SpiModes::MODE_3, *spiHandle);
spiHandle->Init.DataSize = SPI_DATASIZE_8BIT; spiHandle->Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle->Init.FirstBit = SPI_FIRSTBIT_MSB; spiHandle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle->Init.TIMode = SPI_TIMODE_DISABLE; spiHandle->Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; spiHandle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spiHandle->Init.CRCPolynomial = 7; spiHandle->Init.CRCPolynomial = 7;
spiHandle->Init.CRCLength = SPI_CRC_LENGTH_8BIT; spiHandle->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle->Init.NSS = SPI_NSS_SOFT; spiHandle->Init.NSS = SPI_NSS_SOFT;
spiHandle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE; spiHandle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
// Recommended setting to avoid glitches // Recommended setting to avoid glitches
spiHandle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE; spiHandle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle->Init.Mode = SPI_MODE_MASTER; spiHandle->Init.Mode = SPI_MODE_MASTER;
if(HAL_SPI_Init(spiHandle) != HAL_OK) { if (HAL_SPI_Init(spiHandle) != HAL_OK) {
sif::printWarning("Error initializing SPI\n"); sif::printWarning("Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
delete mspCfg;
transferState = TransferStates::WAIT;
sif::printInfo("GyroL3GD20H::performOperation: Reading WHO AM I register\n");
txBuffer[0] = WHO_AM_I_REG | STM_READ_MASK;
txBuffer[1] = 0;
switch (transferMode) {
case (spi::TransferModes::DMA): {
return handleDmaTransferInit();
} }
case (spi::TransferModes::INTERRUPT): {
delete mspCfg; return handleInterruptTransferInit();
transferState = TransferStates::WAIT;
sif::printInfo("GyroL3GD20H::performOperation: Reading WHO AM I register\n");
txBuffer[0] = WHO_AM_I_REG | STM_READ_MASK;
txBuffer[1] = 0;
switch(transferMode) {
case(spi::TransferModes::DMA): {
return handleDmaTransferInit();
} }
case(spi::TransferModes::INTERRUPT): { case (spi::TransferModes::POLLING): {
return handleInterruptTransferInit(); return handlePollingTransferInit();
}
case(spi::TransferModes::POLLING): {
return handlePollingTransferInit();
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::performOperation() { ReturnValue_t GyroL3GD20H::performOperation() {
switch(transferMode) { switch (transferMode) {
case(spi::TransferModes::DMA): { case (spi::TransferModes::DMA): {
return handleDmaSensorRead(); return handleDmaSensorRead();
} }
case(spi::TransferModes::POLLING): { case (spi::TransferModes::POLLING): {
return handlePollingSensorRead(); return handlePollingSensorRead();
} }
case(spi::TransferModes::INTERRUPT): { case (spi::TransferModes::INTERRUPT): {
return handleInterruptSensorRead(); return handleInterruptSensorRead();
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::handleDmaTransferInit() { ReturnValue_t GyroL3GD20H::handleDmaTransferInit() {
/* Clean D-cache */ /* Clean D-cache */
/* Make sure the address is 32-byte aligned and add 32-bytes to length, /* Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */ in case it overlaps cacheline */
// See https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices // See https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
HAL_StatusTypeDef result = performDmaTransfer(2); HAL_StatusTypeDef result = performDmaTransfer(2);
if(result != HAL_OK) { if (result != HAL_OK) {
// Transfer error in transmission process // Transfer error in transmission process
sif::printWarning("GyroL3GD20H::initialize: Error transmitting SPI with DMA\n"); sif::printWarning("GyroL3GD20H::initialize: Error transmitting SPI with DMA\n");
} }
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
switch(transferState) { switch (transferState) {
case(TransferStates::SUCCESS): { case (TransferStates::SUCCESS): {
uint8_t whoAmIVal = rxBuffer[1]; uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) { if (whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: " sif::printDebug(
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal); "GyroL3GD20H::initialize: "
} "Read WHO AM I value %d not equal to expected value!\n",
transferState = TransferStates::IDLE; whoAmIVal);
break; }
transferState = TransferStates::IDLE;
break;
} }
case(TransferStates::FAILURE): { case (TransferStates::FAILURE): {
sif::printWarning("Transfer failure\n"); sif::printWarning("Transfer failure\n");
transferState = TransferStates::FAILURE; transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n"); sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers // Configure the 5 configuration registers
uint8_t configRegs[5]; uint8_t configRegs[5];
prepareConfigRegs(configRegs); prepareConfigRegs(configRegs);
result = performDmaTransfer(6); result = performDmaTransfer(6);
if(result != HAL_OK) { if (result != HAL_OK) {
// Transfer error in transmission process // Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n"); sif::printWarning("Error transmitting SPI with DMA\n");
} }
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
switch(transferState) { switch (transferState) {
case(TransferStates::SUCCESS): { case (TransferStates::SUCCESS): {
sif::printInfo("GyroL3GD20H::initialize: Configuration transfer success\n"); sif::printInfo("GyroL3GD20H::initialize: Configuration transfer success\n");
transferState = TransferStates::IDLE; transferState = TransferStates::IDLE;
break; break;
} }
case(TransferStates::FAILURE): { case (TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n"); sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE; transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0, 5);
result = performDmaTransfer(6);
if (result != HAL_OK) {
// Transfer error in transmission process
sif::printWarning("Error transmitting SPI with DMA\n");
}
// Wait for the transfer to complete
while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1);
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; switch (transferState) {
std::memset(txBuffer.data() + 1, 0 , 5); case (TransferStates::SUCCESS): {
result = performDmaTransfer(6); if (rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
if(result != HAL_OK) { rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
// Transfer error in transmission process rxBuffer[5] != configRegs[4]) {
sif::printWarning("Error transmitting SPI with DMA\n"); sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
} else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
transferState = TransferStates::IDLE;
break;
} }
// Wait for the transfer to complete case (TransferStates::FAILURE): {
while (transferState == TransferStates::WAIT) { sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
TaskFactory::delayTask(1); transferState = TransferStates::FAILURE;
} return HasReturnvaluesIF::RETURN_FAILED;
switch(transferState) {
case(TransferStates::SUCCESS): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
}
else {
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
}
transferState = TransferStates::IDLE;
break;
}
case(TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::initialize: Configuration transfer failure\n");
transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::handleDmaSensorRead() { ReturnValue_t GyroL3GD20H::handleDmaSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14); std::memset(txBuffer.data() + 1, 0, 14);
HAL_StatusTypeDef result = performDmaTransfer(15); HAL_StatusTypeDef result = performDmaTransfer(15);
if(result != HAL_OK) { if (result != HAL_OK) {
// Transfer error in transmission process // Transfer error in transmission process
sif::printDebug("GyroL3GD20H::handleDmaSensorRead: Error transmitting SPI with DMA\n"); sif::printDebug("GyroL3GD20H::handleDmaSensorRead: Error transmitting SPI with DMA\n");
} }
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
switch(transferState) { switch (transferState) {
case(TransferStates::SUCCESS): { case (TransferStates::SUCCESS): {
handleSensorReadout(); handleSensorReadout();
break; break;
} }
case(TransferStates::FAILURE): { case (TransferStates::FAILURE): {
sif::printWarning("GyroL3GD20H::handleDmaSensorRead: Sensor read failure\n"); sif::printWarning("GyroL3GD20H::handleDmaSensorRead: Sensor read failure\n");
transferState = TransferStates::FAILURE; transferState = TransferStates::FAILURE;
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
HAL_StatusTypeDef GyroL3GD20H::performDmaTransfer(size_t sendSize) { HAL_StatusTypeDef GyroL3GD20H::performDmaTransfer(size_t sendSize) {
transferState = TransferStates::WAIT; transferState = TransferStates::WAIT;
#if STM_USE_PERIPHERAL_TX_BUFFER_MPU_PROTECTION == 0 #if STM_USE_PERIPHERAL_TX_BUFFER_MPU_PROTECTION == 0
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t)txBuffer.data()) & ~(uint32_t)0x1F), SCB_CleanDCache_by_Addr((uint32_t *)(((uint32_t)txBuffer.data()) & ~(uint32_t)0x1F),
txBuffer.size()+32); txBuffer.size() + 32);
#endif #endif
// Start SPI transfer via DMA // Start SPI transfer via DMA
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
return HAL_SPI_TransmitReceive_DMA(spiHandle, txBuffer.data(), rxBuffer.data(), sendSize); return HAL_SPI_TransmitReceive_DMA(spiHandle, txBuffer.data(), rxBuffer.data(), sendSize);
} }
ReturnValue_t GyroL3GD20H::handlePollingTransferInit() { ReturnValue_t GyroL3GD20H::handlePollingTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 2, 1000); auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 2, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) { switch (result) {
case(HAL_OK): { case (HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Polling transfer success\n"); sif::printInfo("GyroL3GD20H::initialize: Polling transfer success\n");
uint8_t whoAmIVal = rxBuffer[1]; uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) { if (whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::performOperation: " sif::printDebug(
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal); "GyroL3GD20H::performOperation: "
} "Read WHO AM I value %d not equal to expected value!\n",
break; whoAmIVal);
}
break;
} }
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
case(HAL_ERROR): { case (HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n"); sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
// Configure the 5 configuration registers // Configure the 5 configuration registers
uint8_t configRegs[5]; uint8_t configRegs[5];
prepareConfigRegs(configRegs); prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000); result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) { switch (result) {
case(HAL_OK): { case (HAL_OK): {
break; break;
} }
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
case(HAL_ERROR): { case (HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5); std::memset(txBuffer.data() + 1, 0, 5);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000); result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 6, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) { switch (result) {
case(HAL_OK): { case (HAL_OK): {
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or if (rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) { rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n"); sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
} } else {
else { sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n"); }
} break;
break;
} }
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
case(HAL_ERROR): { case (HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::handlePollingSensorRead() { ReturnValue_t GyroL3GD20H::handlePollingSensorRead() {
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14); std::memset(txBuffer.data() + 1, 0, 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 15, 1000); auto result = HAL_SPI_TransmitReceive(spiHandle, txBuffer.data(), rxBuffer.data(), 15, 1000);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
switch(result) { switch (result) {
case(HAL_OK): { case (HAL_OK): {
handleSensorReadout(); handleSensorReadout();
break; break;
} }
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer timeout\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
case(HAL_ERROR): { case (HAL_ERROR): {
sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n"); sif::printDebug("GyroL3GD20H::initialize: Polling transfer failure\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::handleInterruptTransferInit() { ReturnValue_t GyroL3GD20H::handleInterruptTransferInit() {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 2)) { switch (HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 2)) {
case(HAL_OK): { case (HAL_OK): {
sif::printInfo("GyroL3GD20H::initialize: Interrupt transfer success\n"); sif::printInfo("GyroL3GD20H::initialize: Interrupt transfer success\n");
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
uint8_t whoAmIVal = rxBuffer[1]; uint8_t whoAmIVal = rxBuffer[1];
if(whoAmIVal != EXPECTED_WHO_AM_I_VAL) { if (whoAmIVal != EXPECTED_WHO_AM_I_VAL) {
sif::printDebug("GyroL3GD20H::initialize: " sif::printDebug(
"Read WHO AM I value %d not equal to expected value!\n", whoAmIVal); "GyroL3GD20H::initialize: "
} "Read WHO AM I value %d not equal to expected value!\n",
break; whoAmIVal);
} }
case(HAL_BUSY): break;
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
} }
case (HAL_BUSY):
case (HAL_ERROR):
case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
} }
}
sif::printInfo("GyroL3GD20H::initialize: Configuring device\n"); sif::printInfo("GyroL3GD20H::initialize: Configuring device\n");
transferState = TransferStates::WAIT; transferState = TransferStates::WAIT;
// Configure the 5 configuration registers // Configure the 5 configuration registers
uint8_t configRegs[5]; uint8_t configRegs[5];
prepareConfigRegs(configRegs); prepareConfigRegs(configRegs);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) { switch (HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): { case (HAL_OK): {
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
break; break;
}
case(HAL_BUSY):
case(HAL_ERROR):
case(HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
} }
case (HAL_BUSY):
case (HAL_ERROR):
case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED;
} }
}
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 5); std::memset(txBuffer.data() + 1, 0, 5);
transferState = TransferStates::WAIT; transferState = TransferStates::WAIT;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) { switch (HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 6)) {
case(HAL_OK): { case (HAL_OK): {
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
if(rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or if (rxBuffer[1] != configRegs[0] or rxBuffer[2] != configRegs[1] or
rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or rxBuffer[3] != configRegs[2] or rxBuffer[4] != configRegs[3] or
rxBuffer[5] != configRegs[4]) { rxBuffer[5] != configRegs[4]) {
sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n"); sif::printWarning("GyroL3GD20H::initialize: Configuration failure\n");
} } else {
else { sif::printInfo("GyroL3GD20H::initialize: Configuration success\n");
sif::printInfo("GyroL3GD20H::initialize: Configuration success\n"); }
} break;
break;
} }
case(HAL_BUSY): case (HAL_BUSY):
case(HAL_ERROR): case (HAL_ERROR):
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n"); sif::printDebug("GyroL3GD20H::initialize: Initialization failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t GyroL3GD20H::handleInterruptSensorRead() { ReturnValue_t GyroL3GD20H::handleInterruptSensorRead() {
transferState = TransferStates::WAIT; transferState = TransferStates::WAIT;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK | STM_READ_MASK;
std::memset(txBuffer.data() + 1, 0 , 14); std::memset(txBuffer.data() + 1, 0, 14);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
switch(HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 15)) { switch (HAL_SPI_TransmitReceive_IT(spiHandle, txBuffer.data(), rxBuffer.data(), 15)) {
case(HAL_OK): { case (HAL_OK): {
// Wait for the transfer to complete // Wait for the transfer to complete
while (transferState == TransferStates::WAIT) { while (transferState == TransferStates::WAIT) {
TaskFactory::delayTask(1); TaskFactory::delayTask(1);
} }
handleSensorReadout(); handleSensorReadout();
break; break;
} }
case(HAL_BUSY): case (HAL_BUSY):
case(HAL_ERROR): case (HAL_ERROR):
case(HAL_TIMEOUT): { case (HAL_TIMEOUT): {
sif::printDebug("GyroL3GD20H::initialize: Sensor read failure using interrupts\n"); sif::printDebug("GyroL3GD20H::initialize: Sensor read failure using interrupts\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
void GyroL3GD20H::prepareConfigRegs(uint8_t* configRegs) { void GyroL3GD20H::prepareConfigRegs(uint8_t *configRegs) {
// Enable sensor // Enable sensor
configRegs[0] = 0b00001111; configRegs[0] = 0b00001111;
configRegs[1] = 0b00000000; configRegs[1] = 0b00000000;
configRegs[2] = 0b00000000; configRegs[2] = 0b00000000;
// Big endian select // Big endian select
configRegs[3] = 0b01000000; configRegs[3] = 0b01000000;
configRegs[4] = 0b00000000; configRegs[4] = 0b00000000;
txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK; txBuffer[0] = CTRL_REG_1 | STM_AUTO_INCREMENT_MASK;
std::memcpy(txBuffer.data() + 1, configRegs, 5); std::memcpy(txBuffer.data() + 1, configRegs, 5);
} }
uint8_t GyroL3GD20H::readRegPolling(uint8_t reg) { uint8_t GyroL3GD20H::readRegPolling(uint8_t reg) {
uint8_t rxBuf[2] = {}; uint8_t rxBuf[2] = {};
uint8_t txBuf[2] = {}; uint8_t txBuf[2] = {};
txBuf[0] = reg | STM_READ_MASK; txBuf[0] = reg | STM_READ_MASK;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_RESET);
auto result = HAL_SPI_TransmitReceive(spiHandle, txBuf, rxBuf, 2, 1000); auto result = HAL_SPI_TransmitReceive(spiHandle, txBuf, rxBuf, 2, 1000);
if(result) {}; if (result) {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); };
return rxBuf[1]; HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
return rxBuf[1];
} }
void GyroL3GD20H::handleSensorReadout() { void GyroL3GD20H::handleSensorReadout() {
uint8_t statusReg = rxBuffer[8]; uint8_t statusReg = rxBuffer[8];
int16_t gyroXRaw = rxBuffer[9] << 8 | rxBuffer[10]; int16_t gyroXRaw = rxBuffer[9] << 8 | rxBuffer[10];
float gyroX = static_cast<float>(gyroXRaw) * 0.00875; float gyroX = static_cast<float>(gyroXRaw) * 0.00875;
int16_t gyroYRaw = rxBuffer[11] << 8 | rxBuffer[12]; int16_t gyroYRaw = rxBuffer[11] << 8 | rxBuffer[12];
float gyroY = static_cast<float>(gyroYRaw) * 0.00875; float gyroY = static_cast<float>(gyroYRaw) * 0.00875;
int16_t gyroZRaw = rxBuffer[13] << 8 | rxBuffer[14]; int16_t gyroZRaw = rxBuffer[13] << 8 | rxBuffer[14];
float gyroZ = static_cast<float>(gyroZRaw) * 0.00875; float gyroZ = static_cast<float>(gyroZRaw) * 0.00875;
sif::printInfo("Status register: 0b" BYTE_TO_BINARY_PATTERN "\n", BYTE_TO_BINARY(statusReg)); sif::printInfo("Status register: 0b" BYTE_TO_BINARY_PATTERN "\n", BYTE_TO_BINARY(statusReg));
sif::printInfo("Gyro X: %f\n", gyroX); sif::printInfo("Gyro X: %f\n", gyroX);
sif::printInfo("Gyro Y: %f\n", gyroY); sif::printInfo("Gyro Y: %f\n", gyroY);
sif::printInfo("Gyro Z: %f\n", gyroZ); sif::printInfo("Gyro Z: %f\n", gyroZ);
} }
void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args) { transferState = TransferStates::SUCCESS;
transferState = TransferStates::SUCCESS; HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET); if (GyroL3GD20H::transferMode == spi::TransferModes::DMA) {
if(GyroL3GD20H::transferMode == spi::TransferModes::DMA) { // Invalidate cache prior to access by CPU
// Invalidate cache prior to access by CPU SCB_InvalidateDCache_by_Addr((uint32_t *)GyroL3GD20H::rxBuffer.data(),
SCB_InvalidateDCache_by_Addr ((uint32_t *)GyroL3GD20H::rxBuffer.data(), GyroL3GD20H::recvBufferSize);
GyroL3GD20H::recvBufferSize); }
}
} }
/** /**
@ -553,6 +551,6 @@ void GyroL3GD20H::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* arg
* add your own implementation. * add your own implementation.
* @retval None * @retval None
*/ */
void GyroL3GD20H::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args) { void GyroL3GD20H::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void *args) {
transferState = TransferStates::FAILURE; transferState = TransferStates::FAILURE;
} }

View File

@ -1,70 +1,61 @@
#ifndef FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ #ifndef FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#define FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ #define FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_
#include "stm32h7xx_hal.h" #include <array>
#include "stm32h7xx_hal_spi.h" #include <cstdint>
#include "../spi/mspInit.h" #include "../spi/mspInit.h"
#include "../spi/spiDefinitions.h" #include "../spi/spiDefinitions.h"
#include "fsfw/returnvalues/HasReturnvaluesIF.h" #include "fsfw/returnvalues/HasReturnvaluesIF.h"
#include "stm32h7xx_hal.h"
#include "stm32h7xx_hal_spi.h"
#include <cstdint> enum class TransferStates { IDLE, WAIT, SUCCESS, FAILURE };
#include <array>
enum class TransferStates {
IDLE,
WAIT,
SUCCESS,
FAILURE
};
class GyroL3GD20H { class GyroL3GD20H {
public: public:
GyroL3GD20H(SPI_HandleTypeDef* spiHandle, spi::TransferModes transferMode); GyroL3GD20H(SPI_HandleTypeDef* spiHandle, spi::TransferModes transferMode);
~GyroL3GD20H(); ~GyroL3GD20H();
ReturnValue_t initialize(); ReturnValue_t initialize();
ReturnValue_t performOperation(); ReturnValue_t performOperation();
private: private:
const uint8_t WHO_AM_I_REG = 0b00001111;
const uint8_t STM_READ_MASK = 0b10000000;
const uint8_t STM_AUTO_INCREMENT_MASK = 0b01000000;
const uint8_t EXPECTED_WHO_AM_I_VAL = 0b11010111;
const uint8_t CTRL_REG_1 = 0b00100000;
const uint32_t L3G_RANGE = 245;
const uint8_t WHO_AM_I_REG = 0b00001111; SPI_HandleTypeDef* spiHandle;
const uint8_t STM_READ_MASK = 0b10000000;
const uint8_t STM_AUTO_INCREMENT_MASK = 0b01000000;
const uint8_t EXPECTED_WHO_AM_I_VAL = 0b11010111;
const uint8_t CTRL_REG_1 = 0b00100000;
const uint32_t L3G_RANGE = 245;
SPI_HandleTypeDef* spiHandle; static spi::TransferModes transferMode;
static constexpr size_t recvBufferSize = 32 * 10;
static std::array<uint8_t, recvBufferSize> rxBuffer;
static constexpr size_t txBufferSize = 32;
static std::array<uint8_t, txBufferSize> txBuffer;
static spi::TransferModes transferMode; ReturnValue_t handleDmaTransferInit();
static constexpr size_t recvBufferSize = 32 * 10; ReturnValue_t handlePollingTransferInit();
static std::array<uint8_t, recvBufferSize> rxBuffer; ReturnValue_t handleInterruptTransferInit();
static constexpr size_t txBufferSize = 32;
static std::array<uint8_t, txBufferSize> txBuffer;
ReturnValue_t handleDmaTransferInit(); ReturnValue_t handleDmaSensorRead();
ReturnValue_t handlePollingTransferInit(); HAL_StatusTypeDef performDmaTransfer(size_t sendSize);
ReturnValue_t handleInterruptTransferInit(); ReturnValue_t handlePollingSensorRead();
ReturnValue_t handleInterruptSensorRead();
ReturnValue_t handleDmaSensorRead(); uint8_t readRegPolling(uint8_t reg);
HAL_StatusTypeDef performDmaTransfer(size_t sendSize);
ReturnValue_t handlePollingSensorRead();
ReturnValue_t handleInterruptSensorRead();
uint8_t readRegPolling(uint8_t reg); static void spiTransferCompleteCallback(SPI_HandleTypeDef* hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef* hspi, void* args);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args); void prepareConfigRegs(uint8_t* configRegs);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args); void handleSensorReadout();
DMA_HandleTypeDef* txDmaHandle = {};
void prepareConfigRegs(uint8_t* configRegs); DMA_HandleTypeDef* rxDmaHandle = {};
void handleSensorReadout(); spi::MspCfgBase* mspCfg = {};
DMA_HandleTypeDef* txDmaHandle = {};
DMA_HandleTypeDef* rxDmaHandle = {};
spi::MspCfgBase* mspCfg = {};
}; };
#endif /* FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ */ #endif /* FSFW_HAL_STM32H7_DEVICETEST_GYRO_L3GD20H_H_ */

View File

@ -1,7 +1,7 @@
#include <fsfw_hal/stm32h7/dma.h> #include <fsfw_hal/stm32h7/dma.h>
#include <cstdint>
#include <cstddef> #include <cstddef>
#include <cstdint>
user_handler_t DMA_1_USER_HANDLERS[8]; user_handler_t DMA_1_USER_HANDLERS[8];
user_args_t DMA_1_USER_ARGS[8]; user_args_t DMA_1_USER_ARGS[8];
@ -10,15 +10,14 @@ user_handler_t DMA_2_USER_HANDLERS[8];
user_args_t DMA_2_USER_ARGS[8]; user_args_t DMA_2_USER_ARGS[8];
void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx, void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
user_handler_t user_handler, user_args_t user_args) { user_handler_t user_handler, user_args_t user_args) {
if(dma_idx == DMA_1) { if (dma_idx == DMA_1) {
DMA_1_USER_HANDLERS[stream_idx] = user_handler; DMA_1_USER_HANDLERS[stream_idx] = user_handler;
DMA_1_USER_ARGS[stream_idx] = user_args; DMA_1_USER_ARGS[stream_idx] = user_args;
} } else if (dma_idx == DMA_2) {
else if(dma_idx == DMA_2) { DMA_2_USER_HANDLERS[stream_idx] = user_handler;
DMA_2_USER_HANDLERS[stream_idx] = user_handler; DMA_2_USER_ARGS[stream_idx] = user_args;
DMA_2_USER_ARGS[stream_idx] = user_args; }
}
} }
// The interrupt handlers in the format required for the IRQ vector table // The interrupt handlers in the format required for the IRQ vector table
@ -26,59 +25,27 @@ void dma::assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx,
/* Do not change these function names! They need to be exactly equal to the name of the functions /* Do not change these function names! They need to be exactly equal to the name of the functions
defined in the startup_stm32h743xx.s files! */ defined in the startup_stm32h743xx.s files! */
#define GENERIC_DMA_IRQ_HANDLER(DMA_IDX, STREAM_IDX) \ #define GENERIC_DMA_IRQ_HANDLER(DMA_IDX, STREAM_IDX) \
if(DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX] != NULL) { \ if (DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX] != NULL) { \
DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX](DMA_##DMA_IDX##_USER_ARGS[STREAM_IDX]); \ DMA_##DMA_IDX##_USER_HANDLERS[STREAM_IDX](DMA_##DMA_IDX##_USER_ARGS[STREAM_IDX]); \
return; \ return; \
} \ } \
Default_Handler() \ Default_Handler()
extern"C" void DMA1_Stream0_IRQHandler() { extern "C" void DMA1_Stream0_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 0); }
GENERIC_DMA_IRQ_HANDLER(1, 0); extern "C" void DMA1_Stream1_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 1); }
} extern "C" void DMA1_Stream2_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 2); }
extern"C" void DMA1_Stream1_IRQHandler() { extern "C" void DMA1_Stream3_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 3); }
GENERIC_DMA_IRQ_HANDLER(1, 1); extern "C" void DMA1_Stream4_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 4); }
} extern "C" void DMA1_Stream5_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 5); }
extern"C" void DMA1_Stream2_IRQHandler() { extern "C" void DMA1_Stream6_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 6); }
GENERIC_DMA_IRQ_HANDLER(1, 2); extern "C" void DMA1_Stream7_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(1, 7); }
}
extern"C" void DMA1_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 3);
}
extern"C" void DMA1_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 4);
}
extern"C" void DMA1_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 5);
}
extern"C" void DMA1_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 6);
}
extern"C" void DMA1_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(1, 7);
}
extern"C" void DMA2_Stream0_IRQHandler() { extern "C" void DMA2_Stream0_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 0); }
GENERIC_DMA_IRQ_HANDLER(2, 0); extern "C" void DMA2_Stream1_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 1); }
} extern "C" void DMA2_Stream2_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 2); }
extern"C" void DMA2_Stream1_IRQHandler() { extern "C" void DMA2_Stream3_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 3); }
GENERIC_DMA_IRQ_HANDLER(2, 1); extern "C" void DMA2_Stream4_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 4); }
} extern "C" void DMA2_Stream5_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 5); }
extern"C" void DMA2_Stream2_IRQHandler() { extern "C" void DMA2_Stream6_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 6); }
GENERIC_DMA_IRQ_HANDLER(2, 2); extern "C" void DMA2_Stream7_IRQHandler() { GENERIC_DMA_IRQ_HANDLER(2, 7); }
}
extern"C" void DMA2_Stream3_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 3);
}
extern"C" void DMA2_Stream4_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 4);
}
extern"C" void DMA2_Stream5_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 5);
}
extern"C" void DMA2_Stream6_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 6);
}
extern"C" void DMA2_Stream7_IRQHandler() {
GENERIC_DMA_IRQ_HANDLER(2, 7);
}

View File

@ -5,31 +5,26 @@
extern "C" { extern "C" {
#endif #endif
#include "interrupts.h"
#include <cstdint> #include <cstdint>
#include "interrupts.h"
namespace dma { namespace dma {
enum DMAType { enum DMAType { TX = 0, RX = 1 };
TX = 0,
RX = 1
};
enum DMAIndexes: uint8_t { enum DMAIndexes : uint8_t { DMA_1 = 1, DMA_2 = 2 };
DMA_1 = 1,
DMA_2 = 2
};
enum DMAStreams { enum DMAStreams {
STREAM_0 = 0, STREAM_0 = 0,
STREAM_1 = 1, STREAM_1 = 1,
STREAM_2 = 2, STREAM_2 = 2,
STREAM_3 = 3, STREAM_3 = 3,
STREAM_4 = 4, STREAM_4 = 4,
STREAM_5 = 5, STREAM_5 = 5,
STREAM_6 = 6, STREAM_6 = 6,
STREAM_7 = 7, STREAM_7 = 7,
} ; };
/** /**
* Assign user interrupt handlers for DMA streams, allowing to pass an * Assign user interrupt handlers for DMA streams, allowing to pass an
@ -37,10 +32,10 @@ enum DMAStreams {
* @param user_handler * @param user_handler
* @param user_args * @param user_args
*/ */
void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx, void assignDmaUserHandler(DMAIndexes dma_idx, DMAStreams stream_idx, user_handler_t user_handler,
user_handler_t user_handler, user_args_t user_args); user_args_t user_args);
} } // namespace dma
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -4,68 +4,68 @@
void gpio::initializeGpioClock(GPIO_TypeDef* gpioPort) { void gpio::initializeGpioClock(GPIO_TypeDef* gpioPort) {
#ifdef GPIOA #ifdef GPIOA
if(gpioPort == GPIOA) { if (gpioPort == GPIOA) {
__HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOB #ifdef GPIOB
if(gpioPort == GPIOB) { if (gpioPort == GPIOB) {
__HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOC #ifdef GPIOC
if(gpioPort == GPIOC) { if (gpioPort == GPIOC) {
__HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOD #ifdef GPIOD
if(gpioPort == GPIOD) { if (gpioPort == GPIOD) {
__HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOE #ifdef GPIOE
if(gpioPort == GPIOE) { if (gpioPort == GPIOE) {
__HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOF #ifdef GPIOF
if(gpioPort == GPIOF) { if (gpioPort == GPIOF) {
__HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOG #ifdef GPIOG
if(gpioPort == GPIOG) { if (gpioPort == GPIOG) {
__HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOH #ifdef GPIOH
if(gpioPort == GPIOH) { if (gpioPort == GPIOH) {
__HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOI #ifdef GPIOI
if(gpioPort == GPIOI) { if (gpioPort == GPIOI) {
__HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOJ #ifdef GPIOJ
if(gpioPort == GPIOJ) { if (gpioPort == GPIOJ) {
__HAL_RCC_GPIOJ_CLK_ENABLE(); __HAL_RCC_GPIOJ_CLK_ENABLE();
} }
#endif #endif
#ifdef GPIOK #ifdef GPIOK
if(gpioPort == GPIOK) { if (gpioPort == GPIOK) {
__HAL_RCC_GPIOK_CLK_ENABLE(); __HAL_RCC_GPIOK_CLK_ENABLE();
} }
#endif #endif
} }

View File

@ -12,14 +12,10 @@ extern "C" {
*/ */
extern void Default_Handler(); extern void Default_Handler();
typedef void (*user_handler_t) (void*); typedef void (*user_handler_t)(void*);
typedef void* user_args_t; typedef void* user_args_t;
enum IrqPriorities: uint8_t { enum IrqPriorities : uint8_t { HIGHEST = 0, HIGHEST_FREERTOS = 6, LOWEST = 15 };
HIGHEST = 0,
HIGHEST_FREERTOS = 6,
LOWEST = 15
};
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -1,11 +1,11 @@
#include "fsfw_hal/stm32h7/spi/SpiComIF.h" #include "fsfw_hal/stm32h7/spi/SpiComIF.h"
#include "fsfw_hal/stm32h7/spi/SpiCookie.h"
#include "fsfw/tasks/SemaphoreFactory.h" #include "fsfw/tasks/SemaphoreFactory.h"
#include "fsfw_hal/stm32h7/gpio/gpio.h"
#include "fsfw_hal/stm32h7/spi/SpiCookie.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/spi/spiCore.h" #include "fsfw_hal/stm32h7/spi/spiCore.h"
#include "fsfw_hal/stm32h7/spi/spiInterrupts.h" #include "fsfw_hal/stm32h7/spi/spiInterrupts.h"
#include "fsfw_hal/stm32h7/spi/mspInit.h"
#include "fsfw_hal/stm32h7/gpio/gpio.h"
// FreeRTOS required special Semaphore handling from an ISR. Therefore, we use the concrete // FreeRTOS required special Semaphore handling from an ISR. Therefore, we use the concrete
// instance here, because RTEMS and FreeRTOS are the only relevant OSALs currently // instance here, because RTEMS and FreeRTOS are the only relevant OSALs currently
@ -13,468 +13,462 @@
#if defined FSFW_OSAL_RTEMS #if defined FSFW_OSAL_RTEMS
#include "fsfw/osal/rtems/BinarySemaphore.h" #include "fsfw/osal/rtems/BinarySemaphore.h"
#elif defined FSFW_OSAL_FREERTOS #elif defined FSFW_OSAL_FREERTOS
#include "fsfw/osal/freertos/TaskManagement.h"
#include "fsfw/osal/freertos/BinarySemaphore.h" #include "fsfw/osal/freertos/BinarySemaphore.h"
#include "fsfw/osal/freertos/TaskManagement.h"
#endif #endif
#include "stm32h7xx_hal_gpio.h" #include "stm32h7xx_hal_gpio.h"
SpiComIF::SpiComIF(object_id_t objectId): SystemObject(objectId) { SpiComIF::SpiComIF(object_id_t objectId) : SystemObject(objectId) {
void* irqArgsVoided = reinterpret_cast<void*>(&irqArgs); void *irqArgsVoided = reinterpret_cast<void *>(&irqArgs);
spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, irqArgsVoided); spi::assignTransferRxTxCompleteCallback(&spiTransferCompleteCallback, irqArgsVoided);
spi::assignTransferRxCompleteCallback(&spiTransferRxCompleteCallback, irqArgsVoided); spi::assignTransferRxCompleteCallback(&spiTransferRxCompleteCallback, irqArgsVoided);
spi::assignTransferTxCompleteCallback(&spiTransferTxCompleteCallback, irqArgsVoided); spi::assignTransferTxCompleteCallback(&spiTransferTxCompleteCallback, irqArgsVoided);
spi::assignTransferErrorCallback(&spiTransferErrorCallback, irqArgsVoided); spi::assignTransferErrorCallback(&spiTransferErrorCallback, irqArgsVoided);
} }
void SpiComIF::configureCacheMaintenanceOnTxBuffer(bool enable) { void SpiComIF::configureCacheMaintenanceOnTxBuffer(bool enable) {
this->cacheMaintenanceOnTxBuffer = enable; this->cacheMaintenanceOnTxBuffer = enable;
} }
void SpiComIF::addDmaHandles(DMA_HandleTypeDef *txHandle, DMA_HandleTypeDef *rxHandle) { void SpiComIF::addDmaHandles(DMA_HandleTypeDef *txHandle, DMA_HandleTypeDef *rxHandle) {
spi::setDmaHandles(txHandle, rxHandle); spi::setDmaHandles(txHandle, rxHandle);
} }
ReturnValue_t SpiComIF::initialize() { ReturnValue_t SpiComIF::initialize() { return HasReturnvaluesIF::RETURN_OK; }
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) { ReturnValue_t SpiComIF::initializeInterface(CookieIF *cookie) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie *spiCookie = dynamic_cast<SpiCookie *>(cookie);
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error < "SpiComIF::initializeInterface: Invalid cookie" << std::endl; sif::error < "SpiComIF::initializeInterface: Invalid cookie" << std::endl;
#else #else
sif::printError("SpiComIF::initializeInterface: Invalid cookie\n"); sif::printError("SpiComIF::initializeInterface: Invalid cookie\n");
#endif #endif
return NULLPOINTER; return NULLPOINTER;
} }
auto transferMode = spiCookie->getTransferMode(); auto transferMode = spiCookie->getTransferMode();
if(transferMode == spi::TransferModes::DMA) { if (transferMode == spi::TransferModes::DMA) {
DMA_HandleTypeDef *txHandle = nullptr; DMA_HandleTypeDef *txHandle = nullptr;
DMA_HandleTypeDef *rxHandle = nullptr; DMA_HandleTypeDef *rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle); spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) { if (txHandle == nullptr or rxHandle == nullptr) {
sif::printError("SpiComIF::initialize: DMA handles not set!\n"); sif::printError("SpiComIF::initialize: DMA handles not set!\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
// This semaphore ensures thread-safety for a given bus }
spiSemaphore = dynamic_cast<BinarySemaphore*>( // This semaphore ensures thread-safety for a given bus
SemaphoreFactory::instance()->createBinarySemaphore()); spiSemaphore =
address_t spiAddress = spiCookie->getDeviceAddress(); dynamic_cast<BinarySemaphore *>(SemaphoreFactory::instance()->createBinarySemaphore());
address_t spiAddress = spiCookie->getDeviceAddress();
auto iter = spiDeviceMap.find(spiAddress); auto iter = spiDeviceMap.find(spiAddress);
if(iter == spiDeviceMap.end()) { if (iter == spiDeviceMap.end()) {
size_t bufferSize = spiCookie->getMaxRecvSize(); size_t bufferSize = spiCookie->getMaxRecvSize();
auto statusPair = spiDeviceMap.emplace(spiAddress, SpiInstance(bufferSize)); auto statusPair = spiDeviceMap.emplace(spiAddress, SpiInstance(bufferSize));
if (not statusPair.second) { if (not statusPair.second) {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "SpiComIF::initializeInterface: Failed to insert device with address " << sif::error << "SpiComIF::initializeInterface: Failed to insert device with address "
spiAddress << "to SPI device map" << std::endl; << spiAddress << "to SPI device map" << std::endl;
#else #else
sif::printError("SpiComIF::initializeInterface: Failed to insert device with address " sif::printError(
"%lu to SPI device map\n", static_cast<unsigned long>(spiAddress)); "SpiComIF::initializeInterface: Failed to insert device with address "
"%lu to SPI device map\n",
static_cast<unsigned long>(spiAddress));
#endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */ #endif /* FSFW_CPP_OSTREAM_ENABLED == 1 */
#endif /* FSFW_VERBOSE_LEVEL >= 1 */ #endif /* FSFW_VERBOSE_LEVEL >= 1 */
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
auto gpioPin = spiCookie->getChipSelectGpioPin(); }
auto gpioPort = spiCookie->getChipSelectGpioPort(); auto gpioPin = spiCookie->getChipSelectGpioPin();
auto gpioPort = spiCookie->getChipSelectGpioPort();
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle(); SPI_HandleTypeDef &spiHandle = spiCookie->getSpiHandle();
auto spiIdx = spiCookie->getSpiIdx(); auto spiIdx = spiCookie->getSpiIdx();
if(spiIdx == spi::SpiBus::SPI_1) { if (spiIdx == spi::SpiBus::SPI_1) {
#ifdef SPI1 #ifdef SPI1
spiHandle.Instance = SPI1; spiHandle.Instance = SPI1;
#endif #endif
} } else if (spiIdx == spi::SpiBus::SPI_2) {
else if(spiIdx == spi::SpiBus::SPI_2) {
#ifdef SPI2 #ifdef SPI2
spiHandle.Instance = SPI2; spiHandle.Instance = SPI2;
#endif #endif
} } else {
else { printCfgError("SPI Bus Index");
printCfgError("SPI Bus Index"); return HasReturnvaluesIF::RETURN_FAILED;
return HasReturnvaluesIF::RETURN_FAILED; }
}
auto mspCfg = spiCookie->getMspCfg(); auto mspCfg = spiCookie->getMspCfg();
if(transferMode == spi::TransferModes::POLLING) { if (transferMode == spi::TransferModes::POLLING) {
auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct*>(mspCfg); auto typedCfg = dynamic_cast<spi::MspPollingConfigStruct *>(mspCfg);
if(typedCfg == nullptr) { if (typedCfg == nullptr) {
printCfgError("Polling MSP"); printCfgError("Polling MSP");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiPollingMspFunctions(typedCfg);
} }
else if(transferMode == spi::TransferModes::INTERRUPT) { spi::setSpiPollingMspFunctions(typedCfg);
auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct*>(mspCfg); } else if (transferMode == spi::TransferModes::INTERRUPT) {
if(typedCfg == nullptr) { auto typedCfg = dynamic_cast<spi::MspIrqConfigStruct *>(mspCfg);
printCfgError("IRQ MSP"); if (typedCfg == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED; printCfgError("IRQ MSP");
} return HasReturnvaluesIF::RETURN_FAILED;
spi::setSpiIrqMspFunctions(typedCfg);
} }
else if(transferMode == spi::TransferModes::DMA) { spi::setSpiIrqMspFunctions(typedCfg);
auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct*>(mspCfg); } else if (transferMode == spi::TransferModes::DMA) {
if(typedCfg == nullptr) { auto typedCfg = dynamic_cast<spi::MspDmaConfigStruct *>(mspCfg);
printCfgError("DMA MSP"); if (typedCfg == nullptr) {
return HasReturnvaluesIF::RETURN_FAILED; printCfgError("DMA MSP");
} return HasReturnvaluesIF::RETURN_FAILED;
// Check DMA handles
DMA_HandleTypeDef* txHandle = nullptr;
DMA_HandleTypeDef* rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if(txHandle == nullptr or rxHandle == nullptr) {
printCfgError("DMA Handle");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiDmaMspFunctions(typedCfg);
} }
// Check DMA handles
DMA_HandleTypeDef *txHandle = nullptr;
DMA_HandleTypeDef *rxHandle = nullptr;
spi::getDmaHandles(&txHandle, &rxHandle);
if (txHandle == nullptr or rxHandle == nullptr) {
printCfgError("DMA Handle");
return HasReturnvaluesIF::RETURN_FAILED;
}
spi::setSpiDmaMspFunctions(typedCfg);
}
if(gpioPort != nullptr) { if (gpioPort != nullptr) {
gpio::initializeGpioClock(gpioPort); gpio::initializeGpioClock(gpioPort);
GPIO_InitTypeDef chipSelect = {}; GPIO_InitTypeDef chipSelect = {};
chipSelect.Pin = gpioPin; chipSelect.Pin = gpioPin;
chipSelect.Mode = GPIO_MODE_OUTPUT_PP; chipSelect.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(gpioPort, &chipSelect); HAL_GPIO_Init(gpioPort, &chipSelect);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET); HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
} }
if(HAL_SPI_Init(&spiHandle) != HAL_OK) { if (HAL_SPI_Init(&spiHandle) != HAL_OK) {
sif::printWarning("SpiComIF::initialize: Error initializing SPI\n"); sif::printWarning("SpiComIF::initialize: Error initializing SPI\n");
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
// The MSP configuration struct is not required anymore // The MSP configuration struct is not required anymore
spiCookie->deleteMspCfg(); spiCookie->deleteMspCfg();
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) { ReturnValue_t SpiComIF::sendMessage(CookieIF *cookie, const uint8_t *sendData, size_t sendLen) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie *spiCookie = dynamic_cast<SpiCookie *>(cookie);
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return NULLPOINTER; return NULLPOINTER;
} }
SPI_HandleTypeDef& spiHandle = spiCookie->getSpiHandle(); SPI_HandleTypeDef &spiHandle = spiCookie->getSpiHandle();
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress()); auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) { if (iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
iter->second.currentTransferLen = sendLen; iter->second.currentTransferLen = sendLen;
auto transferMode = spiCookie->getTransferMode(); auto transferMode = spiCookie->getTransferMode();
switch(spiCookie->getTransferState()) { switch (spiCookie->getTransferState()) {
case(spi::TransferStates::IDLE): { case (spi::TransferStates::IDLE): {
break; break;
} }
case(spi::TransferStates::WAIT): case (spi::TransferStates::WAIT):
case(spi::TransferStates::FAILURE): case (spi::TransferStates::FAILURE):
case(spi::TransferStates::SUCCESS): case (spi::TransferStates::SUCCESS):
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
switch(transferMode) { switch (transferMode) {
case(spi::TransferModes::POLLING): { case (spi::TransferModes::POLLING): {
return handlePollingSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie, return handlePollingSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen); sendData, sendLen);
} }
case(spi::TransferModes::INTERRUPT): { case (spi::TransferModes::INTERRUPT): {
return handleInterruptSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie, return handleInterruptSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen); sendData, sendLen);
} }
case(spi::TransferModes::DMA): { case (spi::TransferModes::DMA): {
return handleDmaSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie, return handleDmaSendOperation(iter->second.replyBuffer.data(), spiHandle, *spiCookie,
sendData, sendLen); sendData, sendLen);
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) { ReturnValue_t SpiComIF::getSendSuccess(CookieIF *cookie) { return HasReturnvaluesIF::RETURN_OK; }
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) { ReturnValue_t SpiComIF::requestReceiveMessage(CookieIF *cookie, size_t requestLen) {
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) { ReturnValue_t SpiComIF::readReceivedMessage(CookieIF *cookie, uint8_t **buffer, size_t *size) {
SpiCookie* spiCookie = dynamic_cast<SpiCookie*>(cookie); SpiCookie *spiCookie = dynamic_cast<SpiCookie *>(cookie);
if(spiCookie == nullptr) { if (spiCookie == nullptr) {
return NULLPOINTER; return NULLPOINTER;
}
switch (spiCookie->getTransferState()) {
case (spi::TransferStates::SUCCESS): {
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if (iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
*size = iter->second.currentTransferLen;
spiCookie->setTransferState(spi::TransferStates::IDLE);
break;
} }
switch(spiCookie->getTransferState()) { case (spi::TransferStates::FAILURE): {
case(spi::TransferStates::SUCCESS): {
auto iter = spiDeviceMap.find(spiCookie->getDeviceAddress());
if(iter == spiDeviceMap.end()) {
return HasReturnvaluesIF::RETURN_FAILED;
}
*buffer = iter->second.replyBuffer.data();
*size = iter->second.currentTransferLen;
spiCookie->setTransferState(spi::TransferStates::IDLE);
break;
}
case(spi::TransferStates::FAILURE): {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::readReceivedMessage: Transfer failure" << std::endl; sif::warning << "SpiComIF::readReceivedMessage: Transfer failure" << std::endl;
#else #else
sif::printWarning("SpiComIF::readReceivedMessage: Transfer failure\n"); sif::printWarning("SpiComIF::readReceivedMessage: Transfer failure\n");
#endif #endif
#endif #endif
spiCookie->setTransferState(spi::TransferStates::IDLE); spiCookie->setTransferState(spi::TransferStates::IDLE);
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
} }
case(spi::TransferStates::WAIT): case (spi::TransferStates::WAIT):
case(spi::TransferStates::IDLE): { case (spi::TransferStates::IDLE): {
break; break;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
void SpiComIF::setDefaultPollingTimeout(dur_millis_t timeout) { void SpiComIF::setDefaultPollingTimeout(dur_millis_t timeout) {
this->defaultPollingTimeout = timeout; this->defaultPollingTimeout = timeout;
} }
ReturnValue_t SpiComIF::handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle, ReturnValue_t SpiComIF::handlePollingSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef &spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) { SpiCookie &spiCookie, const uint8_t *sendData,
auto gpioPort = spiCookie.getChipSelectGpioPort(); size_t sendLen) {
auto gpioPin = spiCookie.getChipSelectGpioPin(); auto gpioPort = spiCookie.getChipSelectGpioPort();
auto returnval = spiSemaphore->acquire(timeoutType, timeoutMs); auto gpioPin = spiCookie.getChipSelectGpioPin();
if(returnval != HasReturnvaluesIF::RETURN_OK) { auto returnval = spiSemaphore->acquire(timeoutType, timeoutMs);
return returnval; if (returnval != HasReturnvaluesIF::RETURN_OK) {
} return returnval;
spiCookie.setTransferState(spi::TransferStates::WAIT); }
if(gpioPort != nullptr) { spiCookie.setTransferState(spi::TransferStates::WAIT);
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_RESET); if (gpioPort != nullptr) {
} HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_RESET);
}
auto result = HAL_SPI_TransmitReceive(&spiHandle, const_cast<uint8_t*>(sendData), auto result = HAL_SPI_TransmitReceive(&spiHandle, const_cast<uint8_t *>(sendData), recvPtr,
recvPtr, sendLen, defaultPollingTimeout); sendLen, defaultPollingTimeout);
if(gpioPort != nullptr) { if (gpioPort != nullptr) {
HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET); HAL_GPIO_WritePin(gpioPort, gpioPin, GPIO_PIN_SET);
}
spiSemaphore->release();
switch (result) {
case (HAL_OK): {
spiCookie.setTransferState(spi::TransferStates::SUCCESS);
break;
} }
spiSemaphore->release(); case (HAL_TIMEOUT): {
switch(result) {
case(HAL_OK): {
spiCookie.setTransferState(spi::TransferStates::SUCCESS);
break;
}
case(HAL_TIMEOUT): {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | Timeout for SPI device" << sif::warning << "SpiComIF::sendMessage: Polling Mode | Timeout for SPI device"
spiCookie->getDeviceAddress() << std::endl; << spiCookie->getDeviceAddress() << std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | Timeout for SPI device %d\n", sif::printWarning("SpiComIF::sendMessage: Polling Mode | Timeout for SPI device %d\n",
spiCookie.getDeviceAddress()); spiCookie.getDeviceAddress());
#endif #endif
#endif #endif
spiCookie.setTransferState(spi::TransferStates::FAILURE); spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_TIMEOUT_RETVAL; return spi::HAL_TIMEOUT_RETVAL;
} }
case(HAL_ERROR): case (HAL_ERROR):
default: { default: {
#if FSFW_VERBOSE_LEVEL >= 1 #if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::sendMessage: Polling Mode | HAL error for SPI device" << sif::warning << "SpiComIF::sendMessage: Polling Mode | HAL error for SPI device"
spiCookie->getDeviceAddress() << std::endl; << spiCookie->getDeviceAddress() << std::endl;
#else #else
sif::printWarning("SpiComIF::sendMessage: Polling Mode | HAL error for SPI device %d\n", sif::printWarning("SpiComIF::sendMessage: Polling Mode | HAL error for SPI device %d\n",
spiCookie.getDeviceAddress()); spiCookie.getDeviceAddress());
#endif #endif
#endif #endif
spiCookie.setTransferState(spi::TransferStates::FAILURE); spiCookie.setTransferState(spi::TransferStates::FAILURE);
return spi::HAL_ERROR_RETVAL; return spi::HAL_ERROR_RETVAL;
} }
} }
return HasReturnvaluesIF::RETURN_OK; return HasReturnvaluesIF::RETURN_OK;
} }
ReturnValue_t SpiComIF::handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle, ReturnValue_t SpiComIF::handleInterruptSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef &spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) { SpiCookie &spiCookie, const uint8_t *sendData,
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen); size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
} }
ReturnValue_t SpiComIF::handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle, ReturnValue_t SpiComIF::handleDmaSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef &spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen) { SpiCookie &spiCookie, const uint8_t *sendData,
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen); size_t sendLen) {
return handleIrqSendOperation(recvPtr, spiHandle, spiCookie, sendData, sendLen);
} }
ReturnValue_t SpiComIF::handleIrqSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle, ReturnValue_t SpiComIF::handleIrqSendOperation(uint8_t *recvPtr, SPI_HandleTypeDef &spiHandle,
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) { SpiCookie &spiCookie, const uint8_t *sendData,
ReturnValue_t result = genericIrqSendSetup(recvPtr, spiHandle, spiCookie, sendData, sendLen); size_t sendLen) {
if(result != HasReturnvaluesIF::RETURN_OK) { ReturnValue_t result = genericIrqSendSetup(recvPtr, spiHandle, spiCookie, sendData, sendLen);
return result; if (result != HasReturnvaluesIF::RETURN_OK) {
}
// yet another HAL driver which is not const-correct..
HAL_StatusTypeDef status = HAL_OK;
auto transferMode = spiCookie.getTransferMode();
if(transferMode == spi::TransferModes::DMA) {
if(cacheMaintenanceOnTxBuffer) {
/* Clean D-cache. Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
SCB_CleanDCache_by_Addr((uint32_t*)(((uint32_t) sendData ) & ~(uint32_t)0x1F),
sendLen + 32);
}
status = HAL_SPI_TransmitReceive_DMA(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
else {
status = HAL_SPI_TransmitReceive_IT(&spiHandle, const_cast<uint8_t*>(sendData),
currentRecvPtr, sendLen);
}
switch(status) {
case(HAL_OK): {
break;
}
default: {
return halErrorHandler(status, transferMode);
}
}
return result; return result;
}
// yet another HAL driver which is not const-correct..
HAL_StatusTypeDef status = HAL_OK;
auto transferMode = spiCookie.getTransferMode();
if (transferMode == spi::TransferModes::DMA) {
if (cacheMaintenanceOnTxBuffer) {
/* Clean D-cache. Make sure the address is 32-byte aligned and add 32-bytes to length,
in case it overlaps cacheline */
SCB_CleanDCache_by_Addr((uint32_t *)(((uint32_t)sendData) & ~(uint32_t)0x1F), sendLen + 32);
}
status = HAL_SPI_TransmitReceive_DMA(&spiHandle, const_cast<uint8_t *>(sendData),
currentRecvPtr, sendLen);
} else {
status = HAL_SPI_TransmitReceive_IT(&spiHandle, const_cast<uint8_t *>(sendData), currentRecvPtr,
sendLen);
}
switch (status) {
case (HAL_OK): {
break;
}
default: {
return halErrorHandler(status, transferMode);
}
}
return result;
} }
ReturnValue_t SpiComIF::halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode) { ReturnValue_t SpiComIF::halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode) {
char modeString[10]; char modeString[10];
if(transferMode == spi::TransferModes::DMA) { if (transferMode == spi::TransferModes::DMA) {
std::snprintf(modeString, sizeof(modeString), "Dma"); std::snprintf(modeString, sizeof(modeString), "Dma");
} else {
std::snprintf(modeString, sizeof(modeString), "Interrupt");
}
sif::printWarning("SpiComIF::handle%sSendOperation: HAL error %d occured\n", modeString, status);
switch (status) {
case (HAL_BUSY): {
return spi::HAL_BUSY_RETVAL;
} }
else { case (HAL_ERROR): {
std::snprintf(modeString, sizeof(modeString), "Interrupt"); return spi::HAL_ERROR_RETVAL;
} }
sif::printWarning("SpiComIF::handle%sSendOperation: HAL error %d occured\n", modeString, case (HAL_TIMEOUT): {
status); return spi::HAL_TIMEOUT_RETVAL;
switch(status) {
case(HAL_BUSY): {
return spi::HAL_BUSY_RETVAL;
}
case(HAL_ERROR): {
return spi::HAL_ERROR_RETVAL;
}
case(HAL_TIMEOUT): {
return spi::HAL_TIMEOUT_RETVAL;
} }
default: { default: {
return HasReturnvaluesIF::RETURN_FAILED; return HasReturnvaluesIF::RETURN_FAILED;
}
} }
}
} }
ReturnValue_t SpiComIF::genericIrqSendSetup(uint8_t *recvPtr, SPI_HandleTypeDef &spiHandle,
SpiCookie &spiCookie, const uint8_t *sendData,
size_t sendLen) {
currentRecvPtr = recvPtr;
currentRecvBuffSize = sendLen;
ReturnValue_t SpiComIF::genericIrqSendSetup(uint8_t *recvPtr, SPI_HandleTypeDef& spiHandle, // Take the semaphore which will be released by a callback when the transfer is complete
SpiCookie& spiCookie, const uint8_t *sendData, size_t sendLen) { ReturnValue_t result = spiSemaphore->acquire(SemaphoreIF::TimeoutType::WAITING, timeoutMs);
currentRecvPtr = recvPtr; if (result != HasReturnvaluesIF::RETURN_OK) {
currentRecvBuffSize = sendLen; // Configuration error
sif::printWarning(
// Take the semaphore which will be released by a callback when the transfer is complete "SpiComIF::handleInterruptSendOperation: Semaphore "
ReturnValue_t result = spiSemaphore->acquire(SemaphoreIF::TimeoutType::WAITING, timeoutMs); "could not be acquired after %d ms\n",
if(result != HasReturnvaluesIF::RETURN_OK) { timeoutMs);
// Configuration error return result;
sif::printWarning("SpiComIF::handleInterruptSendOperation: Semaphore " }
"could not be acquired after %d ms\n", timeoutMs); // Cache the current SPI handle in any case
return result; spi::setSpiHandle(&spiHandle);
} // Assign the IRQ arguments for the user callbacks
// Cache the current SPI handle in any case irqArgs.comIF = this;
spi::setSpiHandle(&spiHandle); irqArgs.spiCookie = &spiCookie;
// Assign the IRQ arguments for the user callbacks // The SPI handle is passed to the default SPI callback as a void argument. This callback
irqArgs.comIF = this; // is different from the user callbacks specified above!
irqArgs.spiCookie = &spiCookie; spi::assignSpiUserArgs(spiCookie.getSpiIdx(), reinterpret_cast<void *>(&spiHandle));
// The SPI handle is passed to the default SPI callback as a void argument. This callback if (spiCookie.getChipSelectGpioPort() != nullptr) {
// is different from the user callbacks specified above! HAL_GPIO_WritePin(spiCookie.getChipSelectGpioPort(), spiCookie.getChipSelectGpioPin(),
spi::assignSpiUserArgs(spiCookie.getSpiIdx(), reinterpret_cast<void*>(&spiHandle)); GPIO_PIN_RESET);
if(spiCookie.getChipSelectGpioPort() != nullptr) { }
HAL_GPIO_WritePin(spiCookie.getChipSelectGpioPort(), spiCookie.getChipSelectGpioPin(), return HasReturnvaluesIF::RETURN_OK;
GPIO_PIN_RESET);
}
return HasReturnvaluesIF::RETURN_OK;
} }
void SpiComIF::spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) { void SpiComIF::spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS); genericIrqHandler(args, spi::TransferStates::SUCCESS);
} }
void SpiComIF::spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) { void SpiComIF::spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS); genericIrqHandler(args, spi::TransferStates::SUCCESS);
} }
void SpiComIF::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void *args) { void SpiComIF::spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::SUCCESS); genericIrqHandler(args, spi::TransferStates::SUCCESS);
} }
void SpiComIF::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void *args) { void SpiComIF::spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void *args) {
genericIrqHandler(args, spi::TransferStates::FAILURE); genericIrqHandler(args, spi::TransferStates::FAILURE);
} }
void SpiComIF::genericIrqHandler(void *irqArgsVoid, spi::TransferStates targetState) { void SpiComIF::genericIrqHandler(void *irqArgsVoid, spi::TransferStates targetState) {
IrqArgs* irqArgs = reinterpret_cast<IrqArgs*>(irqArgsVoid); IrqArgs *irqArgs = reinterpret_cast<IrqArgs *>(irqArgsVoid);
if(irqArgs == nullptr) { if (irqArgs == nullptr) {
return; return;
} }
SpiCookie* spiCookie = irqArgs->spiCookie; SpiCookie *spiCookie = irqArgs->spiCookie;
SpiComIF* comIF = irqArgs->comIF; SpiComIF *comIF = irqArgs->comIF;
if(spiCookie == nullptr or comIF == nullptr) { if (spiCookie == nullptr or comIF == nullptr) {
return; return;
} }
spiCookie->setTransferState(targetState); spiCookie->setTransferState(targetState);
if(spiCookie->getChipSelectGpioPort() != nullptr) {
// Pull CS pin high again
HAL_GPIO_WritePin(spiCookie->getChipSelectGpioPort(), spiCookie->getChipSelectGpioPin(),
GPIO_PIN_SET);
}
if (spiCookie->getChipSelectGpioPort() != nullptr) {
// Pull CS pin high again
HAL_GPIO_WritePin(spiCookie->getChipSelectGpioPort(), spiCookie->getChipSelectGpioPin(),
GPIO_PIN_SET);
}
#if defined FSFW_OSAL_FREERTOS #if defined FSFW_OSAL_FREERTOS
// Release the task semaphore // Release the task semaphore
BaseType_t taskWoken = pdFALSE; BaseType_t taskWoken = pdFALSE;
ReturnValue_t result = BinarySemaphore::releaseFromISR(comIF->spiSemaphore->getSemaphore(), ReturnValue_t result =
&taskWoken); BinarySemaphore::releaseFromISR(comIF->spiSemaphore->getSemaphore(), &taskWoken);
#elif defined FSFW_OSAL_RTEMS #elif defined FSFW_OSAL_RTEMS
ReturnValue_t result = comIF->spiSemaphore->release(); ReturnValue_t result = comIF->spiSemaphore->release();
#endif #endif
if(result != HasReturnvaluesIF::RETURN_OK) { if (result != HasReturnvaluesIF::RETURN_OK) {
// Configuration error // Configuration error
printf("SpiComIF::genericIrqHandler: Failure releasing Semaphore!\n"); printf("SpiComIF::genericIrqHandler: Failure releasing Semaphore!\n");
} }
// Perform cache maintenance operation for DMA transfers // Perform cache maintenance operation for DMA transfers
if(spiCookie->getTransferMode() == spi::TransferModes::DMA) { if (spiCookie->getTransferMode() == spi::TransferModes::DMA) {
// Invalidate cache prior to access by CPU // Invalidate cache prior to access by CPU
SCB_InvalidateDCache_by_Addr ((uint32_t *) comIF->currentRecvPtr, SCB_InvalidateDCache_by_Addr((uint32_t *)comIF->currentRecvPtr, comIF->currentRecvBuffSize);
comIF->currentRecvBuffSize); }
}
#if defined FSFW_OSAL_FREERTOS #if defined FSFW_OSAL_FREERTOS
/* Request a context switch if the SPI ComIF task was woken up and has a higher priority /* Request a context switch if the SPI ComIF task was woken up and has a higher priority
than the currently running task */ than the currently running task */
if(taskWoken == pdTRUE) { if (taskWoken == pdTRUE) {
TaskManagement::requestContextSwitch(CallContext::ISR); TaskManagement::requestContextSwitch(CallContext::ISR);
} }
#endif #endif
} }
void SpiComIF::printCfgError(const char *const type) { void SpiComIF::printCfgError(const char *const type) {
#if FSFW_CPP_OSTREAM_ENABLED == 1 #if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "SpiComIF::initializeInterface: Invalid " << type << " configuration" sif::warning << "SpiComIF::initializeInterface: Invalid " << type << " configuration"
<< std::endl; << std::endl;
#else #else
sif::printWarning("SpiComIF::initializeInterface: Invalid %s configuration\n", type); sif::printWarning("SpiComIF::initializeInterface: Invalid %s configuration\n", type);
#endif #endif
} }

View File

@ -1,16 +1,15 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPICOMIF_H_ #ifndef FSFW_HAL_STM32H7_SPI_SPICOMIF_H_
#define FSFW_HAL_STM32H7_SPI_SPICOMIF_H_ #define FSFW_HAL_STM32H7_SPI_SPICOMIF_H_
#include "fsfw/tasks/SemaphoreIF.h" #include <map>
#include <vector>
#include "fsfw/devicehandlers/DeviceCommunicationIF.h" #include "fsfw/devicehandlers/DeviceCommunicationIF.h"
#include "fsfw/objectmanager/SystemObject.h" #include "fsfw/objectmanager/SystemObject.h"
#include "fsfw/tasks/SemaphoreIF.h"
#include "fsfw_hal/stm32h7/spi/spiDefinitions.h" #include "fsfw_hal/stm32h7/spi/spiDefinitions.h"
#include "stm32h7xx_hal_spi.h"
#include "stm32h743xx.h" #include "stm32h743xx.h"
#include "stm32h7xx_hal_spi.h"
#include <vector>
#include <map>
class SpiCookie; class SpiCookie;
class BinarySemaphore; class BinarySemaphore;
@ -28,102 +27,100 @@ class BinarySemaphore;
* implementation limits the transfer mode for a given SPI bus. * implementation limits the transfer mode for a given SPI bus.
* @author R. Mueller * @author R. Mueller
*/ */
class SpiComIF: class SpiComIF : public SystemObject, public DeviceCommunicationIF {
public SystemObject, public:
public DeviceCommunicationIF { /**
public: * Create a SPI communication interface for the given SPI peripheral (spiInstance)
/** * @param objectId
* Create a SPI communication interface for the given SPI peripheral (spiInstance) * @param spiInstance
* @param objectId * @param spiHandle
* @param spiInstance * @param transferMode
* @param spiHandle */
* @param transferMode SpiComIF(object_id_t objectId);
*/
SpiComIF(object_id_t objectId);
/** /**
* Allows the user to disable cache maintenance on the TX buffer. This can be done if the * Allows the user to disable cache maintenance on the TX buffer. This can be done if the
* TX buffers are places and MPU protected properly like specified in this link: * TX buffers are places and MPU protected properly like specified in this link:
* https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices * https://community.st.com/s/article/FAQ-DMA-is-not-working-on-STM32H7-devices
* The cache maintenace is enabled by default. * The cache maintenace is enabled by default.
* @param enable * @param enable
*/ */
void configureCacheMaintenanceOnTxBuffer(bool enable); void configureCacheMaintenanceOnTxBuffer(bool enable);
void setDefaultPollingTimeout(dur_millis_t timeout); void setDefaultPollingTimeout(dur_millis_t timeout);
/** /**
* Add the DMA handles. These need to be set in the DMA transfer mode is used. * Add the DMA handles. These need to be set in the DMA transfer mode is used.
* @param txHandle * @param txHandle
* @param rxHandle * @param rxHandle
*/ */
void addDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle); void addDmaHandles(DMA_HandleTypeDef* txHandle, DMA_HandleTypeDef* rxHandle);
ReturnValue_t initialize() override; ReturnValue_t initialize() override;
// DeviceCommunicationIF overrides // DeviceCommunicationIF overrides
virtual ReturnValue_t initializeInterface(CookieIF * cookie) override; virtual ReturnValue_t initializeInterface(CookieIF* cookie) override;
virtual ReturnValue_t sendMessage(CookieIF *cookie, virtual ReturnValue_t sendMessage(CookieIF* cookie, const uint8_t* sendData,
const uint8_t * sendData, size_t sendLen) override; size_t sendLen) override;
virtual ReturnValue_t getSendSuccess(CookieIF *cookie) override; virtual ReturnValue_t getSendSuccess(CookieIF* cookie) override;
virtual ReturnValue_t requestReceiveMessage(CookieIF *cookie, virtual ReturnValue_t requestReceiveMessage(CookieIF* cookie, size_t requestLen) override;
size_t requestLen) override; virtual ReturnValue_t readReceivedMessage(CookieIF* cookie, uint8_t** buffer,
virtual ReturnValue_t readReceivedMessage(CookieIF *cookie, size_t* size) override;
uint8_t **buffer, size_t *size) override;
protected: protected:
struct SpiInstance {
SpiInstance(size_t maxRecvSize) : replyBuffer(std::vector<uint8_t>(maxRecvSize)) {}
std::vector<uint8_t> replyBuffer;
size_t currentTransferLen = 0;
};
struct SpiInstance { struct IrqArgs {
SpiInstance(size_t maxRecvSize): replyBuffer(std::vector<uint8_t>(maxRecvSize)) {} SpiComIF* comIF = nullptr;
std::vector<uint8_t> replyBuffer; SpiCookie* spiCookie = nullptr;
size_t currentTransferLen = 0; };
};
struct IrqArgs { IrqArgs irqArgs;
SpiComIF* comIF = nullptr;
SpiCookie* spiCookie = nullptr;
};
IrqArgs irqArgs; uint32_t defaultPollingTimeout = 50;
uint32_t defaultPollingTimeout = 50; SemaphoreIF::TimeoutType timeoutType = SemaphoreIF::TimeoutType::WAITING;
dur_millis_t timeoutMs = 20;
SemaphoreIF::TimeoutType timeoutType = SemaphoreIF::TimeoutType::WAITING; BinarySemaphore* spiSemaphore = nullptr;
dur_millis_t timeoutMs = 20; bool cacheMaintenanceOnTxBuffer = true;
BinarySemaphore* spiSemaphore = nullptr; using SpiDeviceMap = std::map<address_t, SpiInstance>;
bool cacheMaintenanceOnTxBuffer = true; using SpiDeviceMapIter = SpiDeviceMap::iterator;
using SpiDeviceMap = std::map<address_t, SpiInstance>; uint8_t* currentRecvPtr = nullptr;
using SpiDeviceMapIter = SpiDeviceMap::iterator; size_t currentRecvBuffSize = 0;
uint8_t* currentRecvPtr = nullptr; SpiDeviceMap spiDeviceMap;
size_t currentRecvBuffSize = 0;
SpiDeviceMap spiDeviceMap; ReturnValue_t handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t* sendData,
size_t sendLen);
ReturnValue_t handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t* sendData,
size_t sendLen);
ReturnValue_t handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t* sendData,
size_t sendLen);
ReturnValue_t handleIrqSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t* sendData,
size_t sendLen);
ReturnValue_t genericIrqSendSetup(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t* sendData, size_t sendLen);
ReturnValue_t halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode);
ReturnValue_t handlePollingSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle, static void spiTransferTxCompleteCallback(SPI_HandleTypeDef* hspi, void* args);
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen); static void spiTransferRxCompleteCallback(SPI_HandleTypeDef* hspi, void* args);
ReturnValue_t handleInterruptSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle, static void spiTransferCompleteCallback(SPI_HandleTypeDef* hspi, void* args);
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen); static void spiTransferErrorCallback(SPI_HandleTypeDef* hspi, void* args);
ReturnValue_t handleDmaSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t handleIrqSendOperation(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t genericIrqSendSetup(uint8_t* recvPtr, SPI_HandleTypeDef& spiHandle,
SpiCookie& spiCookie, const uint8_t * sendData, size_t sendLen);
ReturnValue_t halErrorHandler(HAL_StatusTypeDef status, spi::TransferModes transferMode);
static void spiTransferTxCompleteCallback(SPI_HandleTypeDef *hspi, void* args); static void genericIrqHandler(void* irqArgs, spi::TransferStates targetState);
static void spiTransferRxCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferCompleteCallback(SPI_HandleTypeDef *hspi, void* args);
static void spiTransferErrorCallback(SPI_HandleTypeDef *hspi, void* args);
static void genericIrqHandler(void* irqArgs, spi::TransferStates targetState); void printCfgError(const char* const type);
void printCfgError(const char* const type);
}; };
#endif /* FSFW_HAL_STM32H7_SPI_SPICOMIF_H_ */ #endif /* FSFW_HAL_STM32H7_SPI_SPICOMIF_H_ */

View File

@ -1,78 +1,60 @@
#include "fsfw_hal/stm32h7/spi/SpiCookie.h" #include "fsfw_hal/stm32h7/spi/SpiCookie.h"
SpiCookie::SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode, SpiCookie::SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode,
spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode, spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode,
size_t maxRecvSize, stm32h7::GpioCfg csGpio): size_t maxRecvSize, stm32h7::GpioCfg csGpio)
deviceAddress(deviceAddress), spiIdx(spiIdx), spiSpeed(spiSpeed), spiMode(spiMode), : deviceAddress(deviceAddress),
transferMode(transferMode), csGpio(csGpio), spiIdx(spiIdx),
mspCfg(mspCfg), maxRecvSize(maxRecvSize) { spiSpeed(spiSpeed),
spiHandle.Init.DataSize = SPI_DATASIZE_8BIT; spiMode(spiMode),
spiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB; transferMode(transferMode),
spiHandle.Init.TIMode = SPI_TIMODE_DISABLE; csGpio(csGpio),
spiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; mspCfg(mspCfg),
spiHandle.Init.CRCPolynomial = 7; maxRecvSize(maxRecvSize) {
spiHandle.Init.CRCLength = SPI_CRC_LENGTH_8BIT; spiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
spiHandle.Init.NSS = SPI_NSS_SOFT; spiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
spiHandle.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; spiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
spiHandle.Init.Direction = SPI_DIRECTION_2LINES; spiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
// Recommended setting to avoid glitches spiHandle.Init.CRCPolynomial = 7;
spiHandle.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE; spiHandle.Init.CRCLength = SPI_CRC_LENGTH_8BIT;
spiHandle.Init.Mode = SPI_MODE_MASTER; spiHandle.Init.NSS = SPI_NSS_SOFT;
spi::assignSpiMode(spiMode, spiHandle); spiHandle.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spiHandle.Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), spiSpeed); spiHandle.Init.Direction = SPI_DIRECTION_2LINES;
// Recommended setting to avoid glitches
spiHandle.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spiHandle.Init.Mode = SPI_MODE_MASTER;
spi::assignSpiMode(spiMode, spiHandle);
spiHandle.Init.BaudRatePrescaler = spi::getPrescaler(HAL_RCC_GetHCLKFreq(), spiSpeed);
} }
uint16_t SpiCookie::getChipSelectGpioPin() const { uint16_t SpiCookie::getChipSelectGpioPin() const { return csGpio.pin; }
return csGpio.pin;
}
GPIO_TypeDef* SpiCookie::getChipSelectGpioPort() { GPIO_TypeDef* SpiCookie::getChipSelectGpioPort() { return csGpio.port; }
return csGpio.port;
}
address_t SpiCookie::getDeviceAddress() const { address_t SpiCookie::getDeviceAddress() const { return deviceAddress; }
return deviceAddress;
}
spi::SpiBus SpiCookie::getSpiIdx() const { spi::SpiBus SpiCookie::getSpiIdx() const { return spiIdx; }
return spiIdx;
}
spi::SpiModes SpiCookie::getSpiMode() const { spi::SpiModes SpiCookie::getSpiMode() const { return spiMode; }
return spiMode;
}
uint32_t SpiCookie::getSpiSpeed() const { uint32_t SpiCookie::getSpiSpeed() const { return spiSpeed; }
return spiSpeed;
}
size_t SpiCookie::getMaxRecvSize() const { size_t SpiCookie::getMaxRecvSize() const { return maxRecvSize; }
return maxRecvSize;
}
SPI_HandleTypeDef& SpiCookie::getSpiHandle() { SPI_HandleTypeDef& SpiCookie::getSpiHandle() { return spiHandle; }
return spiHandle;
}
spi::MspCfgBase* SpiCookie::getMspCfg() { spi::MspCfgBase* SpiCookie::getMspCfg() { return mspCfg; }
return mspCfg;
}
void SpiCookie::deleteMspCfg() { void SpiCookie::deleteMspCfg() {
if(mspCfg != nullptr) { if (mspCfg != nullptr) {
delete mspCfg; delete mspCfg;
} }
} }
spi::TransferModes SpiCookie::getTransferMode() const { spi::TransferModes SpiCookie::getTransferMode() const { return transferMode; }
return transferMode;
}
void SpiCookie::setTransferState(spi::TransferStates transferState) { void SpiCookie::setTransferState(spi::TransferStates transferState) {
this->transferState = transferState; this->transferState = transferState;
} }
spi::TransferStates SpiCookie::getTransferState() const { spi::TransferStates SpiCookie::getTransferState() const { return this->transferState; }
return this->transferState;
}

View File

@ -1,16 +1,14 @@
#ifndef FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_ #ifndef FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_
#define FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_ #define FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_
#include "spiDefinitions.h"
#include "mspInit.h"
#include "../definitions.h"
#include "fsfw/devicehandlers/CookieIF.h"
#include "stm32h743xx.h"
#include <utility> #include <utility>
#include "../definitions.h"
#include "fsfw/devicehandlers/CookieIF.h"
#include "mspInit.h"
#include "spiDefinitions.h"
#include "stm32h743xx.h"
/** /**
* @brief SPI cookie implementation for the STM32H7 device family * @brief SPI cookie implementation for the STM32H7 device family
* @details * @details
@ -18,63 +16,61 @@
* SPI communication interface * SPI communication interface
* @author R. Mueller * @author R. Mueller
*/ */
class SpiCookie: public CookieIF { class SpiCookie : public CookieIF {
friend class SpiComIF; friend class SpiComIF;
public:
/** public:
* Allows construction of a SPI cookie for a connected SPI device /**
* @param deviceAddress * Allows construction of a SPI cookie for a connected SPI device
* @param spiIdx SPI bus, e.g. SPI1 or SPI2 * @param deviceAddress
* @param transferMode * @param spiIdx SPI bus, e.g. SPI1 or SPI2
* @param mspCfg This is the MSP configuration. The user is expected to supply * @param transferMode
* a valid MSP configuration. See mspInit.h for functions * @param mspCfg This is the MSP configuration. The user is expected to supply
* to create one. * a valid MSP configuration. See mspInit.h for functions
* @param spiSpeed * to create one.
* @param spiMode * @param spiSpeed
* @param chipSelectGpioPin GPIO port. Don't use a number here, use the 16 bit type * @param spiMode
* definitions supplied in the MCU header file! (e.g. GPIO_PIN_X) * @param chipSelectGpioPin GPIO port. Don't use a number here, use the 16 bit type
* @param chipSelectGpioPort GPIO port (e.g. GPIOA) * definitions supplied in the MCU header file! (e.g. GPIO_PIN_X)
* @param maxRecvSize Maximum expected receive size. Chose as small as possible. * @param chipSelectGpioPort GPIO port (e.g. GPIOA)
* @param csGpio Optional CS GPIO definition. * @param maxRecvSize Maximum expected receive size. Chose as small as possible.
*/ * @param csGpio Optional CS GPIO definition.
SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode, */
spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode, SpiCookie(address_t deviceAddress, spi::SpiBus spiIdx, spi::TransferModes transferMode,
size_t maxRecvSize, stm32h7::GpioCfg csGpio = stm32h7::GpioCfg(nullptr, 0, 0)); spi::MspCfgBase* mspCfg, uint32_t spiSpeed, spi::SpiModes spiMode, size_t maxRecvSize,
stm32h7::GpioCfg csGpio = stm32h7::GpioCfg(nullptr, 0, 0));
uint16_t getChipSelectGpioPin() const; uint16_t getChipSelectGpioPin() const;
GPIO_TypeDef* getChipSelectGpioPort(); GPIO_TypeDef* getChipSelectGpioPort();
address_t getDeviceAddress() const; address_t getDeviceAddress() const;
spi::SpiBus getSpiIdx() const; spi::SpiBus getSpiIdx() const;
spi::SpiModes getSpiMode() const; spi::SpiModes getSpiMode() const;
spi::TransferModes getTransferMode() const; spi::TransferModes getTransferMode() const;
uint32_t getSpiSpeed() const; uint32_t getSpiSpeed() const;
size_t getMaxRecvSize() const; size_t getMaxRecvSize() const;
SPI_HandleTypeDef& getSpiHandle(); SPI_HandleTypeDef& getSpiHandle();
private: private:
address_t deviceAddress; address_t deviceAddress;
SPI_HandleTypeDef spiHandle = {}; SPI_HandleTypeDef spiHandle = {};
spi::SpiBus spiIdx; spi::SpiBus spiIdx;
uint32_t spiSpeed; uint32_t spiSpeed;
spi::SpiModes spiMode; spi::SpiModes spiMode;
spi::TransferModes transferMode; spi::TransferModes transferMode;
volatile spi::TransferStates transferState = spi::TransferStates::IDLE; volatile spi::TransferStates transferState = spi::TransferStates::IDLE;
stm32h7::GpioCfg csGpio; stm32h7::GpioCfg csGpio;
// The MSP configuration is cached here. Be careful when using this, it is automatically // The MSP configuration is cached here. Be careful when using this, it is automatically
// deleted by the SPI communication interface if it is not required anymore! // deleted by the SPI communication interface if it is not required anymore!
spi::MspCfgBase* mspCfg = nullptr; spi::MspCfgBase* mspCfg = nullptr;
const size_t maxRecvSize; const size_t maxRecvSize;
// Only the SpiComIF is allowed to use this to prevent dangling pointers issues // Only the SpiComIF is allowed to use this to prevent dangling pointers issues
spi::MspCfgBase* getMspCfg(); spi::MspCfgBase* getMspCfg();
void deleteMspCfg(); void deleteMspCfg();
void setTransferState(spi::TransferStates transferState); void setTransferState(spi::TransferStates transferState);
spi::TransferStates getTransferState() const; spi::TransferStates getTransferState() const;
}; };
#endif /* FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_ */ #endif /* FSFW_HAL_STM32H7_SPI_SPICOOKIE_H_ */

Some files were not shown because too many files have changed in this diff Show More