minor edits

This commit is contained in:
Marcel Christian Frommelt 2021-04-09 20:36:19 +09:00
parent 7c7ad2a653
commit 1894ced5f6
8 changed files with 136 additions and 173 deletions

View File

@ -8,7 +8,7 @@ s0 = 0.00 # Initial Balloon Altitude in [m]
p0 = 101325 # (Initial) Air Pressure in [Pa]
rho_a = 1.2250 # (Initial) Air Density in [kg/m^3]
tmax = 50000
tmax = 10000
T_a = 288.15 # (Initial) Air Temperature in [K]
g = 9.80665 # local gravitation in [m/s^2]
@ -101,8 +101,10 @@ while t < tmax:
dv_z = (I - np.sign(v_z) * D - G) / m_B * dt
# print(z, v_z)
v_z += dv_z * dt
z += v_z * dt
z += v_z * dt + 0.5 * dv_z * dt
t += dt

View File

@ -1,6 +1,23 @@
import numpy as np
from input.user_input import *
c_d = 0.47 # drag coefficient balloon (spherical) [-]
def drag(c_d, rho_air, d_b, v):
return 0.125 * np.pi * c_d * rho_air * (d_b * v) ** 2
def Cd_model(fr, re, a_top):
k_cd = 19.8
k1 = 1.50 * 10 ** 7
k2 = 0.86 * 10 ** (-7)
a_top0 = np.pi / 4 * 1.383 * V_design ** (2/3) # a_top0 for zero-pressure shape
value = 0.2 * k_cd/fr * (k1/re + k2 * re) * a_top / (a_top0 ** (3/2))
if value > 1.6:
value = 1.6
return value
c_d = 0.8 # 0.47
def drag(c_d, rho_air, A_proj, v):
return 0.5 * c_d * rho_air * A_proj * v ** 2

View File

@ -3,26 +3,30 @@ import numpy as np
# ATMOSPHERE MODEL:
def T_air(h):
if h >= 0 and h <= 11000:
if 0 <= h <= 11000:
res = 288.15 - 0.0065 * h
return res
elif h > 11000 and h <= 20000:
elif 11000 < h <= 20000:
res = 216.65
return res
elif h >= 20000:
res = 216.65 + 0.0010 * (h - 20000)
return res
return res
def p_air(h):
if h >= 0 and h <= 11000:
if 0 <= h <= 11000:
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
return res
elif h > 11000 and h <= 20000:
elif 11000 < h <= 20000:
res = 22632 * np.exp(-(h - 11000)/6341.62)
return res
elif h > 20000:
res = 5474.87 * ((216.65 + 0.0010 * (h - 20000))/216.65) ** (-34.163)
return res
return res
def rho_air(h):
res = p_air(h)/(R_air * T_air(h))
return res
return res
def

View File

@ -2,57 +2,111 @@ import astropy.units as unit
import numpy as np
from astropy.coordinates import EarthLocation, AltAz
from astropy.coordinates import get_sun
from astropy.time import TimeISO
from input.natural_constants import *
def sun_angles_astropy(lat, lon, h, utc):
class TimeYearDayTimeCustom(TimeISO):
"""
day-of-year as "<DOY>".
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
The allowed subformat is:
- 'doy': day of year
"""
name = 'doy' # unique format name
subfmts = (('doy',
'%j',
'{yday:03d}'),
('doy',
'%j',
'{yday:03d}'),
('doy',
'%j',
'{yday:03d}'))
def sun_angles_astropy(lat, lon, h, utc): # get current sun elevation and azimuth through astropy
loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m)
ref = AltAz(obstime=utc, location=loc)
sun_pos = get_sun(utc).transform_to(ref)
AZ = sun_pos.az.degree
ELV = sun_pos.alt.degree
az = sun_pos.az.degree
elv = sun_pos.alt.degree
return AZ, ELV
return az, elv
def sun_angles_analytical(lat, lon, utc):
JD = utc.jd
JC = (JD - 2451545) / 36525
GML = (280.46646 + JC * (36000.76983 + JC * 0.0003032)) % 360
GMA = 357.52911 + JC * (35999.05029 - 0.0001537 * JC)
EEO = 0.016708634 - JC * (0.000042037 + 0.0000001267 * JC)
SEC = np.sin(np.deg2rad(GMA)) * (1.914602 - JC * (0.004817 + 0.000014 * JC)) + np.sin(np.deg2rad(2 * GMA)) * (
0.019993 - 0.000101 * JC) + np.sin(np.deg2rad(3 * GMA)) * 0.000289
STL = GML + SEC
# STA = GMA + SEC
# SRV = (1.000001018 * (1 - EEO ** 2)) / (1 + EEO * np.cos(np.deg2rad(STA)))
SAL = STL - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * JC))
MOE = 23 + (26 + (21.448 - JC * (46.815 + JC * (0.00059 - JC * 0.001813))) / 60) / 60
OC = MOE + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * JC))
# SRA = np.rad2deg(np.arctan2(np.cos(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)), np.cos(np.deg2rad(SAL)))) # radian
SD = np.rad2deg(np.arcsin(np.sin(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)))) # radian
var_y = np.tan(np.deg2rad(OC / 2)) ** 2
EOT = 4 * np.rad2deg(
var_y * np.sin(2 * np.deg2rad(GML)) - 2 * EEO * np.sin(np.deg2rad(GMA)) + 4 * EEO * var_y * np.sin(
np.deg2rad(GMA)) * np.cos(2 * np.deg2rad(GML)) - 0.5 * var_y ** 2 * np.sin(
4 * np.deg2rad(GML)) - 1.25 * EEO ** 2 * np.sin(2 * np.deg2rad(GMA)))
TST = (((JD - 0.5) % 1) * 1440 + EOT + 4 * lon) % 1440
if TST / 4 < 0:
HA = TST / 4 + 180
def sun_angles_analytical(lat, lon, utc): # get current sun elevation and azimuth through several equations (see [xx])
if np.abs(lat) == 90: # handling collapse of longitudes at poles by
lat = np.sign(lat) * 89.999999 # expanding one point to a very small circle
else:
HA = TST / 4 - 180
pass
SZA = np.rad2deg(np.arccos(
np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(SD)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(SD)) * np.cos(
np.deg2rad(HA))))
SEA = 90 - SZA
jd = utc.jd
jc = (jd - 2451545) / 36525
gml = (280.46646 + jc * (36000.76983 + jc * 0.0003032)) % 360
gma = 357.52911 + jc * (35999.05029 - 0.0001537 * jc)
eeo = 0.016708634 - jc * (0.000042037 + 0.0000001267 * jc)
sec = np.sin(np.deg2rad(gma)) * (1.914602 - jc * (0.004817 + 0.000014 * jc)) + np.sin(np.deg2rad(2 * gma)) * (
0.019993 - 0.000101 * jc) + np.sin(np.deg2rad(3 * gma)) * 0.000289
stl = gml + sec
sal = stl - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * jc))
moe = 23 + (26 + (21.448 - jc * (46.815 + jc * (0.00059 - jc * 0.001813))) / 60) / 60
oc = moe + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * jc))
sd = np.rad2deg(np.arcsin(np.sin(np.deg2rad(oc)) * np.sin(np.deg2rad(sal)))) # radian
var_y = np.tan(np.deg2rad(oc / 2)) ** 2
eot = 4 * np.rad2deg(
var_y * np.sin(2 * np.deg2rad(gml)) - 2 * eeo * np.sin(np.deg2rad(gma)) + 4 * eeo * var_y * np.sin(
np.deg2rad(gma)) * np.cos(2 * np.deg2rad(gml)) - 0.5 * var_y ** 2 * np.sin(
4 * np.deg2rad(gml)) - 1.25 * eeo ** 2 * np.sin(2 * np.deg2rad(gma)))
tst = (((jd - 0.5) % 1) * 1440 + eot + 4 * lon) % 1440
if HA > 0:
SAA = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / (
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA))))) + 180) % 360
if tst / 4 < 0:
ha = tst / 4 + 180
else:
SAA = (540 - np.rad2deg(np.arccos(
((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / (
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA)))))) % 360
ha = tst / 4 - 180
sza = np.rad2deg(np.arccos(
np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(sd)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(sd)) * np.cos(
np.deg2rad(ha))))
sea = 90 - sza
if ha > 0:
saa = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza))))) + 180) % 360
else:
saa = (540 - np.rad2deg(np.arccos(
((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza)))))) % 360
return saa, sea # Azimuth, Elevation
def AirMass(p_air, p_0, ELV, h): # get atmospheric air mass over balloon
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
Dip = np.arccos(R_E / (R_E + h)) # geometric "dip" in radian
if ELV_rad >= -Dip and ELV_rad < 0:
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
else:
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
return res
def tau(ELV, h, p_air): # get atmospheric transmissivity as function of balloon altitude and sun elevation
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
tau_atm = 0.5 * (
np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0))
else:
tau_atm = 0
tau_atmIR = 0
return tau_atm, tau_atmIR
return SAA, SEA

View File

@ -1,5 +0,0 @@
import numpy as np
def f(x):
res = np.sin(x)
return res

View File

@ -1,3 +0,0 @@
from test1 import f
print(f(1))

View File

@ -1,111 +1,5 @@
from input.natural_constants import *
import numpy as np
from datetime import datetime
import time
from astropy.time import Time
from astropy.time import TimeISO
class TimeYearDayTimeCustom(TimeISO):
"""
day-of-year as "<DOY>".
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
The allowed subformat is:
- 'doy': day of year
"""
name = 'doy' # Unique format name
subfmts = (('doy',
'%j',
'{yday:03d}'),
('doy',
'%j',
'{yday:03d}'),
('doy',
'%j',
'{yday:03d}'))
def AirMass(x, p_0, ELV, h):
p_air = x
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
Dip = np.arccos(R_E / (R_E + h)) # Dip in radian
if ELV_rad >= -Dip and ELV_rad < 0:
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
else:
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
return res
#if ELV >= -(180/np.pi * np.arccos(R_e / (R_e + h))):
# tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
# tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air/p_0) + np.exp(-0.095 * p_air/p_0))
#else:
# tau_atm = 0
# tau_atmIR = 0
#
#doy = int(utc.doy)
#
#MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
#TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5/4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
#I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA)))/(1 - e ** 2)) ** 2
#I_SunZ = I_Sun * tau_atm
#q_sun = I_SunZ
#
#q_IRground = epsilon_ground * sigma * T_ground ** 4
#
#q_IREarth = q_IRground * tau_atmIR
#
#if ELV <= 0:
# q_Albedo = 0
#else:
# q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
#
### NEEDED:
# Diameter = ...
# V_relative = ...
# rho_air = ...
# rho_gas = ...
# T_film = ...
# T_air = ...
# T_gas = ...
#
#my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
#my_gas = 1.895 * 10 ** -5 * (T_gas/273.15) ** 0.647
#k_air = 0.0241 * (T_air/273.15) ** 0.9
#k_gas = 0.144 * (T_gas/273.15) ** 0.7
#Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
#Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
#
#Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * Diameter ** 3) / (T_air * my_air ** 2)
#Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
#HC_free = Nu_air * k_air / Diameter
#Re = V_relative * Diameter * rho_air / my_air
#HC_forced = k_air / Diameter * (2 + 0.41 * Re ** 0.55)
#HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (1/3)
#HC_external = np.maximum(HC_free, HC_forced)
#
#Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS/(1 - r_VIS))
#Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS/(1 - r_VIS))
#Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR/(1 - r_IR))
#Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1/(1 - r_IR)
#Q_IROut = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR/(1 - r_IR))
#Q_ConvExt = HC_external * A_effective * (T_air - T_film)
#Q_ConvInt = HC_internal * A_effective * (T_film - T_gas)
#
#HalfConeAngle = np.arcsin(R_E/(R_E + h))
#ViewFactor = (1 - np.cos(HalfConeAngle))/2
#
#
#
#RoC = -V_z
#
#dT_gas = (Q_ConvInt/(gamma * c_v * M_gas) - (gamma - 1)/gamma * rho_air * g / (rho_gas * R_gas) * RoC) * dt
#dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout)/(c_f * M_film)) * dt

View File

@ -13,10 +13,10 @@ netcdf4 1.3.3
cdsapi 0.2.7 (*)
(*) for CDS API please refer to: https://cds.climate.copernicus.eu/api-how-to
Alternatively, use ANACONDA and the environment(*.yml)-file in this repository.
(*) for proper setup of CDS API please refer to: https://cds.climate.copernicus.eu/api-how-to (in any case!)
(B) User Input:
@ -24,4 +24,4 @@ Alternatively, use ANACONDA and the environment(*.yml)-file in this repository.
1. Please define all input parameters under input/user_input.py
2. Script "DataRequest.py" needs to be run prior to generate netCDF-datafile for atmospheric data!
Please ensure sufficient disk space (1,25 GB)
Please ensure sufficient disk space (currently: 1,25 GB)