fsfw/serialize/SerializeAdapter.h

165 lines
5.4 KiB
C++

#ifndef SERIALIZEADAPTER_H_
#define SERIALIZEADAPTER_H_
#include <framework/container/IsDerivedFrom.h>
#include <framework/returnvalues/HasReturnvaluesIF.h>
#include <framework/serialize/EndianSwapper.h>
#include <framework/serialize/SerializeIF.h>
#include <string.h>
/**
* This adapter provides an interface to use the SerializeIF functions
* with arbitrary template objects to facilitate and simplify the serialization of classes
* with different multiple different data types into buffers vice-versa.
*
* Examples:
* A report class is converted into a TM buffer. The report class implements a serialize functions and calls
* the AutoSerializeAdapter::serialize function repeatedly on all object data fields.
* The getSerializedSize function is implemented by calling the
* AutoSerializeAdapter::getSerializedSize function repeatedly on all data fields.
*
* The AutoSerializeAdapter functions can also be used as an alternative to memcpy
* to retrieve data out of a buffer directly into a class variable with data type T while being able to specify endianness.
* The boolean bigEndian specifies the endiness of the data to serialize or deSerialize.
*
* If the target architecture is little endian (ARM), any data types created might
* have the wrong endiness if they are to be used for the FSFW.
* there are three ways to retrieve data out of a buffer to be used in the FSFW to use regular aligned (big endian) data.
* This can also be applied to uint32_t and uint64_t:
*
* 1. Use the AutoSerializeAdapter::deSerialize function with bool bigEndian = true:
*
* uint16_t data;
* int32_t dataLen = sizeof(data);
* ReturnValue_t result = AutoSerializeAdapter::deSerialize(&data,&buffer,&dataLen,true);
*
* 2. Perform a bitshift operation:
*
* uint16_t data;
* data = buffer[targetByte1] >> 8 | buffer[targetByte2];
*
* 3. Memcpy can be used when data is little-endian. Otherwise, endian-swapper has to be used.
*
* uint16_t data;
* memcpy(&data,buffer + positionOfTargetByte1,sizeof(data));
* data = EndianSwapper::swap(data);
*
* When serializing for downlink, the packets are generally serialized assuming big endian data format
* like seen in TmPacketStored.cpp for example.
*
* \ingroup serialize
*/
template<typename T, int>
class SerializeAdapter_ {
public:
static ReturnValue_t serialize(const T* object, uint8_t** buffer,
uint32_t* size, const uint32_t max_size, bool bigEndian) {
uint32_t ignoredSize = 0;
if (size == NULL) {
size = &ignoredSize;
}
if (sizeof(T) + *size <= max_size) {
T tmp;
if (bigEndian) {
tmp = EndianSwapper::swap<T>(*object);
} else {
tmp = *object;
}
memcpy(*buffer, &tmp, sizeof(T));
*size += sizeof(T);
(*buffer) += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::BUFFER_TOO_SHORT;
}
}
ReturnValue_t deSerialize(T* object, const uint8_t** buffer, int32_t* size,
bool bigEndian) {
T tmp;
*size -= sizeof(T);
if (*size >= 0) {
memcpy(&tmp, *buffer, sizeof(T));
if (bigEndian) {
*object = EndianSwapper::swap<T>(tmp);
} else {
*object = tmp;
}
*buffer += sizeof(T);
return HasReturnvaluesIF::RETURN_OK;
} else {
return SerializeIF::STREAM_TOO_SHORT;
}
}
uint32_t getSerializedSize(const T * object) {
return sizeof(T);
}
};
template<typename T>
class SerializeAdapter_<T, 1> {
public:
ReturnValue_t serialize(const T* object, uint8_t** buffer, uint32_t* size,
const uint32_t max_size, bool bigEndian) const {
uint32_t ignoredSize = 0;
if (size == NULL) {
size = &ignoredSize;
}
return object->serialize(buffer, size, max_size, bigEndian);
}
uint32_t getSerializedSize(const T* object) const {
return object->getSerializedSize();
}
ReturnValue_t deSerialize(T* object, const uint8_t** buffer, int32_t* size,
bool bigEndian) {
return object->deSerialize(buffer, size, bigEndian);
}
};
template<typename T>
class SerializeAdapter {
public:
static ReturnValue_t serialize(const T* object, uint8_t** buffer,
uint32_t* size, const uint32_t max_size, bool bigEndian) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.serialize(object, buffer, size, max_size, bigEndian);
}
static uint32_t getSerializedSize(const T* object) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.getSerializedSize(object);
}
static ReturnValue_t deSerialize(T* object, const uint8_t** buffer,
int32_t* size, bool bigEndian) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.deSerialize(object, buffer, size, bigEndian);
}
};
class AutoSerializeAdapter {
public:
template<typename T>
static ReturnValue_t serialize(const T* object, uint8_t** buffer,
uint32_t* size, const uint32_t max_size, bool bigEndian) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.serialize(object, buffer, size, max_size, bigEndian);
}
template<typename T>
static uint32_t getSerializedSize(const T* object) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.getSerializedSize(object);
}
template<typename T>
static ReturnValue_t deSerialize(T* object, const uint8_t** buffer,
int32_t* size, bool bigEndian) {
SerializeAdapter_<T, IsDerivedFrom<T, SerializeIF>::Is> adapter;
return adapter.deSerialize(object, buffer, size, bigEndian);
}
};
#endif /* SERIALIZEADAPTER_H_ */