fsfw/datapool/DataSet.h
Ulrich Mohr 575f70ba03 updating code from Flying Laptop
This is the framework of Flying Laptop OBSW version A.13.0.
2018-07-12 16:29:32 +02:00

160 lines
6.4 KiB
C++

/*
* \file DataSet.h
*
* \brief This file contains the DataSet class and a small structure called DataSetContent.
*
* \date 10/17/2012
*
* \author Bastian Baetz
*
*/
#ifndef DATASET_H_
#define DATASET_H_
#include <framework/datapool/DataPool.h>
#include <framework/datapool/DataSetIF.h>
#include <framework/datapool/PoolRawAccess.h>
#include <framework/datapool/PoolVariable.h>
#include <framework/datapool/PoolVarList.h>
#include <framework/datapool/PoolVector.h>
#include <framework/serialize/SerializeAdapter.h>
/**
* \brief The DataSet class manages a set of locally checked out variables.
*
* \details This class manages a list, where a set of local variables (or pool variables) are
* registered. They are checked-out (i.e. their values are looked up and copied)
* with the read call. After the user finishes working with the pool variables,
* he can write back all variable values to the pool with the commit call.
* The data set manages locking and freeing the data pool, to ensure that all values
* are read and written back at once.
* An internal state manages usage of this class. Variables may only be registered before
* the read call is made, and the commit call only after the read call.
* If pool variables are writable and not committed until destruction of the set, the
* DataSet class automatically sets the valid flag in the data pool to invalid (without)
* changing the variable's value.
*
* \ingroup data_pool
*/
class DataSet: public DataSetIF, public HasReturnvaluesIF, public SerializeIF {
private:
//SHOULDDO we could use a linked list of datapool variables
static const uint8_t DATA_SET_MAX_SIZE = 63; //!< This definition sets the maximum number of variables to register in one DataSet.
/**
* \brief This array represents all pool variables registered in this set.
* \details It has a maximum size of DATA_SET_MAX_SIZE.
*/
PoolVariableIF* registeredVariables[DATA_SET_MAX_SIZE];
/**
* \brief The fill_count attribute ensures that the variables register in the correct array
* position and that the maximum number of variables is not exceeded.
*/
uint16_t fill_count;
/**
* States of the seet.
*/
enum States {
DATA_SET_UNINITIALISED, //!< DATA_SET_UNINITIALISED
DATA_SET_WAS_READ //!< DATA_SET_WAS_READ
};
/**
* \brief state manages the internal state of the data set, which is important e.g. for the
* behavior on destruction.
*/
States state;
/**
* \brief This is a small helper function to facilitate locking the global data pool.
* \details It makes use of the lockDataPool method offered by the DataPool class.
*/
uint8_t lockDataPool();
/**
* \brief This is a small helper function to facilitate unlocking the global data pool.
* \details It makes use of the freeDataPoolLock method offered by the DataPool class.
*/
uint8_t freeDataPoolLock();
public:
static const uint8_t INTERFACE_ID = CLASS_ID::DATA_SET_CLASS;
static const ReturnValue_t INVALID_PARAMETER_DEFINITION =
MAKE_RETURN_CODE( 0x01 );
static const ReturnValue_t SET_WAS_ALREADY_READ = MAKE_RETURN_CODE( 0x02 );
static const ReturnValue_t COMMITING_WITHOUT_READING =
MAKE_RETURN_CODE(0x03);
/**
* \brief The constructor simply sets the fill_count to zero and sets the state to "uninitialized".
*/
DataSet();
/**
* \brief The destructor automatically manages writing the valid information of variables.
* \details In case the data set was read out, but not committed (indicated by state),
* the destructor parses all variables that are still registered to the set.
* For each, the valid flag in the data pool is set to "invalid".
*/
~DataSet();
/**
* \brief The read call initializes reading out all registered variables.
* \details It iterates through the list of registered variables and calls all read()
* functions of the registered pool variables (which read out their values from the
* data pool) which are not write-only. In case of an error (e.g. a wrong data type,
* or an invalid data pool id), the operation is aborted and
* \c INVALID_PARAMETER_DEFINITION returned.
* The data pool is locked during the whole read operation and freed afterwards.
* The state changes to "was written" after this operation.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c INVALID_PARAMETER_DEFINITION if PID, size or type of the
* requested variable is invalid.
* - \c SET_WAS_ALREADY_READ if read() is called twice without calling
* commit() in between
*/
ReturnValue_t read();
/**
* \brief The commit call initializes writing back the registered variables.
* \details It iterates through the list of registered variables and calls
* the commit() method of the remaining registered variables (which write back
* their values to the pool).
* The data pool is locked during the whole commit operation and freed afterwards.
* The state changes to "was committed" after this operation.
* If the set does contain at least one variable which is not write-only commit()
* can only be called after read(). If the set only contains variables which are
* write only, commit() can be called without a preceding read() call.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(void);
/**
* Variant of method above which sets validity of all elements of the set.
* @param valid Validity information from PoolVariableIF.
* \return - \c RETURN_OK if all variables were read successfully.
* - \c COMMITING_WITHOUT_READING if set was not read yet and contains non write-only
* variables
*/
ReturnValue_t commit(uint8_t valid);
/**
* \brief This operation is used to register the local variables in the set.
* \details It copies all required information to the currently
* free space in the registeredVariables list.
*/
void registerVariable(PoolVariableIF* variable);
/**
* Set the valid information of all variables contained in the set which are not readonly
*
* @param valid Validity information from PoolVariableIF.
*/
void setValid(uint8_t valid);
ReturnValue_t serialize(uint8_t** buffer, uint32_t* size,
const uint32_t max_size, bool bigEndian) const;
uint32_t getSerializedSize() const;
ReturnValue_t deSerialize(const uint8_t** buffer, int32_t* size,
bool bigEndian);
};
#endif /* DATASET_H_ */