2021-02-15 13:47:42 +01:00
|
|
|
import astropy.units as unit
|
2021-01-11 10:54:24 +01:00
|
|
|
import numpy as np
|
|
|
|
from astropy.coordinates import EarthLocation, AltAz
|
|
|
|
from astropy.coordinates import get_sun
|
2021-04-09 13:36:19 +02:00
|
|
|
from astropy.time import TimeISO
|
|
|
|
from input.natural_constants import *
|
2021-01-11 10:54:24 +01:00
|
|
|
|
2021-04-09 13:36:19 +02:00
|
|
|
|
|
|
|
class TimeYearDayTimeCustom(TimeISO):
|
|
|
|
"""
|
|
|
|
day-of-year as "<DOY>".
|
|
|
|
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
|
|
|
|
The allowed subformat is:
|
|
|
|
- 'doy': day of year
|
|
|
|
"""
|
|
|
|
name = 'doy' # unique format name
|
|
|
|
subfmts = (('doy',
|
|
|
|
'%j',
|
|
|
|
'{yday:03d}'),
|
|
|
|
('doy',
|
|
|
|
'%j',
|
|
|
|
'{yday:03d}'),
|
|
|
|
('doy',
|
|
|
|
'%j',
|
|
|
|
'{yday:03d}'))
|
|
|
|
|
|
|
|
|
|
|
|
def sun_angles_astropy(lat, lon, h, utc): # get current sun elevation and azimuth through astropy
|
2021-02-15 13:47:42 +01:00
|
|
|
loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m)
|
2021-01-11 10:54:24 +01:00
|
|
|
ref = AltAz(obstime=utc, location=loc)
|
|
|
|
|
|
|
|
sun_pos = get_sun(utc).transform_to(ref)
|
|
|
|
|
2021-04-09 13:36:19 +02:00
|
|
|
az = sun_pos.az.degree
|
|
|
|
elv = sun_pos.alt.degree
|
|
|
|
|
|
|
|
return az, elv
|
|
|
|
|
|
|
|
|
|
|
|
def sun_angles_analytical(lat, lon, utc): # get current sun elevation and azimuth through several equations (see [xx])
|
|
|
|
if np.abs(lat) == 90: # handling collapse of longitudes at poles by
|
|
|
|
lat = np.sign(lat) * 89.999999 # expanding one point to a very small circle
|
2021-01-11 10:54:24 +01:00
|
|
|
else:
|
2021-04-09 13:36:19 +02:00
|
|
|
pass
|
2021-01-11 10:54:24 +01:00
|
|
|
|
2021-04-09 13:36:19 +02:00
|
|
|
jd = utc.jd
|
|
|
|
jc = (jd - 2451545) / 36525
|
|
|
|
gml = (280.46646 + jc * (36000.76983 + jc * 0.0003032)) % 360
|
|
|
|
gma = 357.52911 + jc * (35999.05029 - 0.0001537 * jc)
|
|
|
|
eeo = 0.016708634 - jc * (0.000042037 + 0.0000001267 * jc)
|
|
|
|
sec = np.sin(np.deg2rad(gma)) * (1.914602 - jc * (0.004817 + 0.000014 * jc)) + np.sin(np.deg2rad(2 * gma)) * (
|
|
|
|
0.019993 - 0.000101 * jc) + np.sin(np.deg2rad(3 * gma)) * 0.000289
|
|
|
|
stl = gml + sec
|
|
|
|
sal = stl - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * jc))
|
|
|
|
moe = 23 + (26 + (21.448 - jc * (46.815 + jc * (0.00059 - jc * 0.001813))) / 60) / 60
|
|
|
|
oc = moe + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * jc))
|
|
|
|
sd = np.rad2deg(np.arcsin(np.sin(np.deg2rad(oc)) * np.sin(np.deg2rad(sal)))) # radian
|
|
|
|
var_y = np.tan(np.deg2rad(oc / 2)) ** 2
|
|
|
|
eot = 4 * np.rad2deg(
|
|
|
|
var_y * np.sin(2 * np.deg2rad(gml)) - 2 * eeo * np.sin(np.deg2rad(gma)) + 4 * eeo * var_y * np.sin(
|
|
|
|
np.deg2rad(gma)) * np.cos(2 * np.deg2rad(gml)) - 0.5 * var_y ** 2 * np.sin(
|
|
|
|
4 * np.deg2rad(gml)) - 1.25 * eeo ** 2 * np.sin(2 * np.deg2rad(gma)))
|
|
|
|
tst = (((jd - 0.5) % 1) * 1440 + eot + 4 * lon) % 1440
|
2021-01-11 10:54:24 +01:00
|
|
|
|
2021-04-09 13:36:19 +02:00
|
|
|
if tst / 4 < 0:
|
|
|
|
ha = tst / 4 + 180
|
2021-01-11 10:54:24 +01:00
|
|
|
else:
|
2021-04-09 13:36:19 +02:00
|
|
|
ha = tst / 4 - 180
|
|
|
|
|
|
|
|
sza = np.rad2deg(np.arccos(
|
|
|
|
np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(sd)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(sd)) * np.cos(
|
|
|
|
np.deg2rad(ha))))
|
|
|
|
sea = 90 - sza
|
|
|
|
|
|
|
|
if ha > 0:
|
|
|
|
saa = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
|
|
|
|
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza))))) + 180) % 360
|
|
|
|
else:
|
|
|
|
saa = (540 - np.rad2deg(np.arccos(
|
|
|
|
((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
|
|
|
|
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza)))))) % 360
|
|
|
|
|
|
|
|
return saa, sea # Azimuth, Elevation
|
|
|
|
|
|
|
|
|
|
|
|
def AirMass(p_air, p_0, ELV, h): # get atmospheric air mass over balloon
|
|
|
|
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
|
|
|
|
Dip = np.arccos(R_E / (R_E + h)) # geometric "dip" in radian
|
|
|
|
|
|
|
|
if ELV_rad >= -Dip and ELV_rad < 0:
|
|
|
|
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
|
|
|
|
else:
|
|
|
|
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def tau(ELV, h, p_air): # get atmospheric transmissivity as function of balloon altitude and sun elevation
|
|
|
|
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
|
|
|
tau_atm = 0.5 * (
|
|
|
|
np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
|
|
|
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0))
|
|
|
|
else:
|
|
|
|
tau_atm = 0
|
|
|
|
tau_atmIR = 0
|
|
|
|
return tau_atm, tau_atmIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2021-01-11 10:54:24 +01:00
|
|
|
|