fsfw/src/fsfw_hal/linux/serial/SerialComIF.cpp

439 lines
14 KiB
C++

#include "SerialComIF.h"
#include <errno.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <cstring>
#include "fsfw/FSFW.h"
#include "fsfw/serviceinterface.h"
#include "fsfw_hal/linux/utility.h"
SerialComIF::SerialComIF(object_id_t objectId) : SystemObject(objectId) {}
SerialComIF::~SerialComIF() {}
ReturnValue_t SerialComIF::initializeInterface(CookieIF* cookie) {
std::string deviceFile;
if (cookie == nullptr) {
return NULLPOINTER;
}
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UartComIF::initializeInterface: Invalid UART Cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
int fileDescriptor = configureUartPort(uartCookie);
if (fileDescriptor < 0) {
return returnvalue::FAILED;
}
size_t maxReplyLen = uartCookie->getMaxReplyLen();
UartElements uartElements = {fileDescriptor, std::vector<uint8_t>(maxReplyLen), 0};
auto status = uartDeviceMap.emplace(deviceFile, uartElements);
if (status.second == false) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::initializeInterface: Failed to insert device " << deviceFile
<< "to UART device map" << std::endl;
#endif
return returnvalue::FAILED;
}
} else {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::initializeInterface: UART device " << deviceFile
<< " already in use" << std::endl;
#endif
return returnvalue::FAILED;
}
return returnvalue::OK;
}
int SerialComIF::configureUartPort(SerialCookie* uartCookie) {
struct termios options = {};
std::string deviceFile = uartCookie->getDeviceFile();
int flags = O_RDWR;
if (uartCookie->getUartMode() == UartModes::CANONICAL) {
// In non-canonical mode, don't specify O_NONBLOCK because these properties will be
// controlled by the VTIME and VMIN parameters and O_NONBLOCK would override this
flags |= O_NONBLOCK;
}
int fd = open(deviceFile.c_str(), flags);
if (fd < 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::configureUartPort: Failed to open uart " << deviceFile
<< "with error code " << errno << strerror(errno) << std::endl;
#endif
return fd;
}
/* Read in existing settings */
if (tcgetattr(fd, &options) != 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::configureUartPort: Error " << errno
<< "from tcgetattr: " << strerror(errno) << std::endl;
#endif
return fd;
}
uart::setParity(options, uartCookie->getParity());
setStopBitOptions(&options, uartCookie);
setDatasizeOptions(&options, uartCookie);
setFixedOptions(&options);
uart::setMode(options, uartCookie->getUartMode());
if (uartCookie->getInputShouldBeFlushed()) {
tcflush(fd, TCIFLUSH);
}
/* Sets uart to non-blocking mode. Read returns immediately when there are no data available */
options.c_cc[VTIME] = 0;
options.c_cc[VMIN] = 0;
uart::setBaudrate(options, uartCookie->getBaudrate());
/* Save option settings */
if (tcsetattr(fd, TCSANOW, &options) != 0) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::configureUartPort: Failed to set options with error " << errno
<< ": " << strerror(errno);
#endif
return fd;
}
return fd;
}
void SerialComIF::setStopBitOptions(struct termios* options, SerialCookie* uartCookie) {
/* Clear stop field. Sets stop bit to one bit */
options->c_cflag &= ~CSTOPB;
switch (uartCookie->getStopBits()) {
case StopBits::TWO_STOP_BITS:
options->c_cflag |= CSTOPB;
break;
default:
break;
}
}
void SerialComIF::setDatasizeOptions(struct termios* options, SerialCookie* uartCookie) {
/* Clear size bits */
options->c_cflag &= ~CSIZE;
switch (uartCookie->getBitsPerWord()) {
case BitsPerWord::BITS_5:
options->c_cflag |= CS5;
break;
case BitsPerWord::BITS_6:
options->c_cflag |= CS6;
break;
case BitsPerWord::BITS_7:
options->c_cflag |= CS7;
break;
case BitsPerWord::BITS_8:
options->c_cflag |= CS8;
break;
default:
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::setDatasizeOptions: Invalid size specified" << std::endl;
#endif
break;
}
}
void SerialComIF::setFixedOptions(struct termios* options) {
/* Disable RTS/CTS hardware flow control */
options->c_cflag &= ~CRTSCTS;
/* Turn on READ & ignore ctrl lines (CLOCAL = 1) */
options->c_cflag |= CREAD | CLOCAL;
/* Disable echo */
options->c_lflag &= ~ECHO;
/* Disable erasure */
options->c_lflag &= ~ECHOE;
/* Disable new-line echo */
options->c_lflag &= ~ECHONL;
/* Disable interpretation of INTR, QUIT and SUSP */
options->c_lflag &= ~ISIG;
/* Turn off s/w flow ctrl */
options->c_iflag &= ~(IXON | IXOFF | IXANY);
/* Disable any special handling of received bytes */
options->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL);
/* Prevent special interpretation of output bytes (e.g. newline chars) */
options->c_oflag &= ~OPOST;
/* Prevent conversion of newline to carriage return/line feed */
options->c_oflag &= ~ONLCR;
}
ReturnValue_t SerialComIF::sendMessage(CookieIF* cookie, const uint8_t* sendData, size_t sendLen) {
int fd = 0;
std::string deviceFile;
if (sendLen == 0) {
return returnvalue::OK;
}
if (sendData == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::sendMessage: Send data is nullptr" << std::endl;
#endif
return returnvalue::FAILED;
}
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::sendMessasge: Invalid UART Cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "UartComIF::sendMessage: Device file " << deviceFile << "not in UART map"
<< std::endl;
#endif
return returnvalue::FAILED;
}
fd = uartDeviceMapIter->second.fileDescriptor;
if (write(fd, sendData, sendLen) != static_cast<int>(sendLen)) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::error << "UartComIF::sendMessage: Failed to send data with error code " << errno
<< ": Error description: " << strerror(errno) << std::endl;
#endif
return returnvalue::FAILED;
}
return returnvalue::OK;
}
ReturnValue_t SerialComIF::getSendSuccess(CookieIF* cookie) { return returnvalue::OK; }
ReturnValue_t SerialComIF::requestReceiveMessage(CookieIF* cookie, size_t requestLen) {
std::string deviceFile;
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "UartComIF::requestReceiveMessage: Invalid Uart Cookie!" << std::endl;
#endif
return NULLPOINTER;
}
UartModes uartMode = uartCookie->getUartMode();
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartMode == UartModes::NON_CANONICAL and requestLen == 0) {
return returnvalue::OK;
}
if (uartDeviceMapIter == uartDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "UartComIF::requestReceiveMessage: Device file " << deviceFile
<< " not in uart map" << std::endl;
#endif
return returnvalue::FAILED;
}
if (uartMode == UartModes::CANONICAL) {
return handleCanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
} else if (uartMode == UartModes::NON_CANONICAL) {
return handleNoncanonicalRead(*uartCookie, uartDeviceMapIter, requestLen);
} else {
return returnvalue::FAILED;
}
}
ReturnValue_t SerialComIF::handleCanonicalRead(SerialCookie& uartCookie,
UartDeviceMap::iterator& iter, size_t requestLen) {
ReturnValue_t result = returnvalue::OK;
uint8_t maxReadCycles = uartCookie.getReadCycles();
uint8_t currentReadCycles = 0;
int bytesRead = 0;
size_t currentBytesRead = 0;
size_t maxReplySize = uartCookie.getMaxReplyLen();
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
iter->second.replyLen = 0;
do {
size_t allowedReadSize = 0;
if (currentBytesRead >= maxReplySize) {
// Overflow risk. Emit warning, trigger event and break. If this happens,
// the reception buffer is not large enough or data is not polled often enough.
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning(
"UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
result = UART_RX_BUFFER_TOO_SMALL;
break;
} else {
allowedReadSize = maxReplySize - currentBytesRead;
}
bytesRead = read(fd, bufferPtr, allowedReadSize);
if (bytesRead < 0) {
// EAGAIN: No data available in non-blocking mode
if (errno != EAGAIN) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::handleCanonicalRead: read failed with code" << errno << ": "
<< strerror(errno) << std::endl;
#else
sif::printWarning("UartComIF::handleCanonicalRead: read failed with code %d: %s\n", errno,
strerror(errno));
#endif
#endif
return returnvalue::FAILED;
}
} else if (bytesRead > 0) {
iter->second.replyLen += bytesRead;
bufferPtr += bytesRead;
currentBytesRead += bytesRead;
}
currentReadCycles++;
} while (bytesRead > 0 and currentReadCycles < maxReadCycles);
return result;
}
ReturnValue_t SerialComIF::handleNoncanonicalRead(SerialCookie& uartCookie,
UartDeviceMap::iterator& iter,
size_t requestLen) {
int fd = iter->second.fileDescriptor;
auto bufferPtr = iter->second.replyBuffer.data();
// Size check to prevent buffer overflow
if (requestLen > uartCookie.getMaxReplyLen()) {
#if FSFW_VERBOSE_LEVEL >= 1
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Next read would cause overflow!"
<< std::endl;
#else
sif::printWarning(
"UartComIF::requestReceiveMessage: "
"Next read would cause overflow!");
#endif
#endif
return UART_RX_BUFFER_TOO_SMALL;
}
int bytesRead = read(fd, bufferPtr, requestLen);
if (bytesRead < 0) {
return returnvalue::FAILED;
} else if (bytesRead != static_cast<int>(requestLen)) {
if (uartCookie.isReplySizeFixed()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::requestReceiveMessage: Only read " << bytesRead << " of "
<< requestLen << " bytes" << std::endl;
#endif
return returnvalue::FAILED;
}
}
iter->second.replyLen = bytesRead;
return returnvalue::OK;
}
ReturnValue_t SerialComIF::readReceivedMessage(CookieIF* cookie, uint8_t** buffer, size_t* size) {
std::string deviceFile;
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "UartComIF::readReceivedMessage: Invalid uart cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter == uartDeviceMap.end()) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::debug << "UartComIF::readReceivedMessage: Device file " << deviceFile << " not in uart map"
<< std::endl;
#endif
return returnvalue::FAILED;
}
*buffer = uartDeviceMapIter->second.replyBuffer.data();
*size = uartDeviceMapIter->second.replyLen;
/* Length is reset to 0 to prevent reading the same data twice */
uartDeviceMapIter->second.replyLen = 0;
return returnvalue::OK;
}
ReturnValue_t SerialComIF::flushUartRxBuffer(CookieIF* cookie) {
std::string deviceFile;
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::flushUartRxBuffer: Invalid uart cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter != uartDeviceMap.end()) {
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCIFLUSH);
return returnvalue::OK;
}
return returnvalue::FAILED;
}
ReturnValue_t SerialComIF::flushUartTxBuffer(CookieIF* cookie) {
std::string deviceFile;
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::flushUartTxBuffer: Invalid uart cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter != uartDeviceMap.end()) {
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCOFLUSH);
return returnvalue::OK;
}
return returnvalue::FAILED;
}
ReturnValue_t SerialComIF::flushUartTxAndRxBuf(CookieIF* cookie) {
std::string deviceFile;
SerialCookie* uartCookie = dynamic_cast<SerialCookie*>(cookie);
if (uartCookie == nullptr) {
#if FSFW_CPP_OSTREAM_ENABLED == 1
sif::warning << "UartComIF::flushUartTxAndRxBuf: Invalid uart cookie!" << std::endl;
#endif
return NULLPOINTER;
}
deviceFile = uartCookie->getDeviceFile();
auto uartDeviceMapIter = uartDeviceMap.find(deviceFile);
if (uartDeviceMapIter != uartDeviceMap.end()) {
int fd = uartDeviceMapIter->second.fileDescriptor;
tcflush(fd, TCIOFLUSH);
return returnvalue::OK;
}
return returnvalue::FAILED;
}