fsfw/storagemanager/LocalPool.h

431 lines
16 KiB
C++

#ifndef FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
#define FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
/**
* @file LocalPool
*
* @date 02.02.2012
* @author Bastian Baetz
*
* @brief This file contains the definition of the LocalPool class.
*/
#include <framework/objectmanager/SystemObject.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/storagemanager/StorageManagerIF.h>
#include <framework/objectmanager/ObjectManagerIF.h>
#include <framework/internalError/InternalErrorReporterIF.h>
#include <string.h>
/**
* @brief The LocalPool class provides an intermediate data storage with
* a fixed pool size policy.
* \details The class implements the StorageManagerIF interface. While the
* total number of pools is fixed, the element sizes in one pool and
* the number of pool elements per pool are set on construction.
* The full amount of memory is allocated on construction.
* The overhead is 4 byte per pool element to store the size
* information of each stored element.
* To maintain an "empty" information, the pool size is limited to
* 0xFFFF-1 bytes.
* It is possible to store empty packets in the pool.
* The local pool is NOT thread-safe.
*/
template<uint8_t NUMBER_OF_POOLS = 5>
class LocalPool: public SystemObject, public StorageManagerIF {
public:
/**
* @brief This definition generally sets the number of different sized pools.
* @details This must be less than the maximum number of pools (currently 0xff).
*/
// static const uint32_t NUMBER_OF_POOLS;
private:
/**
* Indicates that this element is free.
* This value limits the maximum size of a pool. Change to larger data type if increase is required.
*/
static const uint32_t STORAGE_FREE = 0xFFFFFFFF;
/**
* @brief In this array, the element sizes of each pool is stored.
* @details The sizes are maintained for internal pool management. The sizes
* must be set in ascending order on construction.
*/
uint32_t element_sizes[NUMBER_OF_POOLS];
/**
* @brief n_elements stores the number of elements per pool.
* @details These numbers are maintained for internal pool management.
*/
uint16_t n_elements[NUMBER_OF_POOLS];
/**
* @brief store represents the actual memory pool.
* @details It is an array of pointers to memory, which was allocated with
* a \c new call on construction.
*/
uint8_t* store[NUMBER_OF_POOLS];
/**
* @brief The size_list attribute stores the size values of every pool element.
* @details As the number of elements is determined on construction, the size list
* is also dynamically allocated there.
*/
uint32_t* size_list[NUMBER_OF_POOLS];
bool spillsToHigherPools; //!< A variable to determine whether higher n pools are used if the store is full.
/**
* @brief This method safely stores the given data in the given packet_id.
* @details It also sets the size in size_list. The method does not perform
* any range checks, these are done in advance.
* @param packet_id The storage identifier in which the data shall be stored.
* @param data The data to be stored.
* @param size The size of the data to be stored.
*/
void write(store_address_t packet_id, const uint8_t* data, uint32_t size);
/**
* @brief A helper method to read the element size of a certain pool.
* @param pool_index The pool in which to look.
* @return Returns the size of an element or 0.
*/
uint32_t getPageSize(uint16_t pool_index);
/**
* @brief This helper method looks up a fitting pool for a given size.
* @details The pools are looked up in ascending order, so the first that
* fits is used.
* @param packet_size The size of the data to be stored.
* @return Returns the pool that fits or StorageManagerIF::INVALID_ADDRESS.
*/
/**
* @brief This helper method looks up a fitting pool for a given size.
* @details The pools are looked up in ascending order, so the first that
* fits is used.
* @param packet_size The size of the data to be stored.
* @param[out] poolIndex The fitting pool index found.
* @return - #RETURN_OK on success,
* - #DATA_TOO_LARGE otherwise.
*/
ReturnValue_t getPoolIndex(uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex = 0);
/**
* @brief This helper method calculates the true array position in store
* of a given packet id.
* @details The method does not perform any range checks, these are done in
* advance.
* @param packet_id The packet id to look up.
* @return Returns the position of the data in store.
*/
uint32_t getRawPosition(store_address_t packet_id);
/**
* @brief This is a helper method to find an empty element in a given pool.
* @details The method searches size_list for the first empty element, so
* duration grows with the fill level of the pool.
* @param pool_index The pool in which the search is performed.
* @param[out] element The first found element in the pool.
* @return - #RETURN_OK on success,
* - #DATA_STORAGE_FULL if the store is full
*/
ReturnValue_t findEmpty(uint16_t pool_index, uint16_t* element);
protected:
/**
* With this helper method, a free element of \c size is reserved.
* @param size The minimum packet size that shall be reserved.
* @param[out] address Storage ID of the reserved data.
* @return - #RETURN_OK on success,
* - the return codes of #getPoolIndex or #findEmpty otherwise.
*/
virtual ReturnValue_t reserveSpace(const uint32_t size, store_address_t* address, bool ignoreFault);
InternalErrorReporterIF *internalErrorReporter;
public:
/**
* @brief This is the default constructor for a pool manager instance.
* @details By passing two arrays of size NUMBER_OF_POOLS, the constructor
* allocates memory (with \c new) for store and size_list. These
* regions are all set to zero on start up.
* @param setObjectId The object identifier to be set. This allows for
* multiple instances of LocalPool in the system.
* @param element_sizes An array of size NUMBER_OF_POOLS in which the size
* of a single element in each pool is determined.
* <b>The sizes must be provided in ascending order.
* </b>
* @param n_elements An array of size NUMBER_OF_POOLS in which the
* number of elements for each pool is determined.
* The position of these values correspond to those in
* element_sizes.
* @param registered Register the pool in object manager or not. Default is false (local pool).
*/
LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS],
bool registered = false,
bool spillsToHigherPools = false);
/**
* @brief In the LocalPool's destructor all allocated memory is freed.
*/
virtual ~LocalPool(void);
ReturnValue_t addData(store_address_t* storageId, const uint8_t * data,
uint32_t size, bool ignoreFault = false);
/**
* With this helper method, a free element of \c size is reserved.
*
* @param size The minimum packet size that shall be reserved.
* @return Returns the storage identifier within the storage or
* StorageManagerIF::INVALID_ADDRESS (in raw).
*/
ReturnValue_t getFreeElement(store_address_t* storageId,
const uint32_t size, uint8_t** p_data, bool ignoreFault = false);
ReturnValue_t getData(store_address_t packet_id, const uint8_t** packet_ptr,
uint32_t* size);
ReturnValue_t modifyData(store_address_t packet_id, uint8_t** packet_ptr,
uint32_t* size);
virtual ReturnValue_t deleteData(store_address_t);
virtual ReturnValue_t deleteData(uint8_t* ptr, uint32_t size,
store_address_t* storeId = NULL);
void clearStore();
ReturnValue_t initialize();
};
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::findEmpty(uint16_t pool_index,
uint16_t* element) {
ReturnValue_t status = DATA_STORAGE_FULL;
for (uint16_t foundElement = 0; foundElement < n_elements[pool_index];
foundElement++) {
if (size_list[pool_index][foundElement] == STORAGE_FREE) {
*element = foundElement;
status = RETURN_OK;
break;
}
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::write(store_address_t packet_id,
const uint8_t* data, uint32_t size) {
uint8_t* ptr;
uint32_t packet_position = getRawPosition(packet_id);
//check size? -> Not necessary, because size is checked before calling this function.
ptr = &store[packet_id.pool_index][packet_position];
memcpy(ptr, data, size);
size_list[packet_id.pool_index][packet_id.packet_index] = size;
}
//Returns page size of 0 in case store_index is illegal
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getPageSize(uint16_t pool_index) {
if (pool_index < NUMBER_OF_POOLS) {
return element_sizes[pool_index];
} else {
return 0;
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getPoolIndex(
uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex) {
for (uint16_t n = startAtIndex; n < NUMBER_OF_POOLS; n++) {
// debug << "LocalPool " << getObjectId() << "::getPoolIndex: Pool: " << n << ", Element Size: " << element_sizes[n] << std::endl;
if (element_sizes[n] >= packet_size) {
*poolIndex = n;
return RETURN_OK;
}
}
return DATA_TOO_LARGE;
}
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getRawPosition(
store_address_t packet_id) {
return packet_id.packet_index * element_sizes[packet_id.pool_index];
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) {
ReturnValue_t status = getPoolIndex(size, &address->pool_index);
if (status != RETURN_OK) {
error << "LocalPool( " << std::hex << getObjectId() << std::dec
<< " )::reserveSpace: Packet too large." << std::endl;
return status;
}
status = findEmpty(address->pool_index, &address->packet_index);
while (status != RETURN_OK && spillsToHigherPools) {
status = getPoolIndex(size, &address->pool_index, address->pool_index + 1);
if (status != RETURN_OK) {
//We don't find any fitting pool anymore.
break;
}
status = findEmpty(address->pool_index, &address->packet_index);
}
if (status == RETURN_OK) {
// if (getObjectId() == objects::IPC_STORE && address->pool_index >= 3) {
// debug << "Reserve: Pool: " << std::dec << address->pool_index << " Index: " << address->packet_index << std::endl;
// }
size_list[address->pool_index][address->packet_index] = size;
} else {
if (!ignoreFault) {
internalErrorReporter->storeFull();
}
// error << "LocalPool( " << std::hex << getObjectId() << std::dec
// << " )::reserveSpace: Packet store is full." << std::endl;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS], bool registered, bool spillsToHigherPools) :
SystemObject(setObjectId, registered), spillsToHigherPools(spillsToHigherPools), internalErrorReporter(NULL) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
this->element_sizes[n] = element_sizes[n];
this->n_elements[n] = n_elements[n];
store[n] = new uint8_t[n_elements[n] * element_sizes[n]];
size_list[n] = new uint32_t[n_elements[n]];
memset(store[n], 0x00, (n_elements[n] * element_sizes[n]));
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list))); //TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::~LocalPool(void) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
delete[] store[n];
delete[] size_list[n];
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::addData(
store_address_t* storageId, const uint8_t* data, uint32_t size, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
write(*storageId, data, size);
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getFreeElement(
store_address_t* storageId, const uint32_t size, uint8_t** p_data, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
*p_data = &store[storageId->pool_index][getRawPosition(*storageId)];
} else {
*p_data = NULL;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getData(
store_address_t packet_id, const uint8_t** packet_ptr, uint32_t* size) {
uint8_t* tempData = NULL;
ReturnValue_t status = modifyData(packet_id, &tempData, size);
*packet_ptr = tempData;
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::modifyData(store_address_t packet_id,
uint8_t** packet_ptr, uint32_t* size) {
ReturnValue_t status = RETURN_FAILED;
if (packet_id.pool_index >= NUMBER_OF_POOLS) {
return ILLEGAL_STORAGE_ID;
}
if ((packet_id.packet_index >= n_elements[packet_id.pool_index])) {
return ILLEGAL_STORAGE_ID;
}
if (size_list[packet_id.pool_index][packet_id.packet_index]
!= STORAGE_FREE) {
uint32_t packet_position = getRawPosition(packet_id);
*packet_ptr = &store[packet_id.pool_index][packet_position];
*size = size_list[packet_id.pool_index][packet_id.packet_index];
status = RETURN_OK;
} else {
status = DATA_DOES_NOT_EXIST;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
// if (getObjectId() == objects::IPC_STORE && packet_id.pool_index >= 3) {
// debug << "Delete: Pool: " << std::dec << packet_id.pool_index << " Index: " << packet_id.packet_index << std::endl;
// }
ReturnValue_t status = RETURN_OK;
uint32_t page_size = getPageSize(packet_id.pool_index);
if ((page_size != 0)
&& (packet_id.packet_index < n_elements[packet_id.pool_index])) {
uint16_t packet_position = getRawPosition(packet_id);
uint8_t* ptr = &store[packet_id.pool_index][packet_position];
memset(ptr, 0, page_size);
//Set free list
size_list[packet_id.pool_index][packet_id.packet_index] = STORAGE_FREE;
} else {
//pool_index or packet_index is too large
error << "LocalPool:deleteData failed." << std::endl;
status = ILLEGAL_STORAGE_ID;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::clearStore() {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list)));//TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(uint8_t* ptr,
uint32_t size, store_address_t* storeId) {
store_address_t localId;
ReturnValue_t result = ILLEGAL_ADDRESS;
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
//Not sure if new allocates all stores in order. so better be careful.
if ((store[n] <= ptr) && (&store[n][n_elements[n]*element_sizes[n]]) > ptr) {
localId.pool_index = n;
uint32_t deltaAddress = ptr - store[n];
//Getting any data from the right "block" is ok. This is necessary, as IF's sometimes don't point to the first element of an object.
localId.packet_index = deltaAddress / element_sizes[n];
result = deleteData(localId);
// if (deltaAddress % element_sizes[n] != 0) {
// error << "Pool::deleteData: address not aligned!" << std::endl;
// }
break;
}
}
if (storeId != NULL) {
*storeId = localId;
}
return result;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return result;
}
internalErrorReporter = objectManager->get<InternalErrorReporterIF>(objects::INTERNAL_ERROR_REPORTER);
if (internalErrorReporter == NULL){
return RETURN_FAILED;
}
//Check if any pool size is large than the maximum allowed.
for (uint8_t count = 0; count < NUMBER_OF_POOLS; count++) {
if (element_sizes[count] >= STORAGE_FREE) {
error
<< "LocalPool::initialize: Pool is too large! Max. allowed size is: "
<< (STORAGE_FREE - 1) << std::endl;
return RETURN_FAILED;
}
}
return RETURN_OK;
}
#endif /* FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_ */