163 lines
5.6 KiB
C++
163 lines
5.6 KiB
C++
#include "FixedTimeslotTask.h"
|
|
|
|
#include "../../serviceinterface/ServiceInterfaceStream.h"
|
|
|
|
uint32_t FixedTimeslotTask::deadlineMissedCount = 0;
|
|
const size_t PeriodicTaskIF::MINIMUM_STACK_SIZE = configMINIMAL_STACK_SIZE;
|
|
|
|
FixedTimeslotTask::FixedTimeslotTask(TaskName name, TaskPriority setPriority,
|
|
TaskStackSize setStack, TaskPeriod overallPeriod,
|
|
void (*setDeadlineMissedFunc)()) :
|
|
started(false), handle(nullptr), pst(overallPeriod * 1000) {
|
|
configSTACK_DEPTH_TYPE stackSize = setStack / sizeof(configSTACK_DEPTH_TYPE);
|
|
xTaskCreate(taskEntryPoint, name, stackSize, this, setPriority, &handle);
|
|
// All additional attributes are applied to the object.
|
|
this->deadlineMissedFunc = setDeadlineMissedFunc;
|
|
}
|
|
|
|
FixedTimeslotTask::~FixedTimeslotTask() {
|
|
}
|
|
|
|
void FixedTimeslotTask::taskEntryPoint(void* argument) {
|
|
|
|
// The argument is re-interpreted as FixedTimeslotTask. The Task object is
|
|
// global, so it is found from any place.
|
|
FixedTimeslotTask *originalTask(reinterpret_cast<FixedTimeslotTask*>(argument));
|
|
/* Task should not start until explicitly requested,
|
|
* but in FreeRTOS, tasks start as soon as they are created if the scheduler
|
|
* is running but not if the scheduler is not running.
|
|
* To be able to accommodate both cases we check a member which is set in
|
|
* #startTask(). If it is not set and we get here, the scheduler was started
|
|
* before #startTask() was called and we need to suspend if it is set,
|
|
* the scheduler was not running before #startTask() was called and we
|
|
* can continue */
|
|
|
|
if (not originalTask->started) {
|
|
vTaskSuspend(NULL);
|
|
}
|
|
|
|
originalTask->taskFunctionality();
|
|
sif::debug << "Polling task " << originalTask->handle
|
|
<< " returned from taskFunctionality." << std::endl;
|
|
}
|
|
|
|
void FixedTimeslotTask::missedDeadlineCounter() {
|
|
FixedTimeslotTask::deadlineMissedCount++;
|
|
if (FixedTimeslotTask::deadlineMissedCount % 10 == 0) {
|
|
sif::error << "PST missed " << FixedTimeslotTask::deadlineMissedCount
|
|
<< " deadlines." << std::endl;
|
|
}
|
|
}
|
|
|
|
ReturnValue_t FixedTimeslotTask::startTask() {
|
|
started = true;
|
|
|
|
// We must not call resume if scheduler is not started yet
|
|
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
|
|
vTaskResume(handle);
|
|
}
|
|
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
ReturnValue_t FixedTimeslotTask::addSlot(object_id_t componentId,
|
|
uint32_t slotTimeMs, int8_t executionStep) {
|
|
ExecutableObjectIF* handler =
|
|
objectManager->get<ExecutableObjectIF>(componentId);
|
|
if (handler != nullptr) {
|
|
pst.addSlot(componentId, slotTimeMs, executionStep, handler, this);
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
sif::error << "Component " << std::hex << componentId <<
|
|
" not found, not adding it to pst" << std::endl;
|
|
return HasReturnvaluesIF::RETURN_FAILED;
|
|
}
|
|
|
|
uint32_t FixedTimeslotTask::getPeriodMs() const {
|
|
return pst.getLengthMs();
|
|
}
|
|
|
|
ReturnValue_t FixedTimeslotTask::checkSequence() const {
|
|
return pst.checkSequence();
|
|
}
|
|
|
|
void FixedTimeslotTask::taskFunctionality() {
|
|
// A local iterator for the Polling Sequence Table is created to find the
|
|
// start time for the first entry.
|
|
auto slotListIter = pst.current;
|
|
|
|
pst.intializeSequenceAfterTaskCreation();
|
|
|
|
//The start time for the first entry is read.
|
|
uint32_t intervalMs = slotListIter->pollingTimeMs;
|
|
TickType_t interval = pdMS_TO_TICKS(intervalMs);
|
|
|
|
TickType_t xLastWakeTime;
|
|
/* The xLastWakeTime variable needs to be initialized with the current tick
|
|
count. Note that this is the only time the variable is written to
|
|
explicitly. After this assignment, xLastWakeTime is updated automatically
|
|
internally within vTaskDelayUntil(). */
|
|
xLastWakeTime = xTaskGetTickCount();
|
|
|
|
// wait for first entry's start time
|
|
if(interval > 0) {
|
|
vTaskDelayUntil(&xLastWakeTime, interval);
|
|
}
|
|
|
|
/* Enter the loop that defines the task behavior. */
|
|
for (;;) {
|
|
//The component for this slot is executed and the next one is chosen.
|
|
this->pst.executeAndAdvance();
|
|
if (not pst.slotFollowsImmediately()) {
|
|
// Get the interval till execution of the next slot.
|
|
intervalMs = this->pst.getIntervalToPreviousSlotMs();
|
|
interval = pdMS_TO_TICKS(intervalMs);
|
|
|
|
checkMissedDeadline(xLastWakeTime, interval);
|
|
|
|
// Wait for the interval. This exits immediately if a deadline was
|
|
// missed while also updating the last wake time.
|
|
vTaskDelayUntil(&xLastWakeTime, interval);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FixedTimeslotTask::checkMissedDeadline(const TickType_t xLastWakeTime,
|
|
const TickType_t interval) {
|
|
/* Check whether deadline was missed while also taking overflows
|
|
* into account. Drawing this on paper with a timeline helps to understand
|
|
* it. */
|
|
TickType_t currentTickCount = xTaskGetTickCount();
|
|
TickType_t timeToWake = xLastWakeTime + interval;
|
|
// Time to wake has not overflown.
|
|
if(timeToWake > xLastWakeTime) {
|
|
/* If the current time has overflown exclusively or the current
|
|
* tick count is simply larger than the time to wake, a deadline was
|
|
* missed */
|
|
if((currentTickCount < xLastWakeTime) or (currentTickCount > timeToWake)) {
|
|
handleMissedDeadline();
|
|
}
|
|
}
|
|
/* Time to wake has overflown. A deadline was missed if the current time
|
|
* is larger than the time to wake */
|
|
else if((timeToWake < xLastWakeTime) and (currentTickCount > timeToWake)) {
|
|
handleMissedDeadline();
|
|
}
|
|
}
|
|
|
|
void FixedTimeslotTask::handleMissedDeadline() {
|
|
if(deadlineMissedFunc != nullptr) {
|
|
this->deadlineMissedFunc();
|
|
}
|
|
}
|
|
|
|
ReturnValue_t FixedTimeslotTask::sleepFor(uint32_t ms) {
|
|
vTaskDelay(pdMS_TO_TICKS(ms));
|
|
return HasReturnvaluesIF::RETURN_OK;
|
|
}
|
|
|
|
TaskHandle_t FixedTimeslotTask::getTaskHandle() {
|
|
return handle;
|
|
}
|