223 lines
7.2 KiB
C++
223 lines
7.2 KiB
C++
#ifndef TEMPERATURESENSOR_H_
|
||
#define TEMPERATURESENSOR_H_
|
||
|
||
#include "../thermal/AbstractTemperatureSensor.h"
|
||
#include "../datapoolglob/GlobalDataSet.h"
|
||
#include "../datapoolglob/GlobalPoolVariable.h"
|
||
#include "../monitoring/LimitMonitor.h"
|
||
|
||
/**
|
||
* @brief This building block handles non-linear value conversion and
|
||
* range checks for analog temperature sensors.
|
||
* @details This class can be used to perform all necessary tasks for temperature sensors.
|
||
* A sensor can be instantiated by calling the constructor.
|
||
* The temperature is calculated from an input value with
|
||
* the calculateOutputTemperature() function. Range checking and
|
||
* limit monitoring is performed automatically.
|
||
* The inputType specifies the type of the raw input while the
|
||
* limitType specifies the type of the upper and lower limit to check against.
|
||
* @ingroup thermal
|
||
*/
|
||
|
||
template<typename inputType, typename limitType = inputType>
|
||
class TemperatureSensor: public AbstractTemperatureSensor {
|
||
public:
|
||
/**
|
||
* This structure contains parameters required for range checking
|
||
* and the conversion from the input value to the output temperature.
|
||
* a, b and c can be any parameters required to calculate the output
|
||
* temperature from the input value, depending on the formula used.
|
||
*
|
||
* The parameters a,b and c are used in the calculateOutputTemperature() call.
|
||
*
|
||
* The lower and upper limits can be specified in any type, for example float for C values
|
||
* or any other type for raw values.
|
||
*/
|
||
struct Parameters {
|
||
float a;
|
||
float b;
|
||
float c;
|
||
limitType lowerLimit;
|
||
limitType upperLimit;
|
||
float maxGradient;
|
||
};
|
||
|
||
/**
|
||
* Forward declaration for explicit instantiation of used parameters.
|
||
*/
|
||
struct UsedParameters {
|
||
UsedParameters(Parameters parameters) :
|
||
a(parameters.a), b(parameters.b), c(parameters.c),
|
||
gradient(parameters.maxGradient) {}
|
||
float a;
|
||
float b;
|
||
float c;
|
||
float gradient;
|
||
};
|
||
|
||
/**
|
||
* Instantiate Temperature Sensor Object.
|
||
* @param setObjectid objectId of the sensor object
|
||
* @param inputValue Input value which is converted to a temperature
|
||
* @param poolVariable Pool Variable to store the temperature value
|
||
* @param vectorIndex Vector Index for the sensor monitor
|
||
* @param parameters Calculation parameters, temperature limits, gradient limit
|
||
* @param datapoolId Datapool ID of the output temperature
|
||
* @param outputSet Output dataset for the output temperature to fetch it with read()
|
||
* @param thermalModule respective thermal module, if it has one
|
||
*/
|
||
TemperatureSensor(object_id_t setObjectid,
|
||
inputType *inputValue, PoolVariableIF *poolVariable,
|
||
uint8_t vectorIndex, uint32_t datapoolId, Parameters parameters = {0, 0, 0, 0, 0, 0},
|
||
GlobDataSet *outputSet = NULL, ThermalModuleIF *thermalModule = NULL) :
|
||
AbstractTemperatureSensor(setObjectid, thermalModule), parameters(parameters),
|
||
inputValue(inputValue), poolVariable(poolVariable),
|
||
outputTemperature(datapoolId, outputSet, PoolVariableIF::VAR_WRITE),
|
||
sensorMonitor(setObjectid, DOMAIN_ID_SENSOR,
|
||
GlobalDataPool::poolIdAndPositionToPid(poolVariable->getDataPoolId(), vectorIndex),
|
||
DEFAULT_CONFIRMATION_COUNT, parameters.lowerLimit, parameters.upperLimit,
|
||
TEMP_SENSOR_LOW, TEMP_SENSOR_HIGH),
|
||
oldTemperature(20), uptimeOfOldTemperature( { INVALID_TEMPERATURE, 0 }) {
|
||
}
|
||
|
||
|
||
protected:
|
||
/**
|
||
* This formula is used to calculate the temperature from an input value
|
||
* with an arbitrary type.
|
||
* A default implementation is provided but can be replaced depending
|
||
* on the required calculation.
|
||
* @param inputTemperature
|
||
* @return
|
||
*/
|
||
virtual float calculateOutputTemperature(inputType inputValue) {
|
||
return parameters.a * inputValue * inputValue
|
||
+ parameters.b * inputValue + parameters.c;
|
||
}
|
||
|
||
|
||
private:
|
||
void setInvalid() {
|
||
outputTemperature = INVALID_TEMPERATURE;
|
||
outputTemperature.setValid(false);
|
||
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
|
||
sensorMonitor.setToInvalid();
|
||
}
|
||
protected:
|
||
static const int32_t INVALID_UPTIME = 0;
|
||
|
||
UsedParameters parameters;
|
||
|
||
inputType * inputValue;
|
||
|
||
PoolVariableIF *poolVariable;
|
||
|
||
gp_float_t outputTemperature;
|
||
|
||
LimitMonitor<limitType> sensorMonitor;
|
||
|
||
float oldTemperature;
|
||
timeval uptimeOfOldTemperature;
|
||
|
||
void doChildOperation() {
|
||
if (!poolVariable->isValid()
|
||
|| !healthHelper.healthTable->isHealthy(getObjectId())) {
|
||
setInvalid();
|
||
return;
|
||
}
|
||
|
||
outputTemperature = calculateOutputTemperature(*inputValue);
|
||
outputTemperature.setValid(PoolVariableIF::VALID);
|
||
|
||
timeval uptime;
|
||
Clock::getUptime(&uptime);
|
||
|
||
if (uptimeOfOldTemperature.tv_sec != INVALID_UPTIME) {
|
||
//In theory, we could use an AbsValueMonitor to monitor the gradient.
|
||
//But this would require storing the maxGradient in DP and quite some overhead.
|
||
//The concept of delta limits is a bit strange anyway.
|
||
float deltaTime;
|
||
float deltaTemp;
|
||
|
||
deltaTime = (uptime.tv_sec + uptime.tv_usec / 1000000.)
|
||
- (uptimeOfOldTemperature.tv_sec
|
||
+ uptimeOfOldTemperature.tv_usec / 1000000.);
|
||
deltaTemp = oldTemperature - outputTemperature;
|
||
if (deltaTemp < 0) {
|
||
deltaTemp = -deltaTemp;
|
||
}
|
||
if (parameters.gradient < deltaTemp / deltaTime) {
|
||
triggerEvent(TEMP_SENSOR_GRADIENT);
|
||
//Don't set invalid, as we did not recognize it as invalid with full authority, let FDIR handle it
|
||
}
|
||
}
|
||
|
||
//Check is done against raw limits. SHOULDDO: Why? Using <20>C would be more easy to handle.
|
||
sensorMonitor.doCheck(outputTemperature.value);
|
||
|
||
if (sensorMonitor.isOutOfLimits()) {
|
||
uptimeOfOldTemperature.tv_sec = INVALID_UPTIME;
|
||
outputTemperature.setValid(PoolVariableIF::INVALID);
|
||
outputTemperature = INVALID_TEMPERATURE;
|
||
} else {
|
||
oldTemperature = outputTemperature;
|
||
uptimeOfOldTemperature = uptime;
|
||
}
|
||
}
|
||
|
||
public:
|
||
float getTemperature() {
|
||
return outputTemperature;
|
||
}
|
||
|
||
bool isValid() {
|
||
return outputTemperature.isValid();
|
||
}
|
||
|
||
static const uint16_t ADDRESS_A = 0;
|
||
static const uint16_t ADDRESS_B = 1;
|
||
static const uint16_t ADDRESS_C = 2;
|
||
static const uint16_t ADDRESS_GRADIENT = 3;
|
||
|
||
static const uint16_t DEFAULT_CONFIRMATION_COUNT = 1; //!< Changed due to issue with later temperature checking even tough the sensor monitor was confirming already (Was 10 before with comment = Correlates to a 10s confirmation time. Chosen rather large, should not be so bad for components and helps survive glitches.)
|
||
|
||
static const uint8_t DOMAIN_ID_SENSOR = 1;
|
||
|
||
virtual ReturnValue_t getParameter(uint8_t domainId, uint8_t uniqueId,
|
||
ParameterWrapper *parameterWrapper,
|
||
const ParameterWrapper *newValues, uint16_t startAtIndex) {
|
||
ReturnValue_t result = sensorMonitor.getParameter(domainId, uniqueId,
|
||
parameterWrapper, newValues, startAtIndex);
|
||
if (result != INVALID_DOMAIN_ID) {
|
||
return result;
|
||
}
|
||
if (domainId != this->DOMAIN_ID_BASE) {
|
||
return INVALID_DOMAIN_ID;
|
||
}
|
||
switch (uniqueId) {
|
||
case ADDRESS_A:
|
||
parameterWrapper->set(parameters.a);
|
||
break;
|
||
case ADDRESS_B:
|
||
parameterWrapper->set(parameters.b);
|
||
break;
|
||
case ADDRESS_C:
|
||
parameterWrapper->set(parameters.c);
|
||
break;
|
||
case ADDRESS_GRADIENT:
|
||
parameterWrapper->set(parameters.gradient);
|
||
break;
|
||
default:
|
||
return INVALID_IDENTIFIER_ID;
|
||
}
|
||
return HasReturnvaluesIF::RETURN_OK;
|
||
}
|
||
|
||
virtual void resetOldState() {
|
||
sensorMonitor.setToUnchecked();
|
||
}
|
||
|
||
};
|
||
|
||
#endif /* TEMPERATURESENSOR_H_ */
|