minor edits
This commit is contained in:
parent
7c7ad2a653
commit
1894ced5f6
@ -8,7 +8,7 @@ s0 = 0.00 # Initial Balloon Altitude in [m]
|
|||||||
p0 = 101325 # (Initial) Air Pressure in [Pa]
|
p0 = 101325 # (Initial) Air Pressure in [Pa]
|
||||||
rho_a = 1.2250 # (Initial) Air Density in [kg/m^3]
|
rho_a = 1.2250 # (Initial) Air Density in [kg/m^3]
|
||||||
|
|
||||||
tmax = 50000
|
tmax = 10000
|
||||||
|
|
||||||
T_a = 288.15 # (Initial) Air Temperature in [K]
|
T_a = 288.15 # (Initial) Air Temperature in [K]
|
||||||
g = 9.80665 # local gravitation in [m/s^2]
|
g = 9.80665 # local gravitation in [m/s^2]
|
||||||
@ -101,8 +101,10 @@ while t < tmax:
|
|||||||
|
|
||||||
dv_z = (I - np.sign(v_z) * D - G) / m_B * dt
|
dv_z = (I - np.sign(v_z) * D - G) / m_B * dt
|
||||||
|
|
||||||
|
# print(z, v_z)
|
||||||
|
|
||||||
v_z += dv_z * dt
|
v_z += dv_z * dt
|
||||||
z += v_z * dt
|
z += v_z * dt + 0.5 * dv_z * dt
|
||||||
|
|
||||||
t += dt
|
t += dt
|
||||||
|
|
||||||
|
@ -1,6 +1,23 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
from input.user_input import *
|
||||||
|
|
||||||
c_d = 0.47 # drag coefficient balloon (spherical) [-]
|
|
||||||
|
|
||||||
def drag(c_d, rho_air, d_b, v):
|
def Cd_model(fr, re, a_top):
|
||||||
return 0.125 * np.pi * c_d * rho_air * (d_b * v) ** 2
|
k_cd = 19.8
|
||||||
|
k1 = 1.50 * 10 ** 7
|
||||||
|
k2 = 0.86 * 10 ** (-7)
|
||||||
|
a_top0 = np.pi / 4 * 1.383 * V_design ** (2/3) # a_top0 for zero-pressure shape
|
||||||
|
|
||||||
|
value = 0.2 * k_cd/fr * (k1/re + k2 * re) * a_top / (a_top0 ** (3/2))
|
||||||
|
|
||||||
|
if value > 1.6:
|
||||||
|
value = 1.6
|
||||||
|
|
||||||
|
return value
|
||||||
|
|
||||||
|
|
||||||
|
c_d = 0.8 # 0.47
|
||||||
|
|
||||||
|
|
||||||
|
def drag(c_d, rho_air, A_proj, v):
|
||||||
|
return 0.5 * c_d * rho_air * A_proj * v ** 2
|
||||||
|
@ -3,26 +3,30 @@ import numpy as np
|
|||||||
|
|
||||||
# ATMOSPHERE MODEL:
|
# ATMOSPHERE MODEL:
|
||||||
|
|
||||||
|
|
||||||
def T_air(h):
|
def T_air(h):
|
||||||
if h >= 0 and h <= 11000:
|
if 0 <= h <= 11000:
|
||||||
res = 288.15 - 0.0065 * h
|
res = 288.15 - 0.0065 * h
|
||||||
return res
|
elif 11000 < h <= 20000:
|
||||||
elif h > 11000 and h <= 20000:
|
|
||||||
res = 216.65
|
res = 216.65
|
||||||
return res
|
|
||||||
elif h >= 20000:
|
elif h >= 20000:
|
||||||
res = 216.65 + 0.0010 * (h - 20000)
|
res = 216.65 + 0.0010 * (h - 20000)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def p_air(h):
|
def p_air(h):
|
||||||
if h >= 0 and h <= 11000:
|
if 0 <= h <= 11000:
|
||||||
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
|
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
|
||||||
return res
|
elif 11000 < h <= 20000:
|
||||||
elif h > 11000 and h <= 20000:
|
|
||||||
res = 22632 * np.exp(-(h - 11000)/6341.62)
|
res = 22632 * np.exp(-(h - 11000)/6341.62)
|
||||||
return res
|
|
||||||
elif h > 20000:
|
elif h > 20000:
|
||||||
res = 5474.87 * ((216.65 + 0.0010 * (h - 20000))/216.65) ** (-34.163)
|
res = 5474.87 * ((216.65 + 0.0010 * (h - 20000))/216.65) ** (-34.163)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def rho_air(h):
|
def rho_air(h):
|
||||||
res = p_air(h)/(R_air * T_air(h))
|
res = p_air(h)/(R_air * T_air(h))
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def
|
134
models/sun.py
134
models/sun.py
@ -2,57 +2,111 @@ import astropy.units as unit
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from astropy.coordinates import EarthLocation, AltAz
|
from astropy.coordinates import EarthLocation, AltAz
|
||||||
from astropy.coordinates import get_sun
|
from astropy.coordinates import get_sun
|
||||||
|
from astropy.time import TimeISO
|
||||||
|
from input.natural_constants import *
|
||||||
|
|
||||||
def sun_angles_astropy(lat, lon, h, utc):
|
|
||||||
|
class TimeYearDayTimeCustom(TimeISO):
|
||||||
|
"""
|
||||||
|
day-of-year as "<DOY>".
|
||||||
|
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
|
||||||
|
The allowed subformat is:
|
||||||
|
- 'doy': day of year
|
||||||
|
"""
|
||||||
|
name = 'doy' # unique format name
|
||||||
|
subfmts = (('doy',
|
||||||
|
'%j',
|
||||||
|
'{yday:03d}'),
|
||||||
|
('doy',
|
||||||
|
'%j',
|
||||||
|
'{yday:03d}'),
|
||||||
|
('doy',
|
||||||
|
'%j',
|
||||||
|
'{yday:03d}'))
|
||||||
|
|
||||||
|
|
||||||
|
def sun_angles_astropy(lat, lon, h, utc): # get current sun elevation and azimuth through astropy
|
||||||
loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m)
|
loc = EarthLocation(lat=lat*unit.deg, lon=lon*unit.deg, height=h*unit.m)
|
||||||
ref = AltAz(obstime=utc, location=loc)
|
ref = AltAz(obstime=utc, location=loc)
|
||||||
|
|
||||||
sun_pos = get_sun(utc).transform_to(ref)
|
sun_pos = get_sun(utc).transform_to(ref)
|
||||||
|
|
||||||
AZ = sun_pos.az.degree
|
az = sun_pos.az.degree
|
||||||
ELV = sun_pos.alt.degree
|
elv = sun_pos.alt.degree
|
||||||
|
|
||||||
return AZ, ELV
|
return az, elv
|
||||||
|
|
||||||
def sun_angles_analytical(lat, lon, utc):
|
|
||||||
JD = utc.jd
|
|
||||||
JC = (JD - 2451545) / 36525
|
|
||||||
GML = (280.46646 + JC * (36000.76983 + JC * 0.0003032)) % 360
|
|
||||||
GMA = 357.52911 + JC * (35999.05029 - 0.0001537 * JC)
|
|
||||||
EEO = 0.016708634 - JC * (0.000042037 + 0.0000001267 * JC)
|
|
||||||
SEC = np.sin(np.deg2rad(GMA)) * (1.914602 - JC * (0.004817 + 0.000014 * JC)) + np.sin(np.deg2rad(2 * GMA)) * (
|
|
||||||
0.019993 - 0.000101 * JC) + np.sin(np.deg2rad(3 * GMA)) * 0.000289
|
|
||||||
STL = GML + SEC
|
|
||||||
# STA = GMA + SEC
|
|
||||||
# SRV = (1.000001018 * (1 - EEO ** 2)) / (1 + EEO * np.cos(np.deg2rad(STA)))
|
|
||||||
SAL = STL - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * JC))
|
|
||||||
MOE = 23 + (26 + (21.448 - JC * (46.815 + JC * (0.00059 - JC * 0.001813))) / 60) / 60
|
|
||||||
OC = MOE + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * JC))
|
|
||||||
# SRA = np.rad2deg(np.arctan2(np.cos(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)), np.cos(np.deg2rad(SAL)))) # radian
|
|
||||||
SD = np.rad2deg(np.arcsin(np.sin(np.deg2rad(OC)) * np.sin(np.deg2rad(SAL)))) # radian
|
|
||||||
var_y = np.tan(np.deg2rad(OC / 2)) ** 2
|
|
||||||
EOT = 4 * np.rad2deg(
|
|
||||||
var_y * np.sin(2 * np.deg2rad(GML)) - 2 * EEO * np.sin(np.deg2rad(GMA)) + 4 * EEO * var_y * np.sin(
|
|
||||||
np.deg2rad(GMA)) * np.cos(2 * np.deg2rad(GML)) - 0.5 * var_y ** 2 * np.sin(
|
|
||||||
4 * np.deg2rad(GML)) - 1.25 * EEO ** 2 * np.sin(2 * np.deg2rad(GMA)))
|
|
||||||
TST = (((JD - 0.5) % 1) * 1440 + EOT + 4 * lon) % 1440
|
|
||||||
|
|
||||||
if TST / 4 < 0:
|
def sun_angles_analytical(lat, lon, utc): # get current sun elevation and azimuth through several equations (see [xx])
|
||||||
HA = TST / 4 + 180
|
if np.abs(lat) == 90: # handling collapse of longitudes at poles by
|
||||||
|
lat = np.sign(lat) * 89.999999 # expanding one point to a very small circle
|
||||||
else:
|
else:
|
||||||
HA = TST / 4 - 180
|
pass
|
||||||
|
|
||||||
SZA = np.rad2deg(np.arccos(
|
jd = utc.jd
|
||||||
np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(SD)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(SD)) * np.cos(
|
jc = (jd - 2451545) / 36525
|
||||||
np.deg2rad(HA))))
|
gml = (280.46646 + jc * (36000.76983 + jc * 0.0003032)) % 360
|
||||||
SEA = 90 - SZA
|
gma = 357.52911 + jc * (35999.05029 - 0.0001537 * jc)
|
||||||
|
eeo = 0.016708634 - jc * (0.000042037 + 0.0000001267 * jc)
|
||||||
|
sec = np.sin(np.deg2rad(gma)) * (1.914602 - jc * (0.004817 + 0.000014 * jc)) + np.sin(np.deg2rad(2 * gma)) * (
|
||||||
|
0.019993 - 0.000101 * jc) + np.sin(np.deg2rad(3 * gma)) * 0.000289
|
||||||
|
stl = gml + sec
|
||||||
|
sal = stl - 0.00569 - 0.00478 * np.sin(np.deg2rad(125.04 - 1934.136 * jc))
|
||||||
|
moe = 23 + (26 + (21.448 - jc * (46.815 + jc * (0.00059 - jc * 0.001813))) / 60) / 60
|
||||||
|
oc = moe + 0.00256 * np.cos(np.deg2rad(125.04 - 1934.136 * jc))
|
||||||
|
sd = np.rad2deg(np.arcsin(np.sin(np.deg2rad(oc)) * np.sin(np.deg2rad(sal)))) # radian
|
||||||
|
var_y = np.tan(np.deg2rad(oc / 2)) ** 2
|
||||||
|
eot = 4 * np.rad2deg(
|
||||||
|
var_y * np.sin(2 * np.deg2rad(gml)) - 2 * eeo * np.sin(np.deg2rad(gma)) + 4 * eeo * var_y * np.sin(
|
||||||
|
np.deg2rad(gma)) * np.cos(2 * np.deg2rad(gml)) - 0.5 * var_y ** 2 * np.sin(
|
||||||
|
4 * np.deg2rad(gml)) - 1.25 * eeo ** 2 * np.sin(2 * np.deg2rad(gma)))
|
||||||
|
tst = (((jd - 0.5) % 1) * 1440 + eot + 4 * lon) % 1440
|
||||||
|
|
||||||
if HA > 0:
|
if tst / 4 < 0:
|
||||||
SAA = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / (
|
ha = tst / 4 + 180
|
||||||
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA))))) + 180) % 360
|
|
||||||
else:
|
else:
|
||||||
SAA = (540 - np.rad2deg(np.arccos(
|
ha = tst / 4 - 180
|
||||||
((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(SZA))) - np.sin(np.deg2rad(SD))) / (
|
|
||||||
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(SZA)))))) % 360
|
sza = np.rad2deg(np.arccos(
|
||||||
|
np.sin(np.deg2rad(lat)) * np.sin(np.deg2rad(sd)) + np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(sd)) * np.cos(
|
||||||
|
np.deg2rad(ha))))
|
||||||
|
sea = 90 - sza
|
||||||
|
|
||||||
|
if ha > 0:
|
||||||
|
saa = (np.rad2deg(np.arccos(((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
|
||||||
|
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza))))) + 180) % 360
|
||||||
|
else:
|
||||||
|
saa = (540 - np.rad2deg(np.arccos(
|
||||||
|
((np.sin(np.deg2rad(lat)) * np.cos(np.deg2rad(sza))) - np.sin(np.deg2rad(sd))) / (
|
||||||
|
np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(sza)))))) % 360
|
||||||
|
|
||||||
|
return saa, sea # Azimuth, Elevation
|
||||||
|
|
||||||
|
|
||||||
|
def AirMass(p_air, p_0, ELV, h): # get atmospheric air mass over balloon
|
||||||
|
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
|
||||||
|
Dip = np.arccos(R_E / (R_E + h)) # geometric "dip" in radian
|
||||||
|
|
||||||
|
if ELV_rad >= -Dip and ELV_rad < 0:
|
||||||
|
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
|
||||||
|
else:
|
||||||
|
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def tau(ELV, h, p_air): # get atmospheric transmissivity as function of balloon altitude and sun elevation
|
||||||
|
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
||||||
|
tau_atm = 0.5 * (
|
||||||
|
np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
||||||
|
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0))
|
||||||
|
else:
|
||||||
|
tau_atm = 0
|
||||||
|
tau_atmIR = 0
|
||||||
|
return tau_atm, tau_atmIR
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return SAA, SEA
|
|
@ -1,5 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
|
|
||||||
def f(x):
|
|
||||||
res = np.sin(x)
|
|
||||||
return res
|
|
@ -1,3 +0,0 @@
|
|||||||
from test1 import f
|
|
||||||
|
|
||||||
print(f(1))
|
|
@ -1,111 +1,5 @@
|
|||||||
from input.natural_constants import *
|
from input.natural_constants import *
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from datetime import datetime
|
|
||||||
import time
|
|
||||||
from astropy.time import Time
|
|
||||||
|
|
||||||
from astropy.time import TimeISO
|
|
||||||
class TimeYearDayTimeCustom(TimeISO):
|
|
||||||
"""
|
|
||||||
day-of-year as "<DOY>".
|
|
||||||
The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
|
|
||||||
The allowed subformat is:
|
|
||||||
- 'doy': day of year
|
|
||||||
"""
|
|
||||||
name = 'doy' # Unique format name
|
|
||||||
subfmts = (('doy',
|
|
||||||
'%j',
|
|
||||||
'{yday:03d}'),
|
|
||||||
('doy',
|
|
||||||
'%j',
|
|
||||||
'{yday:03d}'),
|
|
||||||
('doy',
|
|
||||||
'%j',
|
|
||||||
'{yday:03d}'))
|
|
||||||
|
|
||||||
def AirMass(x, p_0, ELV, h):
|
|
||||||
p_air = x
|
|
||||||
ELV_rad = np.deg2rad(ELV) # convert ELV from degree to radian
|
|
||||||
Dip = np.arccos(R_E / (R_E + h)) # Dip in radian
|
|
||||||
|
|
||||||
if ELV_rad >= -Dip and ELV_rad < 0:
|
|
||||||
res = p_air/p_0 * (1 + ELV_rad/Dip) - 70 * ELV_rad/Dip
|
|
||||||
else:
|
|
||||||
res = (p_air/p_0) * ((1229 + (614 * np.sin(ELV_rad)) ** 2) ** (1/2) - 614 * np.sin(ELV_rad))
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
#if ELV >= -(180/np.pi * np.arccos(R_e / (R_e + h))):
|
|
||||||
# tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
|
||||||
# tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air/p_0) + np.exp(-0.095 * p_air/p_0))
|
|
||||||
#else:
|
|
||||||
# tau_atm = 0
|
|
||||||
# tau_atmIR = 0
|
|
||||||
#
|
|
||||||
#doy = int(utc.doy)
|
|
||||||
#
|
|
||||||
#MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
|
||||||
#TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5/4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
|
||||||
#I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA)))/(1 - e ** 2)) ** 2
|
|
||||||
#I_SunZ = I_Sun * tau_atm
|
|
||||||
#q_sun = I_SunZ
|
|
||||||
#
|
|
||||||
#q_IRground = epsilon_ground * sigma * T_ground ** 4
|
|
||||||
#
|
|
||||||
#q_IREarth = q_IRground * tau_atmIR
|
|
||||||
#
|
|
||||||
#if ELV <= 0:
|
|
||||||
# q_Albedo = 0
|
|
||||||
#else:
|
|
||||||
# q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
|
||||||
#
|
|
||||||
### NEEDED:
|
|
||||||
# Diameter = ...
|
|
||||||
# V_relative = ...
|
|
||||||
# rho_air = ...
|
|
||||||
# rho_gas = ...
|
|
||||||
# T_film = ...
|
|
||||||
# T_air = ...
|
|
||||||
# T_gas = ...
|
|
||||||
#
|
|
||||||
#my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
|
|
||||||
#my_gas = 1.895 * 10 ** -5 * (T_gas/273.15) ** 0.647
|
|
||||||
#k_air = 0.0241 * (T_air/273.15) ** 0.9
|
|
||||||
#k_gas = 0.144 * (T_gas/273.15) ** 0.7
|
|
||||||
#Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
|
|
||||||
#Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
|
||||||
#
|
|
||||||
#Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * Diameter ** 3) / (T_air * my_air ** 2)
|
|
||||||
#Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
|
||||||
#HC_free = Nu_air * k_air / Diameter
|
|
||||||
#Re = V_relative * Diameter * rho_air / my_air
|
|
||||||
#HC_forced = k_air / Diameter * (2 + 0.41 * Re ** 0.55)
|
|
||||||
#HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (1/3)
|
|
||||||
#HC_external = np.maximum(HC_free, HC_forced)
|
|
||||||
#
|
|
||||||
#Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS/(1 - r_VIS))
|
|
||||||
#Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS/(1 - r_VIS))
|
|
||||||
#Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR/(1 - r_IR))
|
|
||||||
#Q_IRFilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1/(1 - r_IR)
|
|
||||||
#Q_IROut = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR/(1 - r_IR))
|
|
||||||
#Q_ConvExt = HC_external * A_effective * (T_air - T_film)
|
|
||||||
#Q_ConvInt = HC_internal * A_effective * (T_film - T_gas)
|
|
||||||
#
|
|
||||||
#HalfConeAngle = np.arcsin(R_E/(R_E + h))
|
|
||||||
#ViewFactor = (1 - np.cos(HalfConeAngle))/2
|
|
||||||
#
|
|
||||||
#
|
|
||||||
#
|
|
||||||
#RoC = -V_z
|
|
||||||
#
|
|
||||||
#dT_gas = (Q_ConvInt/(gamma * c_v * M_gas) - (gamma - 1)/gamma * rho_air * g / (rho_gas * R_gas) * RoC) * dt
|
|
||||||
#dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout)/(c_f * M_film)) * dt
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -13,10 +13,10 @@ netcdf4 1.3.3
|
|||||||
cdsapi 0.2.7 (*)
|
cdsapi 0.2.7 (*)
|
||||||
|
|
||||||
|
|
||||||
(*) for CDS API please refer to: https://cds.climate.copernicus.eu/api-how-to
|
|
||||||
|
|
||||||
Alternatively, use ANACONDA and the environment(*.yml)-file in this repository.
|
Alternatively, use ANACONDA and the environment(*.yml)-file in this repository.
|
||||||
|
|
||||||
|
(*) for proper setup of CDS API please refer to: https://cds.climate.copernicus.eu/api-how-to (in any case!)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(B) User Input:
|
(B) User Input:
|
||||||
@ -24,4 +24,4 @@ Alternatively, use ANACONDA and the environment(*.yml)-file in this repository.
|
|||||||
1. Please define all input parameters under input/user_input.py
|
1. Please define all input parameters under input/user_input.py
|
||||||
|
|
||||||
2. Script "DataRequest.py" needs to be run prior to generate netCDF-datafile for atmospheric data!
|
2. Script "DataRequest.py" needs to be run prior to generate netCDF-datafile for atmospheric data!
|
||||||
Please ensure sufficient disk space (1,25 GB)
|
Please ensure sufficient disk space (currently: 1,25 GB)
|
Loading…
x
Reference in New Issue
Block a user