fsfw/osal/rtems/Clock.cpp

199 lines
5.8 KiB
C++

#include <framework/timemanager/Clock.h>
#include "RtemsBasic.h"
#include <rtems/score/todimpl.h>
uint16_t Clock::leapSeconds = 0;
MutexIF* Clock::timeMutex = NULL;
uint32_t Clock::getTicksPerSecond(void){
rtems_interval ticks_per_second = rtems_clock_get_ticks_per_second();
return static_cast<uint32_t>(ticks_per_second);
}
ReturnValue_t Clock::setClock(const TimeOfDay_t* time) {
rtems_time_of_day timeRtems;
timeRtems.year = time->year;
timeRtems.month = time->month;
timeRtems.day = time->day;
timeRtems.hour = time->hour;
timeRtems.minute = time->minute;
timeRtems.second = time->second;
timeRtems.ticks = time->usecond * getTicksPerSecond() / 1e6;
rtems_status_code status = rtems_clock_set(&timeRtems);
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
case RTEMS_INVALID_ADDRESS:
return HasReturnvaluesIF::RETURN_FAILED;
case RTEMS_INVALID_CLOCK:
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::setClock(const timeval* time) {
//TODO This routine uses _TOD_Set which is not
timespec newTime;
newTime.tv_sec = time->tv_sec;
newTime.tv_nsec = time->tv_usec * TOD_NANOSECONDS_PER_MICROSECOND;
//SHOULDDO: Not sure if we need to protect this call somehow (by thread lock or something).
//Uli: rtems docu says you can call this from an ISR, not sure if this means no protetion needed
//TODO Second parameter is ISR_lock_Context
_TOD_Set(&newTime,NULL);
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getClock_timeval(timeval* time) {
//Callable from ISR
rtems_status_code status = rtems_clock_get_tod_timeval(time);
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
case RTEMS_NOT_DEFINED:
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getUptime(timeval* uptime) {
//According to docs.rtems.org for rtems 5 this method is more accurate than rtems_clock_get_ticks_since_boot
timespec time;
rtems_status_code status = rtems_clock_get_uptime(&time);
uptime->tv_sec = time.tv_sec;
time.tv_nsec = time.tv_nsec / 1000;
uptime->tv_usec = time.tv_nsec;
switch(status){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getUptime(uint32_t* uptimeMs) {
//This counter overflows after 50 days
*uptimeMs = rtems_clock_get_ticks_since_boot();
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::getClock_usecs(uint64_t* time) {
timeval temp_time;
rtems_status_code returnValue = rtems_clock_get_tod_timeval(&temp_time);
*time = ((uint64_t) temp_time.tv_sec * 1000000) + temp_time.tv_usec;
switch(returnValue){
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::getDateAndTime(TimeOfDay_t* time) {
rtems_time_of_day* timeRtems = reinterpret_cast<rtems_time_of_day*>(time);
rtems_status_code status = rtems_clock_get_tod(timeRtems);
switch (status) {
case RTEMS_SUCCESSFUL:
return HasReturnvaluesIF::RETURN_OK;
case RTEMS_NOT_DEFINED:
//system date and time is not set
return HasReturnvaluesIF::RETURN_FAILED;
case RTEMS_INVALID_ADDRESS:
//time_buffer is NULL
return HasReturnvaluesIF::RETURN_FAILED;
default:
return HasReturnvaluesIF::RETURN_FAILED;
}
}
ReturnValue_t Clock::convertTimeOfDayToTimeval(const TimeOfDay_t* from,
timeval* to) {
//Fails in 2038..
rtems_time_of_day timeRtems;
timeRtems.year = from->year;
timeRtems.month = from->month;
timeRtems.day = from->day;
timeRtems.hour = from->hour;
timeRtems.minute = from->minute;
timeRtems.second = from->second;
timeRtems.ticks = from->usecond * getTicksPerSecond() / 1e6;
to->tv_sec = _TOD_To_seconds(&timeRtems);
to->tv_usec = from->usecond;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertTimevalToJD2000(timeval time, double* JD2000) {
*JD2000 = (time.tv_sec - 946728000. + time.tv_usec / 1000000.) / 24.
/ 3600.;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::convertUTCToTT(timeval utc, timeval* tt) {
//SHOULDDO: works not for dates in the past (might have less leap seconds)
if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
uint16_t leapSeconds;
ReturnValue_t result = getLeapSeconds(&leapSeconds);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
timeval leapSeconds_timeval = { 0, 0 };
leapSeconds_timeval.tv_sec = leapSeconds;
//initial offset between UTC and TAI
timeval UTCtoTAI1972 = { 10, 0 };
timeval TAItoTT = { 32, 184000 };
*tt = utc + leapSeconds_timeval + UTCtoTAI1972 + TAItoTT;
return HasReturnvaluesIF::RETURN_OK;
}
ReturnValue_t Clock::setLeapSeconds(const uint16_t leapSeconds_) {
if(checkOrCreateClockMutex()!=HasReturnvaluesIF::RETURN_OK){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
leapSeconds = leapSeconds_;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::getLeapSeconds(uint16_t* leapSeconds_) {
if(timeMutex==NULL){
return HasReturnvaluesIF::RETURN_FAILED;
}
ReturnValue_t result = timeMutex->lockMutex(MutexIF::NO_TIMEOUT);
if (result != HasReturnvaluesIF::RETURN_OK) {
return result;
}
*leapSeconds_ = leapSeconds;
result = timeMutex->unlockMutex();
return result;
}
ReturnValue_t Clock::checkOrCreateClockMutex(){
if(timeMutex==NULL){
MutexFactory* mutexFactory = MutexFactory::instance();
if (mutexFactory == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
timeMutex = mutexFactory->createMutex();
if (timeMutex == NULL) {
return HasReturnvaluesIF::RETURN_FAILED;
}
}
return HasReturnvaluesIF::RETURN_OK;
}