Synchronization between local PC and gitea
This commit is contained in:
parent
9c47241d7a
commit
e011c90ad0
123
Super-Pressure.py
Normal file
123
Super-Pressure.py
Normal file
@ -0,0 +1,123 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# VARIABLES:
|
||||
|
||||
v0 = 0.00 # Initial Balloon Velocity in [m/s]
|
||||
s0 = 0.00 # Initial Balloon Altitude in [m]
|
||||
p0 = 101325 # (Initial) Air Pressure in [Pa]
|
||||
rho_a = 1.2250 # (Initial) Air Density in [kg/m^3]
|
||||
|
||||
tmax = 50000
|
||||
|
||||
T_a = 288.15 # (Initial) Air Temperature in [K]
|
||||
g = 9.80665 # local gravitation in [m/s^2]
|
||||
dt = 0.01 # time step in [s]
|
||||
cD = 0.47 # drag coefficient balloon (spherical) [-]
|
||||
|
||||
R_a = 287.1 # Specific Gas Constant Dry Air in [J/(kg * K)]
|
||||
R_He = 2077.1 # Specific Gas Constant Helium in [J/(kg * K)]
|
||||
|
||||
|
||||
|
||||
m_B = 50 # Balloon (Start) Mass in [kg]
|
||||
m_PL = 10 # Balloon Payload (Start) Mass in [kg]
|
||||
|
||||
|
||||
|
||||
|
||||
pi = np.pi
|
||||
|
||||
def T(h):
|
||||
if h >= 0 and h <= 11000:
|
||||
res = 288.15 - 0.0065 * h
|
||||
return res
|
||||
elif h > 11000 and h <= 20000:
|
||||
res = 216.65
|
||||
return res
|
||||
elif h >= 20000:
|
||||
res = 216.65 + 0.0010 * (h - 20000)
|
||||
return res
|
||||
|
||||
def p(h):
|
||||
if h >= 0 and h <= 11000:
|
||||
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
|
||||
return res
|
||||
elif h > 11000 and h <= 20000:
|
||||
res = 22632 * np.exp(-(h - 11000)/6341.62)
|
||||
return res
|
||||
elif h > 20000:
|
||||
res = 5474.87 * ((216.65 + 0.0010 * (z - 20000))/216.65) ** (-34.163)
|
||||
return res
|
||||
|
||||
def rho(h):
|
||||
res = p(h)/(R_a * T(h))
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
# p_a = p0 # air pressure = constant
|
||||
p_He = 101325 # initial gas pressure = air pressure
|
||||
T_g = 288.15 # gas temperature = air temperature = constant
|
||||
|
||||
|
||||
# GAS DENSITY
|
||||
rho_g = p_He / (R_He * T_g)
|
||||
|
||||
V_B = m_B / rho_g
|
||||
D_B = (6 * V_B / pi) ** (1/3)
|
||||
|
||||
|
||||
v = []
|
||||
time = []
|
||||
alt = []
|
||||
|
||||
|
||||
v_z = v0
|
||||
z = s0
|
||||
t = 0
|
||||
D = 0
|
||||
|
||||
rho_plot = []
|
||||
T_plot = []
|
||||
p_plot = []
|
||||
D_plot = []
|
||||
|
||||
while t < tmax:
|
||||
v.append(v_z)
|
||||
alt.append(z)
|
||||
time.append(t)
|
||||
|
||||
rho_plot.append(rho(z))
|
||||
T_plot.append(T(z))
|
||||
p_plot.append(p(z))
|
||||
D_plot.append(D)
|
||||
|
||||
D = 0.5 * cD * 0.25 * pi * rho(z) * v_z ** 2 * D_B ** 2
|
||||
I = g * V_B * (rho(z) - rho_g)
|
||||
G = g * m_PL
|
||||
|
||||
|
||||
dv_z = (I - np.sign(v_z) * D - G) / m_B * dt
|
||||
|
||||
v_z += dv_z * dt
|
||||
z += v_z * dt
|
||||
|
||||
t += dt
|
||||
|
||||
|
||||
|
||||
#plt.plot(time, rho_plot)
|
||||
#plt.plot(time, T_plot)
|
||||
###plt.plot(time, v)
|
||||
###plt.show()
|
||||
#plt.plot(time, ind)
|
||||
#plt.plot(time, D_plot)
|
||||
|
||||
plt.plot(time, alt)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
BIN
input/__pycache__/natural_constants.cpython-38.pyc
Normal file
BIN
input/__pycache__/natural_constants.cpython-38.pyc
Normal file
Binary file not shown.
BIN
input/__pycache__/user_input.cpython-38.pyc
Normal file
BIN
input/__pycache__/user_input.cpython-38.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
models/__pycache__/__init__.cpython-38.pyc
Normal file
BIN
models/__pycache__/__init__.cpython-38.pyc
Normal file
Binary file not shown.
BIN
models/__pycache__/drag.cpython-38.pyc
Normal file
BIN
models/__pycache__/drag.cpython-38.pyc
Normal file
Binary file not shown.
BIN
models/__pycache__/simple_atmosphere.cpython-38.pyc
Normal file
BIN
models/__pycache__/simple_atmosphere.cpython-38.pyc
Normal file
Binary file not shown.
BIN
models/__pycache__/sun.cpython-38.pyc
Normal file
BIN
models/__pycache__/sun.cpython-38.pyc
Normal file
Binary file not shown.
BIN
models/__pycache__/test1.cpython-38.pyc
Normal file
BIN
models/__pycache__/test1.cpython-38.pyc
Normal file
Binary file not shown.
BIN
models/__pycache__/thermal.cpython-38.pyc
Normal file
BIN
models/__pycache__/thermal.cpython-38.pyc
Normal file
Binary file not shown.
3
models/test2.py
Normal file
3
models/test2.py
Normal file
@ -0,0 +1,3 @@
|
||||
from test1 import f
|
||||
|
||||
print(f(1))
|
111
models/thermal.py
Normal file
111
models/thermal.py
Normal file
@ -0,0 +1,111 @@
|
||||
from input.natural_constants import *
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
import time
|
||||
from astropy.time import Time
|
||||
|
||||
from astropy.time import TimeISO
|
||||
class TimeYearDayTimeCustom(TimeISO):
|
||||
"""
|
||||
day-of-year as "<DOY>".
|
||||
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
|
||||
The allowed subformat is:
|
||||
- 'doy': day of year
|
||||
"""
|
||||
name = 'doy' # Unique format name
|
||||
subfmts = (('doy',
|
||||
'%j',
|
||||
'{yday:03d}'),
|
||||
('doy',
|
||||
'%j',
|
||||
'{yday:03d}'),
|
||||
('doy',
|
||||
'%j',
|
||||
'{yday:03d}'))
|
||||
|
||||
def AirMass(x, p_0, ELV, h):
|
||||
p_air = x
|
||||
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
|
||||
Dip = np.arccos(R_E / (R_E + h)) # Dip in radian
|
||||
|
||||
if ELV_rad >= -Dip and ELV_rad < 0:
|
||||
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
|
||||
else:
|
||||
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
|
||||
|
||||
return res
|
||||
|
||||
#if ELV >= -(180/np.pi * np.arccos(R_e / (R_e + h))):
|
||||
# tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
||||
# tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air/p_0) + np.exp(-0.095 * p_air/p_0))
|
||||
#else:
|
||||
# tau_atm = 0
|
||||
# tau_atmIR = 0
|
||||
#
|
||||
#doy = int(utc.doy)
|
||||
#
|
||||
#MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
||||
#TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5/4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
||||
#I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA)))/(1 - e ** 2)) ** 2
|
||||
#I_SunZ = I_Sun * tau_atm
|
||||
#q_sun = I_SunZ
|
||||
#
|
||||
#q_IRground = epsilon_ground * sigma * T_ground ** 4
|
||||
#
|
||||
#q_IREarth = q_IRground * tau_atmIR
|
||||
#
|
||||
#if ELV <= 0:
|
||||
# q_Albedo = 0
|
||||
#else:
|
||||
# q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
||||
#
|
||||
### NEEDED:
|
||||
# Diameter = ...
|
||||
# V_relative = ...
|
||||
# rho_air = ...
|
||||
# rho_gas = ...
|
||||
# T_film = ...
|
||||
# T_air = ...
|
||||
# T_gas = ...
|
||||
#
|
||||
#my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
|
||||
#my_gas = 1.895 * 10 ** -5 * (T_gas/273.15) ** 0.647
|
||||
#k_air = 0.0241 * (T_air/273.15) ** 0.9
|
||||
#k_gas = 0.144 * (T_gas/273.15) ** 0.7
|
||||
#Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
|
||||
#Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
||||
#
|
||||
#Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * Diameter ** 3) / (T_air * my_air ** 2)
|
||||
#Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
||||
#HC_free = Nu_air * k_air / Diameter
|
||||
#Re = V_relative * Diameter * rho_air / my_air
|
||||
#HC_forced = k_air / Diameter * (2 + 0.41 * Re ** 0.55)
|
||||
#HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (1/3)
|
||||
#HC_external = np.maximum(HC_free, HC_forced)
|
||||
#
|
||||
#Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS/(1 - r_VIS))
|
||||
#Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS/(1 - r_VIS))
|
||||
#Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR/(1 - r_IR))
|
||||
#Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1/(1 - r_IR)
|
||||
#Q_IROut = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR/(1 - r_IR))
|
||||
#Q_ConvExt = HC_external * A_effective * (T_air - T_film)
|
||||
#Q_ConvInt = HC_internal * A_effective * (T_film - T_gas)
|
||||
#
|
||||
#HalfConeAngle = np.arcsin(R_E/(R_E + h))
|
||||
#ViewFactor = (1 - np.cos(HalfConeAngle))/2
|
||||
#
|
||||
#
|
||||
#
|
||||
#RoC = -V_z
|
||||
#
|
||||
#dT_gas = (Q_ConvInt/(gamma * c_v * M_gas) - (gamma - 1)/gamma * rho_air * g / (rho_gas * R_gas) * RoC) * dt
|
||||
#dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout)/(c_f * M_film)) * dt
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user