removed obsolote/outdated files to tidy up repository
This commit is contained in:
parent
67397e392b
commit
34a5aad93e
@ -1,55 +0,0 @@
|
||||
import cdsapi
|
||||
|
||||
c = cdsapi.Client()
|
||||
|
||||
|
||||
|
||||
|
||||
r = c.retrieve(
|
||||
'reanalysis-era5-pressure-levels',
|
||||
{
|
||||
'product_type': 'reanalysis',
|
||||
'variable': [
|
||||
'fraction_of_cloud_cover', 'geopotential', 'relative_humidity',
|
||||
'specific_humidity', 'temperature', 'u_component_of_wind',
|
||||
'v_component_of_wind', 'vertical_velocity',
|
||||
],
|
||||
'pressure_level': [
|
||||
'1', '2', '3',
|
||||
'5', '7', '10',
|
||||
'20', '30', '50',
|
||||
'70', '100', '125',
|
||||
'150', '175', '200',
|
||||
'225', '250', '300',
|
||||
'350', '400', '450',
|
||||
'500', '550', '600',
|
||||
'650', '700', '750',
|
||||
'775', '800', '825',
|
||||
'850', '875', '900',
|
||||
'925', '950', '975',
|
||||
'1000',
|
||||
],
|
||||
'year': '2016',
|
||||
'month': '07',
|
||||
'day': [
|
||||
'11', '12', '13',
|
||||
'14', '15', '16',
|
||||
'17', '18',
|
||||
],
|
||||
'time': [
|
||||
'00:00', '01:00', '02:00',
|
||||
'03:00', '04:00', '05:00',
|
||||
'06:00', '07:00', '08:00',
|
||||
'09:00', '10:00', '11:00',
|
||||
'12:00', '13:00', '14:00',
|
||||
'15:00', '16:00', '17:00',
|
||||
'18:00', '19:00', '20:00',
|
||||
'21:00', '22:00', '23:00',
|
||||
],
|
||||
'area': [
|
||||
72, -111, 67,
|
||||
22,
|
||||
],
|
||||
'format': 'netcdf',
|
||||
})
|
||||
r.download('test2021.nc')
|
@ -1,174 +0,0 @@
|
||||
import numpy as np
|
||||
from astropy.time import Time
|
||||
|
||||
# SIMPLE ATMOSPHERE MODEL
|
||||
|
||||
def T_air(h):
|
||||
if h >= 0 and h <= 11000:
|
||||
res = 288.15 - 0.0065 * h
|
||||
return res
|
||||
elif h > 11000 and h <= 20000:
|
||||
res = 216.65
|
||||
return res
|
||||
elif h >= 20000:
|
||||
res = 216.65 + 0.0010 * (h - 20000)
|
||||
return res
|
||||
def p_air(h):
|
||||
if h >= 0 and h <= 11000:
|
||||
res = 101325 * ((288.15 - 0.0065 * h)/288.15) ** 5.25577
|
||||
return res
|
||||
elif h > 11000 and h <= 20000:
|
||||
res = 22632 * np.exp(-(h - 11000)/6341.62)
|
||||
return res
|
||||
elif h > 20000:
|
||||
res = 5474.87 * ((216.65 + 0.0010 * (h - 20000))/216.65) ** (-34.163)
|
||||
return res
|
||||
def rho_air(h):
|
||||
res = p_air(h)/(R_air * T_air(h))
|
||||
return res
|
||||
|
||||
|
||||
# USER INPUT
|
||||
|
||||
start_height = 0
|
||||
start_utc = '2006-01-16 08:00:00.000'
|
||||
start_lat = 0 # start latitude in [deg]
|
||||
start_lon = 0 # start longitude in [deg]
|
||||
|
||||
|
||||
# INITIALISATION
|
||||
|
||||
t = 0
|
||||
h = start_height
|
||||
lat = start_lat
|
||||
lon = start_lon
|
||||
utc = Time(start_utc)
|
||||
v_z = 0
|
||||
p_gas = p_air(h)
|
||||
T_gas = T_air(h)
|
||||
T_film = T_gas
|
||||
p_0 = 101325
|
||||
|
||||
dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt
|
||||
dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
|
||||
|
||||
|
||||
dT_gas = (Q_g/(c_pg * m_g) - (g * M_a * m_g * T_g)/(c_pg * T_a * M_g) * dz/dt) * dt
|
||||
|
||||
|
||||
V_b_new = m_gas * R_gas * T_gas_new/p_gas_new # r.h.s. with updated values!
|
||||
|
||||
|
||||
v_w = 0
|
||||
|
||||
T_g1 = T_g
|
||||
T_a1 = T_a
|
||||
# Q_g1 = ???
|
||||
T_e1 = T_e
|
||||
|
||||
# T_g2 = T_g1 + dt * (Q_g1/(c_pg * m_g1) - g * M_a * T_g1 * dh/(c_pg * T_a1 * M_g))
|
||||
# T_e2 = T_e1 + Q_e/(c_env * m_e) * dt
|
||||
|
||||
T_gn = T_g + dt * (Q_g/(c_pg * m_g) - g * M_a * T_g * dh/(c_pg * T_a * M_g))
|
||||
T_en = T_e + Q_e/(c_env * m_e) * dt
|
||||
|
||||
s_n = s + dt * v + 0.5 * a * dt ** 2
|
||||
v_n = v - v_w + dt * a
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
T_g = T_gn
|
||||
T_e = T_en
|
||||
s = s_n
|
||||
v = v_n
|
||||
|
||||
|
||||
V = m_g * R_g * T_g / (p_g)
|
||||
|
||||
|
||||
|
||||
dV_b = V_b_new - V_b # calculating volume increment
|
||||
dT_gas = Q_ConvInt/(c_v * m_g) * dt + (gamma - 1) * T_g * (dm_g/m_g - dV_b/V_b)
|
||||
|
||||
|
||||
|
||||
|
||||
V_b = V_b_new # updating current volume
|
||||
|
||||
|
||||
dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
m_balloon = A_balloon * rho_envelope
|
||||
m_gas = Vol_balloon * (M_gas * p_gas)/(R_c * T_gas)
|
||||
m_gross = m_balloon + m_payload
|
||||
m_tot = m_balloon + m_gas + m_payload
|
||||
|
||||
GI = F_buoyant - g * (rho_a - rho_g) * Vol_balloon
|
||||
|
||||
W = m_gross * g
|
||||
|
||||
m_virtual = m_tot + C_virtual * rho_a * Vol_balloon
|
||||
|
||||
R_z = GI + T_z - D_z - W
|
||||
|
||||
dV_A = (R_z * dt)/m_virtual
|
||||
|
||||
F_Drag = 0.5 * C_D * rho * np.abs(V) * V * A_cross
|
||||
|
||||
Re = (rho * V * l)/my
|
||||
|
||||
C_D = 24/Re
|
||||
|
||||
my = my_0 * (T_0 + C)/(T + C) * (T/T_0) ** (3/2)
|
||||
|
||||
C_D = 0.23175 - 0.15757 * f + 0.04744 * f ** 2 - 7.0412 * 10 ** (-3) * f ** 3 + 5.1534 * 10 ** (-4) * f ** 4 - 1.4835 * 10 ** (-5) * f ** 5
|
||||
|
||||
Vol_balloon = m_g * R_g * T_g/p_g
|
||||
|
||||
|
||||
Vol_ballon_new = m_g * R_g * T_g/p_g # r.h.s. with updated values!
|
||||
dVol = Vol_ballon_new - Vol_balloon # calculating volume increment
|
||||
Vol_ballon = Vol_ballon_new # updating current volume
|
||||
|
||||
|
||||
L_z = g * (M_atm * p_atm/(R * T_atm) - M_gas * p_gas/(R * T_gas)) * Vol_balloon
|
||||
|
||||
|
||||
|
||||
dT_g = Q_ConvInt/(c_v * m_g) * dt + (gamma - 1) * T_g * (dm_g/m_g - dVol/Vol)
|
||||
|
||||
dT_e = (Q_sun + Q_albedo + Q_IREarth + Q_IRsky + Q_ConvExt - Q_ConvInt + Q_IRout)/(c_e * m_e)
|
||||
|
||||
Pr_g = my_g * c_pg/kappa_g
|
||||
Pr_a = my_a * c_pa/kappa_a
|
||||
|
||||
beta_g = 1/T_g
|
||||
beta_a = 1/T_a
|
||||
|
||||
Gr_g = d_b ** 3 * rho_g ** 2 * g * beta_g * (T_e - T_g)/(my_g ** 2)
|
||||
Gr_a = d_b ** 3 * rho_a ** 2 * g * beta_a * (T_e - T_a)/(my_a ** 2)
|
||||
|
||||
|
||||
|
||||
h = h + dt * V + 0.5 * a * dt ** 2
|
||||
V = V + dt * a
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
278
main_atmodel.py
278
main_atmodel.py
@ -1,278 +0,0 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from datetime import datetime
|
||||
start = datetime.now()
|
||||
print(start)
|
||||
begin_time = datetime.now()
|
||||
from models.sun import sun_angles_analytical
|
||||
from models.sun import sun_angles_astropy
|
||||
from models.simple_atmosphere import T_air, p_air, rho_air
|
||||
from models.drag import drag, c_d
|
||||
from input.user_input import *
|
||||
from input.natural_constants import *
|
||||
from astropy.time import Time
|
||||
import astropy.units as unit
|
||||
from models.thermal import AirMass
|
||||
from netCDF4 import Dataset
|
||||
|
||||
#data = Dataset("test2021.nc", "r", format="NETCDF4")
|
||||
|
||||
#ERAtime = data.variables['time'][:] # time
|
||||
#ERAlat = data.variables['latitude'][:] # latitude
|
||||
#ERAlon = data.variables['longitude'][:] # longitude
|
||||
#ERAz = data.variables['z'][:]/g # geopotential to geopotential height
|
||||
#ERApress = data.variables['level'][:] # pressure level
|
||||
#ERAtemp = data.variables['t'][:]
|
||||
#vw_x = data.variables['u'][:] # v_x
|
||||
#vw_y = data.variables['v'][:] # v_y
|
||||
#vw_z = data.variables['w'][:] # v_z
|
||||
|
||||
# t: simulation time (0 .. t_max) in [s]
|
||||
# utc = Time(start_utc) + t * u.second # current time (UTC)
|
||||
|
||||
lat = start_lat # deg
|
||||
lon = start_lon # deg
|
||||
|
||||
# date = Time('2020-12-13 12:00:00.000')
|
||||
|
||||
|
||||
# INITIALISATION
|
||||
|
||||
t = 0 # simulation time in seconds
|
||||
h = start_height
|
||||
utc = Time(start_utc)
|
||||
#epoch_diff = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000
|
||||
#t_epoch = epoch_diff
|
||||
|
||||
#sq_diff_lat = (ERAlat - lat) ** 2
|
||||
#sq_diff_lon = (ERAlon - lon) ** 2
|
||||
#sq_diff_time = (ERAtime - t_epoch) ** 2
|
||||
|
||||
#min_index_lat = sq_diff_lat.argmin()
|
||||
#min_index_lon = sq_diff_lat.argmin()
|
||||
#min_index_time = sq_diff_time.argmin()
|
||||
|
||||
#sq_diff_h = (ERAz[min_index_time, :, min_index_lat, min_index_lon] - h) ** 2
|
||||
|
||||
#min_index_h = sq_diff_h.argmin()
|
||||
|
||||
#h_grid = ERAz[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#p_grid = ERApress[min_index_h] * 100
|
||||
#T_grid = ERAtemp[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#u_grid = vw_x[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#v_grid = vw_y[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#w_grid = -1/g * vw_z[min_index_time, min_index_h, min_index_lat, min_index_lon] * R_air * T_grid / p_grid
|
||||
|
||||
#v = v_grid
|
||||
#u = u_grid
|
||||
#w = w_grid
|
||||
#T_air = T_grid
|
||||
#p_air = p_grid
|
||||
#rho_air = p_air/(R_air * T_air)
|
||||
|
||||
v_x = 0
|
||||
v_y = 0
|
||||
v_z = 0
|
||||
|
||||
T_gas = T_air(h)
|
||||
T_film = T_gas
|
||||
|
||||
t_list = []
|
||||
h_list = []
|
||||
lat_list = []
|
||||
lon_list = []
|
||||
p_list = []
|
||||
Temp_list = []
|
||||
rho_list = []
|
||||
|
||||
while t <= t_end and h >= 0:
|
||||
t_list.append(t)
|
||||
h_list.append(h)
|
||||
lat_list.append(lat)
|
||||
lon_list.append(lon)
|
||||
|
||||
p_list.append(p_air(h))
|
||||
Temp_list.append(T_air(h))
|
||||
rho_list.append(rho_air(h))
|
||||
|
||||
|
||||
#t_epoch = epoch_diff + t/3600
|
||||
|
||||
#sq_diff_lat = (ERAlat - lat) ** 2
|
||||
#sq_diff_lon = (ERAlon - lon) ** 2
|
||||
#sq_diff_time = (ERAtime - t_epoch) ** 2
|
||||
|
||||
#min_index_lat = sq_diff_lat.argmin()
|
||||
#min_index_lon = sq_diff_lat.argmin()
|
||||
#min_index_time = sq_diff_time.argmin()
|
||||
|
||||
#sq_diff_h = (ERAz[min_index_time, :, min_index_lat, min_index_lon] - h) ** 2
|
||||
|
||||
#min_index_h = sq_diff_h.argmin()
|
||||
|
||||
#h_grid = ERAz[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#p_grid = ERApress[min_index_h] * 100
|
||||
#T_grid = ERAtemp[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#u_grid = vw_x[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#v_grid = vw_y[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
#w_grid = -1/g * vw_z[min_index_time, min_index_h, min_index_lat, min_index_lon] * R_air * T_grid / p_grid
|
||||
|
||||
# p_air = p_grid
|
||||
p_gas = p_air(h)
|
||||
# rho_air = p_air / (R_air * T_air)
|
||||
u = 0
|
||||
v = 0
|
||||
w = 0
|
||||
|
||||
v_relx = u - v_x
|
||||
v_rely = v - v_y
|
||||
v_relz = w - v_z
|
||||
|
||||
v_rel = (v_relx ** 2 + v_rely ** 2 + v_relz ** 2) ** (1/2)
|
||||
|
||||
p_gas = p_air(h)
|
||||
rho_gas = p_gas/(R_gas * T_gas) # calculate gas density through ideal(!) gas equation
|
||||
|
||||
V_b = m_gas/rho_gas # calculate balloon volume from current gas mass and gas density
|
||||
|
||||
if V_b > V_design:
|
||||
V_b = V_design
|
||||
m_gas = V_design * rho_gas
|
||||
else:
|
||||
pass
|
||||
|
||||
m_gross = m_pl + m_film
|
||||
m_tot = m_pl + m_film + m_gas
|
||||
m_virt = m_tot + c_virt * rho_air(h) * V_b
|
||||
|
||||
d_b = 1.383 * V_b ** (1/3) # calculate diameter of balloon from its volume
|
||||
L_goreB = 1.914 * V_b ** (1/3)
|
||||
h_b = 0.748 * d_b
|
||||
A_surf = 4.94 * V_b ** (2/3)
|
||||
A_surf1 = 4.94 * V_design ** (2/3) * (1 - np.cos(np.pi * L_goreB/L_goreDesign))
|
||||
A_eff = 0.65 * A_surf + 0.35 * A_surf1
|
||||
A_top = np.pi/4 * d_b ** 2
|
||||
|
||||
D = drag(c_d, rho_air(h), d_b, v_rel) # calculate drag force
|
||||
|
||||
if v_rel == 0:
|
||||
Drag_x = 0
|
||||
Drag_y = 0
|
||||
Drag_z = 0
|
||||
else:
|
||||
Drag_x = D * v_relx / v_rel
|
||||
Drag_y = D * v_rely / v_rel
|
||||
Drag_z = D * v_relz / v_rel
|
||||
|
||||
I = g * V_b * (rho_air(h) - rho_gas) # calculate gross inflation
|
||||
W = g * m_gross # calculate weight (force)
|
||||
F = I - W + Drag_z
|
||||
|
||||
AZ, ELV = sun_angles_analytical(lat, lon, utc)
|
||||
|
||||
A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV)))
|
||||
|
||||
# CALCULATIONS FOR THERMAL MODEL
|
||||
|
||||
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
||||
tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air(h), p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air(h), p_0, ELV, h)))
|
||||
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air(h) / p_0) + np.exp(-0.095 * p_air(h) / p_0))
|
||||
else:
|
||||
tau_atm = 0
|
||||
tau_atmIR = 0
|
||||
|
||||
doy = int(utc.doy)
|
||||
|
||||
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
||||
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
||||
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
||||
I_SunZ = I_Sun * tau_atm
|
||||
q_sun = I_SunZ
|
||||
q_IRground = epsilon_ground * sigma * T_ground ** 4
|
||||
q_IREarth = q_IRground * tau_atmIR
|
||||
|
||||
if ELV <= 0:
|
||||
q_Albedo = 0
|
||||
else:
|
||||
q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
||||
|
||||
my_air = (1.458 * 10 ** -6 * T_air(h) ** 1.5) / (T_air(h) + 110.4)
|
||||
my_gas = 1.895 * 10 ** -5 * (T_gas / 273.15) ** 0.647
|
||||
k_air = 0.0241 * (T_air(h) / 273.15) ** 0.9
|
||||
k_gas = 0.144 * (T_gas / 273.15) ** 0.7
|
||||
Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air(h)
|
||||
Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
||||
|
||||
Gr_air = (rho_air(h) ** 2 * g * np.abs(T_film - T_air(h)) * d_b ** 3) / (T_air(h) * my_air ** 2)
|
||||
Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
||||
HC_free = Nu_air * k_air / d_b
|
||||
Re = np.abs(v_relz) * d_b * rho_air(h) / my_air
|
||||
|
||||
HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55)
|
||||
HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (
|
||||
1 / 3)
|
||||
HC_external = np.maximum(HC_free, HC_forced)
|
||||
|
||||
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
||||
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
||||
|
||||
Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR))
|
||||
Q_IRfilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR)
|
||||
Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR))
|
||||
Q_ConvExt = HC_external * A_eff * (T_air(h) - T_film)
|
||||
Q_ConvInt = HC_internal * A_eff * (T_film - T_gas)
|
||||
|
||||
# RoC = -v_z
|
||||
# dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt
|
||||
# dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
# v_w = w
|
||||
# v = v_z
|
||||
|
||||
s = h
|
||||
|
||||
a_x = Drag_x/m_virt
|
||||
a_y = Drag_y/m_virt
|
||||
a_z = F/m_virt
|
||||
|
||||
# DIFFERENTIAL EQUATIONS
|
||||
|
||||
dx = dt * v_x + 0.5 * a_x * dt ** 2 # lon
|
||||
dy = dt * v_y + 0.5 * a_y * dt ** 2 # lat
|
||||
|
||||
lon = lon + np.rad2deg(np.arctan(dx/((6371229.0 + h) * np.cos(np.deg2rad(lat)))))
|
||||
lat = lat + np.rad2deg(np.arctan(dy/(6371229.0 + h)))
|
||||
|
||||
v_xn = v_x + dt * a_x
|
||||
v_yn = v_y + dt * a_y
|
||||
|
||||
s_n = s + dt * v_z + 0.5 * a_z * dt ** 2
|
||||
dh = s_n - s
|
||||
v_n = v_z + dt * a_z
|
||||
|
||||
T_gn = T_gas + dt * (Q_ConvInt / (gamma * c_v * m_gas) - g * R_gas * T_gas * dh / (c_v * gamma * T_air(s) * R_air))
|
||||
T_en = T_film + (Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) * dt
|
||||
|
||||
T_g = T_gn
|
||||
T_e = T_en
|
||||
s = s_n
|
||||
v_x = v_xn
|
||||
v_y = v_yn
|
||||
v_z = v_n
|
||||
|
||||
h = s
|
||||
T_gas = T_g
|
||||
T_film = T_e
|
||||
# v_z = v
|
||||
|
||||
t += dt # time increment
|
||||
utc = Time(start_utc) + t * unit.second
|
||||
|
||||
end = datetime.now()
|
||||
print(end)
|
||||
plt.plot(t_list, h_list, 'k-')
|
||||
plt.plot(t_list, p_list, 'r-')
|
||||
plt.plot(t_list, Temp_list, 'b-')
|
||||
plt.plot(t_list, rho_list, 'g-')
|
||||
plt.show()
|
277
main_netCDF.py
277
main_netCDF.py
@ -1,277 +0,0 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from datetime import datetime
|
||||
start = datetime.now()
|
||||
print(start)
|
||||
begin_time = datetime.now()
|
||||
from models.sun import sun_angles_analytical
|
||||
from models.sun import sun_angles_astropy
|
||||
from models.drag import drag, c_d
|
||||
from input.user_input import *
|
||||
from input.natural_constants import *
|
||||
from astropy.time import Time
|
||||
import astropy.units as unit
|
||||
from models.thermal import AirMass
|
||||
from netCDF4 import Dataset
|
||||
|
||||
data = Dataset("test2021.nc", "r", format="NETCDF4")
|
||||
|
||||
ERAtime = data.variables['time'][:] # time
|
||||
ERAlat = data.variables['latitude'][:] # latitude
|
||||
ERAlon = data.variables['longitude'][:] # longitude
|
||||
ERAz = data.variables['z'][:]/g # geopotential to geopotential height
|
||||
ERApress = data.variables['level'][:] # pressure level
|
||||
ERAtemp = data.variables['t'][:]
|
||||
vw_x = data.variables['u'][:] # v_x
|
||||
vw_y = data.variables['v'][:] # v_y
|
||||
vw_z = data.variables['w'][:] # v_z
|
||||
|
||||
# t: simulation time (0 .. t_max) in [s]
|
||||
# utc = Time(start_utc) + t * u.second # current time (UTC)
|
||||
|
||||
lat = start_lat # deg
|
||||
lon = start_lon # deg
|
||||
|
||||
# date = Time('2020-12-13 12:00:00.000')
|
||||
|
||||
|
||||
# INITIALISATION
|
||||
|
||||
t = 0 # simulation time in seconds
|
||||
h = start_height
|
||||
utc = Time(start_utc)
|
||||
epoch_diff = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000
|
||||
t_epoch = epoch_diff
|
||||
|
||||
sq_diff_lat = (ERAlat - lat) ** 2
|
||||
sq_diff_lon = (ERAlon - lon) ** 2
|
||||
sq_diff_time = (ERAtime - t_epoch) ** 2
|
||||
|
||||
min_index_lat = sq_diff_lat.argmin()
|
||||
min_index_lon = sq_diff_lat.argmin()
|
||||
min_index_time = sq_diff_time.argmin()
|
||||
|
||||
sq_diff_h = (ERAz[min_index_time, :, min_index_lat, min_index_lon] - h) ** 2
|
||||
|
||||
min_index_h = sq_diff_h.argmin()
|
||||
|
||||
h_grid = ERAz[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
p_grid = ERApress[min_index_h] * 100
|
||||
T_grid = ERAtemp[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
u_grid = vw_x[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
v_grid = vw_y[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
w_grid = -1/g * vw_z[min_index_time, min_index_h, min_index_lat, min_index_lon] * R_air * T_grid / p_grid
|
||||
|
||||
v = v_grid
|
||||
u = u_grid
|
||||
w = w_grid
|
||||
T_air = T_grid
|
||||
p_air = p_grid
|
||||
rho_air = p_air/(R_air * T_air)
|
||||
|
||||
v_x = 0
|
||||
v_y = 0
|
||||
v_z = 0
|
||||
|
||||
T_gas = T_air
|
||||
T_film = T_gas
|
||||
|
||||
t_list = []
|
||||
h_list = []
|
||||
lat_list = []
|
||||
lon_list = []
|
||||
p_list = []
|
||||
Temp_list = []
|
||||
rho_list = []
|
||||
|
||||
while t <= t_end and h >= 0:
|
||||
t_list.append(t)
|
||||
h_list.append(h)
|
||||
lat_list.append(lat)
|
||||
lon_list.append(lon)
|
||||
|
||||
p_list.append(p_air)
|
||||
Temp_list.append(T_air)
|
||||
rho_list.append(rho_air)
|
||||
|
||||
t_epoch = epoch_diff + t/3600
|
||||
|
||||
sq_diff_lat = (ERAlat - lat) ** 2
|
||||
sq_diff_lon = (ERAlon - lon) ** 2
|
||||
sq_diff_time = (ERAtime - t_epoch) ** 2
|
||||
|
||||
min_index_lat = sq_diff_lat.argmin()
|
||||
min_index_lon = sq_diff_lat.argmin()
|
||||
min_index_time = sq_diff_time.argmin()
|
||||
|
||||
sq_diff_h = (ERAz[min_index_time, :, min_index_lat, min_index_lon] - h) ** 2
|
||||
|
||||
min_index_h = sq_diff_h.argmin()
|
||||
|
||||
h_grid = ERAz[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
p_grid = ERApress[min_index_h] * 100
|
||||
T_grid = ERAtemp[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
u_grid = vw_x[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
v_grid = vw_y[min_index_time, min_index_h, min_index_lat, min_index_lon]
|
||||
w_grid = -1/g * vw_z[min_index_time, min_index_h, min_index_lat, min_index_lon] * R_air * T_grid / p_grid
|
||||
|
||||
p_air = p_grid
|
||||
p_gas = p_air
|
||||
T_air = T_grid
|
||||
rho_air = p_air / (R_air * T_air)
|
||||
u = u_grid
|
||||
v = v_grid
|
||||
w = w_grid
|
||||
|
||||
v_relx = u - v_x
|
||||
v_rely = v - v_y
|
||||
v_relz = w - v_z
|
||||
|
||||
v_rel = (v_relx ** 2 + v_rely ** 2 + v_relz ** 2) ** (1/2)
|
||||
|
||||
p_gas = p_air
|
||||
rho_gas = p_gas/(R_gas * T_gas) # calculate gas density through ideal(!) gas equation
|
||||
|
||||
V_b = m_gas/rho_gas # calculate balloon volume from current gas mass and gas density
|
||||
|
||||
if V_b > V_design:
|
||||
V_b = V_design
|
||||
m_gas = V_design * rho_gas
|
||||
else:
|
||||
pass
|
||||
|
||||
m_gross = m_pl + m_film
|
||||
m_tot = m_pl + m_film + m_gas
|
||||
m_virt = m_tot + c_virt * rho_air * V_b
|
||||
|
||||
d_b = 1.383 * V_b ** (1/3) # calculate diameter of balloon from its volume
|
||||
L_goreB = 1.914 * V_b ** (1/3)
|
||||
h_b = 0.748 * d_b
|
||||
A_surf = 4.94 * V_b ** (2/3)
|
||||
A_surf1 = 4.94 * V_design ** (2/3) * (1 - np.cos(np.pi * L_goreB/L_goreDesign))
|
||||
A_eff = 0.65 * A_surf + 0.35 * A_surf1
|
||||
A_top = np.pi/4 * d_b ** 2
|
||||
|
||||
D = drag(c_d, rho_air, d_b, v_rel) # calculate drag force
|
||||
|
||||
if v_rel == 0:
|
||||
Drag_x = 0
|
||||
Drag_y = 0
|
||||
Drag_z = 0
|
||||
else:
|
||||
Drag_x = D * v_relx/v_rel
|
||||
Drag_y = D * v_rely/v_rel
|
||||
Drag_z = D * v_relz/v_rel
|
||||
|
||||
I = g * V_b * (rho_air - rho_gas) # calculate gross inflation
|
||||
W = g * m_gross # calculate weight (force)
|
||||
F = I - W + Drag_z
|
||||
|
||||
AZ, ELV = sun_angles_analytical(lat, lon, utc)
|
||||
|
||||
A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV)))
|
||||
|
||||
# CALCULATIONS FOR THERMAL MODEL
|
||||
|
||||
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
||||
tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
||||
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0))
|
||||
else:
|
||||
tau_atm = 0
|
||||
tau_atmIR = 0
|
||||
|
||||
doy = int(utc.doy)
|
||||
|
||||
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
||||
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
||||
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
||||
I_SunZ = I_Sun * tau_atm
|
||||
q_sun = I_SunZ
|
||||
q_IRground = epsilon_ground * sigma * T_ground ** 4
|
||||
q_IREarth = q_IRground * tau_atmIR
|
||||
|
||||
if ELV <= 0:
|
||||
q_Albedo = 0
|
||||
else:
|
||||
q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
||||
|
||||
my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
|
||||
my_gas = 1.895 * 10 ** -5 * (T_gas / 273.15) ** 0.647
|
||||
k_air = 0.0241 * (T_air / 273.15) ** 0.9
|
||||
k_gas = 0.144 * (T_gas / 273.15) ** 0.7
|
||||
Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
|
||||
Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
||||
|
||||
Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2)
|
||||
Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
||||
HC_free = Nu_air * k_air / d_b
|
||||
Re = np.abs(v_relz) * d_b * rho_air / my_air
|
||||
|
||||
HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55)
|
||||
HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (
|
||||
1 / 3)
|
||||
HC_external = np.maximum(HC_free, HC_forced)
|
||||
|
||||
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
||||
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
||||
|
||||
Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR))
|
||||
Q_IRfilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR)
|
||||
Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR))
|
||||
Q_ConvExt = HC_external * A_eff * (T_air - T_film)
|
||||
Q_ConvInt = HC_internal * A_eff * (T_film - T_gas)
|
||||
|
||||
# RoC = -v_z
|
||||
# dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt
|
||||
# dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
# v_w = w
|
||||
# v = v_z
|
||||
|
||||
s = h
|
||||
|
||||
a_x = Drag_x/m_virt
|
||||
a_y = Drag_y/m_virt
|
||||
a_z = F/m_virt
|
||||
|
||||
# DIFFERENTIAL EQUATIONS
|
||||
|
||||
dx = dt * v_x + 0.5 * a_x * dt ** 2 # lon
|
||||
dy = dt * v_y + 0.5 * a_y * dt ** 2 # lat
|
||||
|
||||
lon = lon + np.rad2deg(np.arctan(dx/((6371229.0 + h) * np.cos(np.deg2rad(lat)))))
|
||||
lat = lat + np.rad2deg(np.arctan(dy/(6371229.0 + h)))
|
||||
|
||||
v_xn = v_x + dt * a_x
|
||||
v_yn = v_y + dt * a_y
|
||||
|
||||
s_n = s + dt * v_z + 0.5 * a_z * dt ** 2
|
||||
dh = s_n - s
|
||||
v_n = v_z + dt * a_z
|
||||
|
||||
T_gn = T_gas + dt * (Q_ConvInt / (gamma * c_v * m_gas) - g * R_gas * T_gas * dh / (c_v * gamma * T_air * R_air))
|
||||
T_en = T_film + (Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) * dt
|
||||
|
||||
T_g = T_gn
|
||||
T_e = T_en
|
||||
s = s_n
|
||||
v_x = v_xn
|
||||
v_y = v_yn
|
||||
v_z = v_n
|
||||
|
||||
h = s
|
||||
T_gas = T_g
|
||||
T_film = T_e
|
||||
# v_z = v
|
||||
|
||||
t += dt # time increment
|
||||
utc = Time(start_utc) + t * unit.second
|
||||
|
||||
end = datetime.now()
|
||||
print(end)
|
||||
plt.plot(t_list, h_list, 'k-')
|
||||
plt.plot(t_list, p_list, 'r-')
|
||||
plt.plot(t_list, Temp_list, 'b-')
|
||||
plt.plot(t_list, rho_list, 'g-')
|
||||
plt.show()
|
@ -1,387 +0,0 @@
|
||||
import numpy as np
|
||||
import math
|
||||
import xarray as xr
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.spatial import cKDTree
|
||||
from scipy import interpolate
|
||||
import cartopy.crs as ccrs
|
||||
from datetime import datetime
|
||||
start = datetime.now()
|
||||
print(start)
|
||||
begin_time = datetime.now()
|
||||
from models.sun import sun_angles_analytical
|
||||
from models.sun import sun_angles_astropy
|
||||
from models.drag import drag, c_d
|
||||
from input.user_input import *
|
||||
from input.natural_constants import *
|
||||
from astropy.time import Time
|
||||
import astropy.units as unit
|
||||
from models.thermal import AirMass
|
||||
from netCDF4 import Dataset
|
||||
import pandas as pd
|
||||
|
||||
data = pd.read_excel(r'C:\Users\marcel\PycharmProjects\MasterThesis\Mappe1.xls', sheet_name='Tabelle3')
|
||||
|
||||
comp_time = pd.DataFrame(data, columns= ['Time'])
|
||||
comp_height = pd.DataFrame(data, columns= ['Height'])
|
||||
|
||||
|
||||
def transform(lon, lat, t):
|
||||
# WGS 84 reference coordinate system parameters
|
||||
A = 6378137.0 # major axis [m]
|
||||
E2 = 6.69437999014e-3 # eccentricity squared
|
||||
|
||||
t_s = 1000 * t
|
||||
|
||||
lon_rad = np.radians(lon)
|
||||
lat_rad = np.radians(lat)
|
||||
# convert to cartesian coordinates
|
||||
r_n = A / (np.sqrt(1 - E2 * (np.sin(lat_rad) ** 2)))
|
||||
x = r_n * np.cos(lat_rad) * np.cos(lon_rad)
|
||||
y = r_n * np.cos(lat_rad) * np.sin(lon_rad)
|
||||
z = r_n * (1 - E2) * np.sin(lat_rad)
|
||||
return x, y, z, t_s
|
||||
|
||||
data = Dataset("test2021.nc", "r", format="NETCDF4")
|
||||
|
||||
ERAtime = data.variables['time'][:] # time
|
||||
ERAlat = data.variables['latitude'][:] # latitude
|
||||
ERAlon = data.variables['longitude'][:] # longitude
|
||||
ERAz = data.variables['z'][:]/g # geopotential to geopotential height
|
||||
ERApress = data.variables['level'][:] # pressure level
|
||||
ERAtemp = data.variables['t'][:] # temperature in K
|
||||
|
||||
vw_x = data.variables['u'][:] # v_x
|
||||
vw_y = data.variables['v'][:] # v_y
|
||||
vw_z = data.variables['w'][:] # v_z
|
||||
|
||||
lon_era2d, lat_era2d, time_era = np.meshgrid(ERAlon, ERAlat, ERAtime)
|
||||
|
||||
xs, ys, zs, ts = transform(lon_era2d.flatten(), lat_era2d.flatten(), time_era.flatten())
|
||||
|
||||
tree = cKDTree(np.column_stack((xs, ys, zs, ts))) # !
|
||||
|
||||
|
||||
|
||||
|
||||
lat = start_lat # deg
|
||||
lon = start_lon # deg
|
||||
|
||||
t = 0 # simulation time in seconds
|
||||
h = start_height
|
||||
utc = Time(start_utc)
|
||||
epoch_diff = (Time(start_utc).jd - Time('1900-01-01 00:00:00.0').jd) * 24.000000
|
||||
t_epoch = epoch_diff
|
||||
|
||||
|
||||
|
||||
xt, yt, zt, tt = transform(lon, lat, t) # test coordinates
|
||||
|
||||
d, inds = tree.query(np.column_stack((xt, yt, zt, tt)), k=8) # longitude, latitude, time in h # !
|
||||
w = 1.0 / d[0] ** 2
|
||||
|
||||
lat_sel = np.unravel_index(inds[0], lon_era2d.shape)[0]
|
||||
lon_sel = np.unravel_index(inds[0], lon_era2d.shape)[1]
|
||||
time_sel = np.unravel_index(inds[0], lon_era2d.shape)[2]
|
||||
|
||||
interp4d_height = np.ma.dot(w, ERAz[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_temp = np.ma.dot(w, ERAtemp[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_x = np.ma.dot(w, vw_x[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_y = np.ma.dot(w, vw_y[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_z = np.ma.dot(w, vw_z[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
|
||||
pressure_hPa = np.array([1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200,225, 250, 300, 350, 400,
|
||||
450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000])
|
||||
|
||||
pressure = 100 * pressure_hPa
|
||||
print(pressure)
|
||||
|
||||
|
||||
# height_interp1d = interpolate.interp1d(interp4d_height, pressure)
|
||||
temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp)
|
||||
press_interp1d = interpolate.interp1d(interp4d_height, pressure)
|
||||
vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x)
|
||||
vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y)
|
||||
vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z)
|
||||
|
||||
|
||||
#u = 0
|
||||
#v = 0
|
||||
#w = 0
|
||||
T_air = temp_interp1d(h)
|
||||
p_air = press_interp1d(h)
|
||||
rho_air = p_air/(R_air * T_air)
|
||||
|
||||
u = vw_x_interp1d(h)
|
||||
v = vw_y_interp1d(h)
|
||||
w = -1 / g * vw_z_interp1d(h) * R_air * T_air / p_air
|
||||
|
||||
|
||||
v_x = 0
|
||||
v_y = 0
|
||||
v_z = 0
|
||||
|
||||
v_rel = 0
|
||||
|
||||
T_gas = T_air
|
||||
T_film = T_gas
|
||||
|
||||
t_list = []
|
||||
h_list = []
|
||||
v_list = []
|
||||
lat_list = []
|
||||
lon_list = []
|
||||
p_list = []
|
||||
Temp_list = []
|
||||
rho_list = []
|
||||
|
||||
while t <= t_end and h >= 0:
|
||||
t_list.append(t)
|
||||
h_list.append(h)
|
||||
v_list.append(v_rel)
|
||||
lat_list.append(lat)
|
||||
lon_list.append(lon)
|
||||
|
||||
p_list.append(p_air)
|
||||
Temp_list.append(T_air)
|
||||
rho_list.append(rho_air)
|
||||
|
||||
t_epoch = epoch_diff + t/3600
|
||||
|
||||
xt, yt, zt, tt = transform(lon, lat, t_epoch) # current balloon coordinates in cartesian coordinates: x [m], y [m], z [m], time [h since 1900-01-01 00:00:00.0]
|
||||
|
||||
d, inds = tree.query(np.column_stack((xt, yt, zt, tt)), k=8) # longitude, latitude, time in h # !
|
||||
w = 1.0 / d[0] ** 2
|
||||
|
||||
lat_sel = np.unravel_index(inds[0], lon_era2d.shape)[0]
|
||||
lon_sel = np.unravel_index(inds[0], lon_era2d.shape)[1]
|
||||
time_sel = np.unravel_index(inds[0], lon_era2d.shape)[2]
|
||||
|
||||
interp4d_height = np.ma.dot(w, ERAz[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_temp = np.ma.dot(w, ERAtemp[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_x = np.ma.dot(w, vw_x[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_y = np.ma.dot(w, vw_y[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
interp4d_vw_z = np.ma.dot(w, vw_z[time_sel, :, lat_sel, lon_sel]) / np.sum(w)
|
||||
|
||||
press_interp1d = interpolate.interp1d(interp4d_height, pressure)
|
||||
temp_interp1d = interpolate.interp1d(interp4d_height, interp4d_temp)
|
||||
vw_x_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_x)
|
||||
vw_y_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_y)
|
||||
vw_z_interp1d = interpolate.interp1d(interp4d_height, interp4d_vw_z)
|
||||
|
||||
|
||||
try:
|
||||
p_air = press_interp1d(h)
|
||||
T_air = temp_interp1d(h)
|
||||
except:
|
||||
if (h > interp4d_height[0]):
|
||||
h = interp4d_height[0]
|
||||
else:
|
||||
h = interp4d_height[-1]
|
||||
|
||||
p_air = press_interp1d(h)
|
||||
T_air = temp_interp1d(h)
|
||||
|
||||
#print("height")
|
||||
#print(h)
|
||||
#print("temperature")
|
||||
#print(temp_interp1d(h))
|
||||
#print("pressure")
|
||||
#print(press_interp1d(h))
|
||||
#print("vw_x")
|
||||
#print(vw_x_interp1d(h))
|
||||
|
||||
p_gas = p_air
|
||||
rho_air = p_air / (R_air * T_air)
|
||||
u = vw_x_interp1d(h)
|
||||
v = vw_y_interp1d(h)
|
||||
w = -1/g * vw_z_interp1d(h) * R_air * T_air / p_air
|
||||
|
||||
v_relx = u - v_x
|
||||
v_rely = v - v_y
|
||||
v_relz = w - v_z
|
||||
|
||||
v_rel = (v_relx ** 2 + v_rely ** 2 + v_relz ** 2) ** (1/2)
|
||||
|
||||
rho_gas = p_gas/(R_gas * T_gas) # calculate gas density through ideal(!) gas equation
|
||||
|
||||
V_b = m_gas/rho_gas # calculate balloon volume from current gas mass and gas density
|
||||
|
||||
if V_b > V_design:
|
||||
V_b = V_design
|
||||
#m_gas = V_design * rho_gas
|
||||
else:
|
||||
pass
|
||||
|
||||
m_gross = m_pl + m_film
|
||||
m_tot = m_pl + m_film + m_gas
|
||||
m_virt = m_tot + c_virt * rho_air * V_b
|
||||
|
||||
d_b = 1.383 * V_b ** (1/3) # calculate diameter of balloon from its volume
|
||||
L_goreB = 1.914 * V_b ** (1/3)
|
||||
h_b = 0.748 * d_b
|
||||
A_surf = 4.94 * V_b ** (2/3)
|
||||
A_surf1 = 4.94 * V_design ** (2/3) * (1 - np.cos(np.pi * L_goreB/L_goreDesign))
|
||||
A_eff = 0.65 * A_surf + 0.35 * A_surf1
|
||||
A_top = np.pi/4 * d_b ** 2
|
||||
|
||||
D = drag(c_d, rho_air, d_b, v_rel) # calculate drag force
|
||||
|
||||
if v_rel == 0:
|
||||
Drag_x = 0
|
||||
Drag_y = 0
|
||||
Drag_z = 0
|
||||
else:
|
||||
Drag_x = D * v_relx/v_rel
|
||||
Drag_y = D * v_rely/v_rel
|
||||
Drag_z = D * v_relz/v_rel
|
||||
|
||||
I = g * V_b * (rho_air - rho_gas) # calculate gross inflation
|
||||
W = g * m_gross # calculate weight (force)
|
||||
F = I - W + Drag_z
|
||||
|
||||
AZ, ELV = sun_angles_analytical(lat, lon, utc)
|
||||
|
||||
A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV)))
|
||||
|
||||
# CALCULATIONS FOR THERMAL MODEL
|
||||
|
||||
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
||||
tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air, p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air, p_0, ELV, h)))
|
||||
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air / p_0) + np.exp(-0.095 * p_air / p_0))
|
||||
else:
|
||||
tau_atm = 0
|
||||
tau_atmIR = 0
|
||||
|
||||
doy = int(utc.doy)
|
||||
|
||||
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
||||
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
||||
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
||||
I_SunZ = I_Sun * tau_atm
|
||||
q_sun = I_SunZ
|
||||
q_IRground = epsilon_ground * sigma * T_ground ** 4
|
||||
q_IREarth = q_IRground * tau_atmIR
|
||||
|
||||
if ELV <= 0:
|
||||
q_Albedo = 0
|
||||
else:
|
||||
q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
||||
|
||||
my_air = (1.458 * 10 ** -6 * T_air ** 1.5) / (T_air + 110.4)
|
||||
my_gas = 1.895 * 10 ** -5 * (T_gas / 273.15) ** 0.647
|
||||
k_air = 0.0241 * (T_air / 273.15) ** 0.9
|
||||
k_gas = 0.144 * (T_gas / 273.15) ** 0.7
|
||||
Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air
|
||||
Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
||||
|
||||
Gr_air = (rho_air ** 2 * g * np.abs(T_film - T_air) * d_b ** 3) / (T_air * my_air ** 2)
|
||||
Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
||||
HC_free = Nu_air * k_air / d_b
|
||||
Re = np.abs(v_relz) * d_b * rho_air / my_air
|
||||
|
||||
HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55)
|
||||
HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (
|
||||
1 / 3)
|
||||
HC_external = np.maximum(HC_free, HC_forced)
|
||||
|
||||
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
||||
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
||||
|
||||
Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR))
|
||||
Q_IRfilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR)
|
||||
Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR))
|
||||
Q_ConvExt = HC_external * A_eff * (T_air - T_film)
|
||||
Q_ConvInt = HC_internal * A_eff * (T_film - T_gas)
|
||||
|
||||
# RoC = -v_z
|
||||
# dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt
|
||||
# dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
# v_w = w
|
||||
# v = v_z
|
||||
|
||||
s = h
|
||||
|
||||
a_x = Drag_x/m_virt
|
||||
a_y = Drag_y/m_virt
|
||||
a_z = F/m_virt
|
||||
|
||||
# DIFFERENTIAL EQUATIONS
|
||||
|
||||
dx = dt * v_x + 0.5 * a_x * dt ** 2 # lon
|
||||
dy = dt * v_y + 0.5 * a_y * dt ** 2 # lat
|
||||
|
||||
lon = lon + np.rad2deg(np.arctan(dx/((6371229.0 + h) * np.cos(np.deg2rad(lat)))))
|
||||
lat = lat + np.rad2deg(np.arctan(dy/(6371229.0 + h)))
|
||||
|
||||
v_xn = v_x + dt * a_x
|
||||
v_yn = v_y + dt * a_y
|
||||
|
||||
s_n = s + dt * v_z + 0.5 * a_z * dt ** 2
|
||||
dh = s_n - s
|
||||
v_n = v_z + dt * a_z
|
||||
|
||||
T_gn = T_gas + dt * (Q_ConvInt / (gamma * c_v * m_gas) - g * R_gas * T_gas * dh / (c_v * gamma * T_air * R_air))
|
||||
T_en = T_film + (Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film) * dt
|
||||
|
||||
T_g = T_gn
|
||||
T_e = T_en
|
||||
s = s_n
|
||||
v_x = v_xn
|
||||
v_y = v_yn
|
||||
v_z = v_n
|
||||
|
||||
h = s
|
||||
T_gas = T_g
|
||||
T_film = T_e
|
||||
# v_z = v
|
||||
|
||||
t += dt # time increment
|
||||
utc = Time(start_utc) + t * unit.second
|
||||
|
||||
|
||||
|
||||
#print(len(lon_list), len(lat_list))
|
||||
#"""
|
||||
#plt.plot(start_lon, start_lat, 'rx')
|
||||
#plt.plot(ax=ax, lon_list, lat_list, transform=ccrs.PlateCarree())
|
||||
#plt.show()
|
||||
#"""
|
||||
|
||||
|
||||
### WORKS!
|
||||
###
|
||||
###dset = xr.open_dataset("test2021.nc")
|
||||
###
|
||||
###print(dset['t'][1][0]) # [time] [level]
|
||||
###
|
||||
#fig = plt.figure() #figsize=[120,50])
|
||||
###
|
||||
#ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
|
||||
###
|
||||
###dset['t'][1][0].plot(ax=ax, cmap='jet', transform=ccrs.PlateCarree())
|
||||
###ax.coastlines()
|
||||
###plt.show()
|
||||
|
||||
#print(len(ERAlat))
|
||||
#print(len(ERAlon))
|
||||
#print(len(ERAz))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#"""
|
||||
plt.plot(comp_time, comp_height, 'r--', label='PoGo Flight Test')
|
||||
#plt.plot(t_list, v_list, 'k--', label='Ballon v_rel')
|
||||
plt.plot(t_list, h_list, 'k-', label='Balloon Altitude')
|
||||
#plt.plot(t_list, p_list, 'r-', label='Air Pressure [Pa]')
|
||||
#plt.plot(t_list, Temp_list, 'b-', label='Air Temperature [K]')
|
||||
#plt.plot(t_list, rho_list, 'g-', label='Air Density in [kg/m$^3$]')
|
||||
plt.xlabel('time in s')
|
||||
plt.ylabel('Balloon Altitude in m')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
#"""
|
146
main_old.py
146
main_old.py
@ -1,146 +0,0 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from datetime import datetime
|
||||
begin_time = datetime.now()
|
||||
from models.sun import sun_angles_analytical
|
||||
from models.sun import sun_angles_astropy
|
||||
from models.drag import drag, c_d
|
||||
from models.simple_atmosphere import T_air, p_air, rho_air
|
||||
from input.user_input import *
|
||||
from input.natural_constants import *
|
||||
from astropy.time import Time
|
||||
import astropy.units as u
|
||||
from models.thermal import AirMass
|
||||
|
||||
# t: simulation time (0 .. t_max) in [s]
|
||||
# utc = Time(start_utc) + t * u.second # current time (UTC)
|
||||
|
||||
lat = start_lat # deg
|
||||
lon = start_lon # deg
|
||||
|
||||
date = Time('2020-12-13 12:00:00.000')
|
||||
|
||||
|
||||
# INITIALISATION
|
||||
|
||||
t = 0
|
||||
h = start_height
|
||||
utc = Time(start_utc)
|
||||
v_z = 0
|
||||
p_gas = p_air(h)
|
||||
T_gas = T_air(h)
|
||||
T_film = T_gas
|
||||
|
||||
t_list = []
|
||||
h_list = []
|
||||
|
||||
while t <= t_end and h >= 0:
|
||||
t_list.append(t)
|
||||
h_list.append(h)
|
||||
|
||||
rho_gas = p_gas/(R_gas * T_gas) # calculate gas density through ideal(!) gas equation
|
||||
|
||||
V_b = m_gas/rho_gas # calculate balloon volume from current gas mass and gas density
|
||||
|
||||
if V_b > V_design:
|
||||
V_b = V_design
|
||||
m_gas = V_design * rho_gas
|
||||
else:
|
||||
pass
|
||||
|
||||
m_gross = m_pl + m_film
|
||||
m_tot = m_pl + m_film + m_gas
|
||||
m_virt = m_tot + c_virt * rho_air(h) * V_b
|
||||
|
||||
d_b = 1.383 * V_b ** (1/3) # calculate diameter of balloon from its volume
|
||||
L_goreB = 1.914 * V_b ** (1/3)
|
||||
h_b = 0.748 * d_b
|
||||
A_surf = 4.94 * V_b ** (2/3)
|
||||
A_surf1 = 4.94 * V_design ** (2/3) * (1 - np.cos(np.pi * L_goreB/L_goreDesign))
|
||||
A_eff = 0.65 * A_surf + 0.35 * A_surf1
|
||||
A_top = np.pi/4 * d_b ** 2
|
||||
|
||||
D = drag(c_d, rho_air(h), d_b, v_z) # calculate drag force
|
||||
I = g * V_b * (rho_air(h) - rho_gas) # calculate gross inflation
|
||||
W = g * m_gross # calculate weight (force)
|
||||
F = I - W - D * np.sign(v_z)
|
||||
|
||||
v_zrel = v_z
|
||||
|
||||
AZ, ELV = sun_angles_analytical(lat, lon, utc)
|
||||
|
||||
A_proj = A_top * (0.9125 + 0.0875 * np.cos(np.pi - 2 * np.deg2rad(ELV)))
|
||||
|
||||
# CALCULATIONS FOR THERMAL MODEL
|
||||
|
||||
if ELV >= -(180 / np.pi * np.arccos(R_E / (R_E + h))):
|
||||
tau_atm = 0.5 * (np.exp(-0.65 * AirMass(p_air(h), p_0, ELV, h)) + np.exp(-0.095 * AirMass(p_air(h), p_0, ELV, h)))
|
||||
tau_atmIR = 1.716 - 0.5 * (np.exp(-0.65 * p_air(h) / p_0) + np.exp(-0.095 * p_air(h) / p_0))
|
||||
else:
|
||||
tau_atm = 0
|
||||
tau_atmIR = 0
|
||||
|
||||
doy = int(utc.doy)
|
||||
|
||||
MA = (357.52911 + 0.98560028 * (utc.jd - 2451545)) % 360 # in degree, reference: see folder "literature"
|
||||
TA = MA + 2 * e * np.sin(np.deg2rad(MA)) + 5 / 4 * e ** 2 * np.sin(np.deg2rad(2 * MA))
|
||||
I_Sun = 1367.5 * ((1 + e * np.cos(np.deg2rad(TA))) / (1 - e ** 2)) ** 2
|
||||
I_SunZ = I_Sun * tau_atm
|
||||
q_sun = I_SunZ
|
||||
q_IRground = epsilon_ground * sigma * T_ground ** 4
|
||||
q_IREarth = q_IRground * tau_atmIR
|
||||
|
||||
if ELV <= 0:
|
||||
q_Albedo = 0
|
||||
else:
|
||||
q_Albedo = Albedo * I_Sun * np.sin(np.deg2rad(ELV))
|
||||
|
||||
my_air = (1.458 * 10 ** -6 * T_air(h) ** 1.5) / (T_air(h) + 110.4)
|
||||
my_gas = 1.895 * 10 ** -5 * (T_gas / 273.15) ** 0.647
|
||||
k_air = 0.0241 * (T_air(h) / 273.15) ** 0.9
|
||||
k_gas = 0.144 * (T_gas / 273.15) ** 0.7
|
||||
Pr_air = 0.804 - 3.25 * 10 ** (-4) * T_air(h)
|
||||
Pr_gas = 0.729 - 1.6 * 10 ** (-4) * T_gas
|
||||
|
||||
Gr_air = (rho_air(h) ** 2 * g * np.abs(T_film - T_air(h)) * d_b ** 3) / (T_air(h) * my_air ** 2)
|
||||
Nu_air = 2 + 0.45 * (Gr_air * Pr_air) ** 0.25
|
||||
HC_free = Nu_air * k_air / d_b
|
||||
Re = np.abs(v_zrel) * d_b * rho_air(h) / my_air
|
||||
|
||||
HC_forced = k_air / d_b * (2 + 0.41 * Re ** 0.55)
|
||||
HC_internal = 0.13 * k_gas * ((rho_gas ** 2 * g * np.abs(T_film - T_gas) * Pr_gas) / (T_gas * my_air ** 2)) ** (
|
||||
1 / 3)
|
||||
HC_external = np.maximum(HC_free, HC_forced)
|
||||
|
||||
HalfConeAngle = np.arcsin(R_E / (R_E + h))
|
||||
ViewFactor = (1 - np.cos(HalfConeAngle)) / 2
|
||||
|
||||
Q_Sun = alpha_VIS * A_proj * q_sun * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_Albedo = alpha_VIS * A_surf * q_Albedo * ViewFactor * (1 + tau_VIS / (1 - r_VIS))
|
||||
Q_IREarth = alpha_IR * A_surf * q_IREarth * ViewFactor * (1 + tau_IR / (1 - r_IR))
|
||||
Q_IRfilm = sigma * epsilon * alpha_IR * A_surf * T_film ** 4 * 1 / (1 - r_IR)
|
||||
Q_IRout = sigma * epsilon * A_surf * T_film ** 4 * (1 * tau_IR / (1 - r_IR))
|
||||
Q_ConvExt = HC_external * A_eff * (T_air(h) - T_film)
|
||||
Q_ConvInt = HC_internal * A_eff * (T_film - T_gas)
|
||||
|
||||
RoC = -v_z
|
||||
|
||||
dT_gas = (Q_ConvInt / (gamma * m_gas * c_v) - (gamma - 1) / gamma * rho_air(h) * g / (rho_gas * R_gas) * RoC) * dt
|
||||
dT_film = ((Q_Sun + Q_Albedo + Q_IREarth + Q_IRfilm + Q_ConvExt - Q_ConvInt - Q_IRout) / (c_f * m_film)) * dt
|
||||
|
||||
###
|
||||
|
||||
dv_z = F/m_virt * dt # velocity increment
|
||||
|
||||
v_z += dv_z * dt # velocity differential
|
||||
h += v_z * dt # altitude differential
|
||||
|
||||
p_gas = p_air(h)
|
||||
T_gas = T_gas + dT_gas * dt
|
||||
T_film = T_film + dT_film * dt
|
||||
|
||||
t += dt # time increment
|
||||
utc = Time(start_utc) + t * u.second
|
||||
|
||||
plt.plot(t_list, h_list)
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user