124 lines
2.3 KiB
Python
124 lines
2.3 KiB
Python
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# VARIABLES:
|
||
|
|
||
|
v0 = 0.00 # Initial Balloon Velocity in [m/s]
|
||
|
s0 = 0.00 # Initial Balloon Altitude in [m]
|
||
|
p0 = 101325 # (Initial) Air Pressure in [Pa]
|
||
|
rho_a = 1.2250 # (Initial) Air Density in [kg/m^3]
|
||
|
|
||
|
tmax = 50000
|
||
|
|
||
|
T_a = 288.15 # (Initial) Air Temperature in [K]
|
||
|
g = 9.80665 # local gravitation in [m/s^2]
|
||
|
dt = 0.01 # time step in [s]
|
||
|
cD = 0.47 # drag coefficient balloon (spherical) [-]
|
||
|
|
||
|
R_a = 287.1 # Specific Gas Constant Dry Air in [J/(kg * K)]
|
||
|
R_He = 2077.1 # Specific Gas Constant Helium in [J/(kg * K)]
|
||
|
|
||
|
|
||
|
|
||
|
m_B = 50 # Balloon (Start) Mass in [kg]
|
||
|
m_PL = 10 # Balloon Payload (Start) Mass in [kg]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
pi = np.pi
|
||
|
|
||
|
def T(h):
|
||
|
if h >= 0 and h <= 11000:
|
||
|
res = 288.15 - 0.0065 * h
|
||
|
return res
|
||
|
elif h > 11000 and h <= 20000:
|
||
|
res = 216.65
|
||
|
return res
|
||
|
elif h >= 20000:
|
||
|
res = 216.65 + 0.0010 * (h - 20000)
|
||
|
return res
|
||
|
|
||
|
def p(h):
|
||
|
if h >= 0 and h <= 11000:
|
||
|
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
|
||
|
return res
|
||
|
elif h > 11000 and h <= 20000:
|
||
|
res = 22632 * np.exp(-(h - 11000)/6341.62)
|
||
|
return res
|
||
|
elif h > 20000:
|
||
|
res = 5474.87 * ((216.65 + 0.0010 * (z - 20000))/216.65) ** (-34.163)
|
||
|
return res
|
||
|
|
||
|
def rho(h):
|
||
|
res = p(h)/(R_a * T(h))
|
||
|
return res
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# p_a = p0 # air pressure = constant
|
||
|
p_He = 101325 # initial gas pressure = air pressure
|
||
|
T_g = 288.15 # gas temperature = air temperature = constant
|
||
|
|
||
|
|
||
|
# GAS DENSITY
|
||
|
rho_g = p_He / (R_He * T_g)
|
||
|
|
||
|
V_B = m_B / rho_g
|
||
|
D_B = (6 * V_B / pi) ** (1/3)
|
||
|
|
||
|
|
||
|
v = []
|
||
|
time = []
|
||
|
alt = []
|
||
|
|
||
|
|
||
|
v_z = v0
|
||
|
z = s0
|
||
|
t = 0
|
||
|
D = 0
|
||
|
|
||
|
rho_plot = []
|
||
|
T_plot = []
|
||
|
p_plot = []
|
||
|
D_plot = []
|
||
|
|
||
|
while t < tmax:
|
||
|
v.append(v_z)
|
||
|
alt.append(z)
|
||
|
time.append(t)
|
||
|
|
||
|
rho_plot.append(rho(z))
|
||
|
T_plot.append(T(z))
|
||
|
p_plot.append(p(z))
|
||
|
D_plot.append(D)
|
||
|
|
||
|
D = 0.5 * cD * 0.25 * pi * rho(z) * v_z ** 2 * D_B ** 2
|
||
|
I = g * V_B * (rho(z) - rho_g)
|
||
|
G = g * m_PL
|
||
|
|
||
|
|
||
|
dv_z = (I - np.sign(v_z) * D - G) / m_B * dt
|
||
|
|
||
|
v_z += dv_z * dt
|
||
|
z += v_z * dt
|
||
|
|
||
|
t += dt
|
||
|
|
||
|
|
||
|
|
||
|
#plt.plot(time, rho_plot)
|
||
|
#plt.plot(time, T_plot)
|
||
|
###plt.plot(time, v)
|
||
|
###plt.show()
|
||
|
#plt.plot(time, ind)
|
||
|
#plt.plot(time, D_plot)
|
||
|
|
||
|
plt.plot(time, alt)
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
|
||
|
|