fsfw/datapoollocal/LocalPoolVector.h

189 lines
7.6 KiB
C++

#ifndef FSFW_DATAPOOLLOCAL_LOCALPOOLVECTOR_H_
#define FSFW_DATAPOOLLOCAL_LOCALPOOLVECTOR_H_
#include "LocalPoolObjectBase.h"
#include "internal/LocalDpManagerAttorney.h"
#include "../datapool/DataSetIF.h"
#include "../datapool/PoolEntry.h"
#include "../datapool/PoolVariableIF.h"
#include "../datapoollocal/LocalDataPoolManager.h"
#include "../serialize/SerializeAdapter.h"
#include "../serviceinterface/ServiceInterface.h"
/**
* @brief This is the access class for array-type data pool entries.
* @details
* To ensure safe usage of the data pool, operation is not done directly on the
* data pool entries, but on local copies. This class provides simple type-
* and length-safe access to vector-style data pool entries (i.e. entries with
* length > 1). The class can be instantiated as read-write and read only.
*
* It provides a commit-and-roll-back semantic, which means that no array
* entry in the data pool is changed until the commit call is executed.
* There are two template parameters:
* @tparam T
* This template parameter specifies the data type of an array entry. Currently,
* all plain data types are supported, but in principle any type is possible.
* @tparam vector_size
* This template parameter specifies the vector size of this entry. Using a
* template parameter for this is not perfect, but avoids
* dynamic memory allocation.
* @ingroup data_pool
*/
template<typename T, uint16_t vectorSize>
class LocalPoolVector: public LocalPoolObjectBase {
public:
LocalPoolVector() = delete;
/**
* This constructor is used by the data creators to have pool variable
* instances which can also be stored in datasets.
* It does not fetch the current value from the data pool. This is performed
* by the read() operation (which is not thread-safe).
* Datasets can be used to access local pool entires in a thread-safe way.
* @param poolId ID of the local pool entry.
* @param hkOwner Pointer of the owner. This will generally be the calling
* class itself which passes "this".
* @param setReadWriteMode Specify the read-write mode of the pool variable.
* @param dataSet The data set in which the variable shall register itself.
* If nullptr, the variable is not registered.
*/
LocalPoolVector(HasLocalDataPoolIF* hkOwner, lp_id_t poolId,
DataSetIF* dataSet = nullptr,
pool_rwm_t setReadWriteMode = pool_rwm_t::VAR_READ_WRITE);
/**
* This constructor is used by data users like controllers to have
* access to the local pool variables of data creators by supplying
* the respective creator object ID.
* It does not fetch the current value from the data pool. This is performed
* by the read() operation (which is not thread-safe).
* Datasets can be used to access local pool entires in a thread-safe way.
* @param poolId ID of the local pool entry.
* @param hkOwner Pointer of the owner. This will generally be the calling
* class itself which passes "this".
* @param setReadWriteMode Specify the read-write mode of the pool variable.
* @param dataSet The data set in which the variable shall register itself.
* If nullptr, the variable is not registered.
*/
LocalPoolVector(object_id_t poolOwner, lp_id_t poolId,
DataSetIF* dataSet = nullptr,
pool_rwm_t setReadWriteMode = pool_rwm_t::VAR_READ_WRITE);
/**
* Variation which takes the unique global identifier of a local pool
* vector.
* @param globalPoolId
* @param dataSet
* @param setReadWriteMode
*/
LocalPoolVector(gp_id_t globalPoolId, DataSetIF* dataSet = nullptr,
pool_rwm_t setReadWriteMode = pool_rwm_t::VAR_READ_WRITE);
/**
* @brief This is the local copy of the data pool entry.
* @details
* The user can work on this attribute just like he would on a local
* array of this type.
*/
T value[vectorSize]= {};
/**
* @brief The classes destructor is empty.
* @details If commit() was not called, the local value is
* discarded and not written back to the data pool.
*/
~LocalPoolVector() {};
/**
* @brief The operation returns the number of array entries
* in this variable.
*/
uint8_t getSize() {
return vectorSize;
}
T& operator [](size_t i);
const T &operator [](size_t i) const;
virtual ReturnValue_t serialize(uint8_t** buffer, size_t* size,
const size_t maxSize,
SerializeIF::Endianness streamEndiannes) const override;
virtual size_t getSerializedSize() const override;
virtual ReturnValue_t deSerialize(const uint8_t** buffer, size_t* size,
SerializeIF::Endianness streamEndianness) override;
/**
* @brief This is a call to read the array's values
* from the global data pool.
* @details
* When executed, this operation tries to fetch the pool entry with matching
* data pool id from the data pool and copies all array values and the valid
* information to its local attributes.
* In case of a failure (wrong type, size or pool id not found), the
* variable is set to zero and invalid.
* The read call is protected with a lock.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t read(MutexIF::TimeoutType timeoutType =
MutexIF::TimeoutType::WAITING,
uint32_t timeoutMs = 20) override;
/**
* @brief The commit call copies the array values back to the data pool.
* @details
* It checks type and size, as well as if the variable is writable. If so,
* the value is copied and the local valid flag is written back as well.
* The read call is protected with a lock.
* It is recommended to use DataSets to read and commit multiple variables
* at once to avoid the overhead of unnecessary lock und unlock operations.
*/
ReturnValue_t commit(MutexIF::TimeoutType timeoutType =
MutexIF::TimeoutType::WAITING,
uint32_t timeoutMs = 20) override;
/**
* @brief This commit call also sets the validity of the pool entry.
* @details
*/
ReturnValue_t commit(bool valid, MutexIF::TimeoutType timeoutType =
MutexIF::TimeoutType::WAITING,
uint32_t timeoutMs = 20);
protected:
/**
* @brief Like #read, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t readWithoutLock() override;
/**
* @brief Like #commit, but without a lock protection of the global pool.
* @details
* The operation does NOT provide any mutual exclusive protection by itself.
* This can be used if the lock is handled externally to avoid the overhead
* of consecutive lock und unlock operations.
* Declared protected to discourage free public usage.
*/
ReturnValue_t commitWithoutLock() override;
private:
#if FSFW_CPP_OSTREAM_ENABLED == 1
// std::ostream is the type for object std::cout
template <typename U, uint16_t otherSize>
friend std::ostream& operator<< (std::ostream &out,
const LocalPoolVector<U, otherSize> &var);
#endif
};
#include "LocalPoolVector.tpp"
template<typename T, uint16_t vectorSize>
using lp_vec_t = LocalPoolVector<T, vectorSize>;
#endif /* FSFW_DATAPOOLLOCAL_LOCALPOOLVECTOR_H_ */