fsfw/storagemanager/LocalPool.h
Robin Mueller d99ed47150 fixed map bugfix (fist instead of first), new access functions for fixed maP
(first(), second()), some documentation, raw pool access read() call public
because call is necessary before using public serialize function.
maybe integrate read() call into serialize function?
2019-12-08 19:04:53 +01:00

456 lines
17 KiB
C++

#ifndef FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
#define FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_
/**
* @file LocalPool
*
* @date 02.02.2012
* @author Bastian Baetz
*
* @brief This file contains the definition of the LocalPool class.
*/
#include <framework/objectmanager/SystemObject.h>
#include <framework/serviceinterface/ServiceInterfaceStream.h>
#include <framework/storagemanager/StorageManagerIF.h>
#include <framework/objectmanager/ObjectManagerIF.h>
#include <framework/internalError/InternalErrorReporterIF.h>
#include <string.h>
/**
* @brief The LocalPool class provides an intermediate data storage with
* a fixed pool size policy.
* \details The class implements the StorageManagerIF interface. While the
* total number of pools is fixed, the element sizes in one pool and
* the number of pool elements per pool are set on construction.
* The full amount of memory is allocated on construction.
* The overhead is 4 byte per pool element to store the size
* information of each stored element.
* To maintain an "empty" information, the pool size is limited to
* 0xFFFF-1 bytes.
* It is possible to store empty packets in the pool.
* The local pool is NOT thread-safe.
*/
template<uint8_t NUMBER_OF_POOLS = 5>
class LocalPool: public SystemObject, public StorageManagerIF {
public:
/**
* @brief This definition generally sets the number of different sized pools.
* @details This must be less than the maximum number of pools (currently 0xff).
*/
// static const uint32_t NUMBER_OF_POOLS;
private:
/**
* Indicates that this element is free.
* This value limits the maximum size of a pool. Change to larger data type if increase is required.
*/
static const uint32_t STORAGE_FREE = 0xFFFFFFFF;
/**
* @brief In this array, the element sizes of each pool is stored.
* @details The sizes are maintained for internal pool management. The sizes
* must be set in ascending order on construction.
*/
uint32_t element_sizes[NUMBER_OF_POOLS];
/**
* @brief n_elements stores the number of elements per pool.
* @details These numbers are maintained for internal pool management.
*/
uint16_t n_elements[NUMBER_OF_POOLS];
/**
* @brief store represents the actual memory pool.
* @details It is an array of pointers to memory, which was allocated with
* a \c new call on construction.
*/
uint8_t* store[NUMBER_OF_POOLS];
/**
* @brief The size_list attribute stores the size values of every pool element.
* @details As the number of elements is determined on construction, the size list
* is also dynamically allocated there.
*/
uint32_t* size_list[NUMBER_OF_POOLS];
bool spillsToHigherPools; //!< A variable to determine whether higher n pools are used if the store is full.
/**
* @brief This method safely stores the given data in the given packet_id.
* @details It also sets the size in size_list. The method does not perform
* any range checks, these are done in advance.
* @param packet_id The storage identifier in which the data shall be stored.
* @param data The data to be stored.
* @param size The size of the data to be stored.
*/
void write(store_address_t packet_id, const uint8_t* data, uint32_t size);
/**
* @brief A helper method to read the element size of a certain pool.
* @param pool_index The pool in which to look.
* @return Returns the size of an element or 0.
*/
uint32_t getPageSize(uint16_t pool_index);
/**
* @brief This helper method looks up a fitting pool for a given size.
* @details The pools are looked up in ascending order, so the first that
* fits is used.
* @param packet_size The size of the data to be stored.
* @return Returns the pool that fits or StorageManagerIF::INVALID_ADDRESS.
*/
/**
* @brief This helper method looks up a fitting pool for a given size.
* @details The pools are looked up in ascending order, so the first that
* fits is used.
* @param packet_size The size of the data to be stored.
* @param[out] poolIndex The fitting pool index found.
* @return - #RETURN_OK on success,
* - #DATA_TOO_LARGE otherwise.
*/
ReturnValue_t getPoolIndex(uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex = 0);
/**
* @brief This helper method calculates the true array position in store
* of a given packet id.
* @details The method does not perform any range checks, these are done in
* advance.
* @param packet_id The packet id to look up.
* @return Returns the position of the data in store.
*/
uint32_t getRawPosition(store_address_t packet_id);
/**
* @brief This is a helper method to find an empty element in a given pool.
* @details The method searches size_list for the first empty element, so
* duration grows with the fill level of the pool.
* @param pool_index The pool in which the search is performed.
* @param[out] element The first found element in the pool.
* @return - #RETURN_OK on success,
* - #DATA_STORAGE_FULL if the store is full
*/
ReturnValue_t findEmpty(uint16_t pool_index, uint16_t* element);
protected:
/**
* With this helper method, a free element of \c size is reserved.
* @param size The minimum packet size that shall be reserved.
* @param[out] address Storage ID of the reserved data.
* @return - #RETURN_OK on success,
* - the return codes of #getPoolIndex or #findEmpty otherwise.
*/
virtual ReturnValue_t reserveSpace(const uint32_t size, store_address_t* address, bool ignoreFault);
InternalErrorReporterIF *internalErrorReporter;
public:
/**
* @brief This is the default constructor for a pool manager instance.
* @details By passing two arrays of size NUMBER_OF_POOLS, the constructor
* allocates memory (with \c new) for store and size_list. These
* regions are all set to zero on start up.
* @param setObjectId The object identifier to be set. This allows for
* multiple instances of LocalPool in the system.
* @param element_sizes An array of size NUMBER_OF_POOLS in which the size
* of a single element in each pool is determined.
* <b>The sizes must be provided in ascending order.
* </b>
* @param n_elements An array of size NUMBER_OF_POOLS in which the
* number of elements for each pool is determined.
* The position of these values correspond to those in
* element_sizes.
* @param registered Register the pool in object manager or not. Default is false (local pool).
*/
LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS],
bool registered = false,
bool spillsToHigherPools = false);
/**
* @brief In the LocalPool's destructor all allocated memory is freed.
*/
virtual ~LocalPool(void);
/**
* Add data to local data pool, performs range check
* @param storageId [out] Store ID in which the data will be stored
* @param data
* @param size
* @param ignoreFault
* @return @c RETURN_OK if write was successful
*/
ReturnValue_t addData(store_address_t* storageId, const uint8_t * data,
uint32_t size, bool ignoreFault = false);
/**
* With this helper method, a free element of \c size is reserved.
*
* @param size The minimum packet size that shall be reserved.
* @return Returns the storage identifier within the storage or
* StorageManagerIF::INVALID_ADDRESS (in raw).
*/
ReturnValue_t getFreeElement(store_address_t* storageId,
const uint32_t size, uint8_t** p_data, bool ignoreFault = false);
/**
* Retrieve data from local pool
* @param packet_id
* @param packet_ptr
* @param size [out] Size of retrieved data
* @return @c RETURN_OK if data retrieval was successfull
*/
ReturnValue_t getData(store_address_t packet_id, const uint8_t** packet_ptr,
uint32_t* size);
/**
* Modify data by supplying a previously obtaind packet pointer
* @param packet_id Store ID of data to modify
* @param packet_ptr
* @param size [out] size of changed data
* @return
*/
ReturnValue_t modifyData(store_address_t packet_id, uint8_t** packet_ptr,
uint32_t* size);
virtual ReturnValue_t deleteData(store_address_t);
virtual ReturnValue_t deleteData(uint8_t* ptr, uint32_t size,
store_address_t* storeId = NULL);
void clearStore();
ReturnValue_t initialize();
};
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::findEmpty(uint16_t pool_index,
uint16_t* element) {
ReturnValue_t status = DATA_STORAGE_FULL;
for (uint16_t foundElement = 0; foundElement < n_elements[pool_index];
foundElement++) {
if (size_list[pool_index][foundElement] == STORAGE_FREE) {
*element = foundElement;
status = RETURN_OK;
break;
}
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::write(store_address_t packet_id,
const uint8_t* data, uint32_t size) {
uint8_t* ptr;
uint32_t packet_position = getRawPosition(packet_id);
//check size? -> Not necessary, because size is checked before calling this function.
ptr = &store[packet_id.pool_index][packet_position];
memcpy(ptr, data, size);
size_list[packet_id.pool_index][packet_id.packet_index] = size;
}
//Returns page size of 0 in case store_index is illegal
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getPageSize(uint16_t pool_index) {
if (pool_index < NUMBER_OF_POOLS) {
return element_sizes[pool_index];
} else {
return 0;
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getPoolIndex(
uint32_t packet_size, uint16_t* poolIndex, uint16_t startAtIndex) {
for (uint16_t n = startAtIndex; n < NUMBER_OF_POOLS; n++) {
// debug << "LocalPool " << getObjectId() << "::getPoolIndex: Pool: " << n << ", Element Size: " << element_sizes[n] << std::endl;
if (element_sizes[n] >= packet_size) {
*poolIndex = n;
return RETURN_OK;
}
}
return DATA_TOO_LARGE;
}
template<uint8_t NUMBER_OF_POOLS>
inline uint32_t LocalPool<NUMBER_OF_POOLS>::getRawPosition(
store_address_t packet_id) {
return packet_id.packet_index * element_sizes[packet_id.pool_index];
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::reserveSpace(
const uint32_t size, store_address_t* address, bool ignoreFault) {
ReturnValue_t status = getPoolIndex(size, &address->pool_index);
if (status != RETURN_OK) {
error << "LocalPool( " << std::hex << getObjectId() << std::dec
<< " )::reserveSpace: Packet too large." << std::endl;
return status;
}
status = findEmpty(address->pool_index, &address->packet_index);
while (status != RETURN_OK && spillsToHigherPools) {
status = getPoolIndex(size, &address->pool_index, address->pool_index + 1);
if (status != RETURN_OK) {
//We don't find any fitting pool anymore.
break;
}
status = findEmpty(address->pool_index, &address->packet_index);
}
if (status == RETURN_OK) {
// if (getObjectId() == objects::IPC_STORE && address->pool_index >= 3) {
// debug << "Reserve: Pool: " << std::dec << address->pool_index << " Index: " << address->packet_index << std::endl;
// }
size_list[address->pool_index][address->packet_index] = size;
} else {
if (!ignoreFault) {
internalErrorReporter->storeFull();
}
// error << "LocalPool( " << std::hex << getObjectId() << std::dec
// << " )::reserveSpace: Packet store is full." << std::endl;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::LocalPool(object_id_t setObjectId,
const uint16_t element_sizes[NUMBER_OF_POOLS],
const uint16_t n_elements[NUMBER_OF_POOLS], bool registered, bool spillsToHigherPools) :
SystemObject(setObjectId, registered), spillsToHigherPools(spillsToHigherPools), internalErrorReporter(NULL) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
this->element_sizes[n] = element_sizes[n];
this->n_elements[n] = n_elements[n];
store[n] = new uint8_t[n_elements[n] * element_sizes[n]];
size_list[n] = new uint32_t[n_elements[n]];
memset(store[n], 0x00, (n_elements[n] * element_sizes[n]));
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list))); //TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline LocalPool<NUMBER_OF_POOLS>::~LocalPool(void) {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
delete[] store[n];
delete[] size_list[n];
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::addData(
store_address_t* storageId, const uint8_t* data, uint32_t size, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
write(*storageId, data, size);
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getFreeElement(
store_address_t* storageId, const uint32_t size, uint8_t** p_data, bool ignoreFault) {
ReturnValue_t status = reserveSpace(size, storageId, ignoreFault);
if (status == RETURN_OK) {
*p_data = &store[storageId->pool_index][getRawPosition(*storageId)];
} else {
*p_data = NULL;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::getData(
store_address_t packet_id, const uint8_t** packet_ptr, uint32_t* size) {
uint8_t* tempData = NULL;
ReturnValue_t status = modifyData(packet_id, &tempData, size);
*packet_ptr = tempData;
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::modifyData(store_address_t packet_id,
uint8_t** packet_ptr, uint32_t* size) {
ReturnValue_t status = RETURN_FAILED;
if (packet_id.pool_index >= NUMBER_OF_POOLS) {
return ILLEGAL_STORAGE_ID;
}
if ((packet_id.packet_index >= n_elements[packet_id.pool_index])) {
return ILLEGAL_STORAGE_ID;
}
if (size_list[packet_id.pool_index][packet_id.packet_index]
!= STORAGE_FREE) {
uint32_t packet_position = getRawPosition(packet_id);
*packet_ptr = &store[packet_id.pool_index][packet_position];
*size = size_list[packet_id.pool_index][packet_id.packet_index];
status = RETURN_OK;
} else {
status = DATA_DOES_NOT_EXIST;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(
store_address_t packet_id) {
// if (getObjectId() == objects::IPC_STORE && packet_id.pool_index >= 3) {
// debug << "Delete: Pool: " << std::dec << packet_id.pool_index << " Index: " << packet_id.packet_index << std::endl;
// }
ReturnValue_t status = RETURN_OK;
uint32_t page_size = getPageSize(packet_id.pool_index);
if ((page_size != 0)
&& (packet_id.packet_index < n_elements[packet_id.pool_index])) {
uint16_t packet_position = getRawPosition(packet_id);
uint8_t* ptr = &store[packet_id.pool_index][packet_position];
memset(ptr, 0, page_size);
//Set free list
size_list[packet_id.pool_index][packet_id.packet_index] = STORAGE_FREE;
} else {
//pool_index or packet_index is too large
error << "LocalPool:deleteData failed." << std::endl;
status = ILLEGAL_STORAGE_ID;
}
return status;
}
template<uint8_t NUMBER_OF_POOLS>
inline void LocalPool<NUMBER_OF_POOLS>::clearStore() {
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
memset(size_list[n], STORAGE_FREE, (n_elements[n] * sizeof(**size_list)));//TODO checkme
}
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::deleteData(uint8_t* ptr,
uint32_t size, store_address_t* storeId) {
store_address_t localId;
ReturnValue_t result = ILLEGAL_ADDRESS;
for (uint16_t n = 0; n < NUMBER_OF_POOLS; n++) {
//Not sure if new allocates all stores in order. so better be careful.
if ((store[n] <= ptr) && (&store[n][n_elements[n]*element_sizes[n]]) > ptr) {
localId.pool_index = n;
uint32_t deltaAddress = ptr - store[n];
//Getting any data from the right "block" is ok. This is necessary, as IF's sometimes don't point to the first element of an object.
localId.packet_index = deltaAddress / element_sizes[n];
result = deleteData(localId);
// if (deltaAddress % element_sizes[n] != 0) {
// error << "Pool::deleteData: address not aligned!" << std::endl;
// }
break;
}
}
if (storeId != NULL) {
*storeId = localId;
}
return result;
}
template<uint8_t NUMBER_OF_POOLS>
inline ReturnValue_t LocalPool<NUMBER_OF_POOLS>::initialize() {
ReturnValue_t result = SystemObject::initialize();
if (result != RETURN_OK) {
return result;
}
internalErrorReporter = objectManager->get<InternalErrorReporterIF>(objects::INTERNAL_ERROR_REPORTER);
if (internalErrorReporter == NULL){
return RETURN_FAILED;
}
//Check if any pool size is large than the maximum allowed.
for (uint8_t count = 0; count < NUMBER_OF_POOLS; count++) {
if (element_sizes[count] >= STORAGE_FREE) {
error
<< "LocalPool::initialize: Pool is too large! Max. allowed size is: "
<< (STORAGE_FREE - 1) << std::endl;
return RETURN_FAILED;
}
}
return RETURN_OK;
}
#endif /* FRAMEWORK_STORAGEMANAGER_LOCALPOOL_H_ */