226 lines
11 KiB
Python
226 lines
11 KiB
Python
|
from .IPSF import IPSF
|
||
|
from ...lib.helpers import rasterizeCircle
|
||
|
from ..sensor.PixelMask import PixelMask
|
||
|
from ...lib.logger import logger
|
||
|
from abc import abstractmethod
|
||
|
import numpy as np
|
||
|
import astropy.units as u
|
||
|
from typing import Union
|
||
|
from scipy.optimize import bisect
|
||
|
from scipy.signal import fftconvolve
|
||
|
from scipy.interpolate import interp2d
|
||
|
|
||
|
|
||
|
class AGriddedPSF(IPSF):
|
||
|
"""
|
||
|
A class for modelling the PSF from a two dimensional grid
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
@u.quantity_input(wl="length", d_aperture="length", pixel_size="length", grid_delta="length")
|
||
|
def __init__(self, psf: np.ndarray, f_number: float, wl: u.Quantity, d_aperture: u.Quantity, osf: float,
|
||
|
pixel_size: u.Quantity, grid_delta: u.Quantity, center_point: list):
|
||
|
"""
|
||
|
Initialize a new PSF from a 2D grid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
psf : ndarray
|
||
|
2D numpy array containing the parsed PSF values. The zero-point is in the top left corner.
|
||
|
f_number : float
|
||
|
The working focal number of the optical system
|
||
|
wl : Quantity
|
||
|
The central wavelength which is used for calculating the PSF
|
||
|
d_aperture : Quantity
|
||
|
The diameter of the telescope's aperture.
|
||
|
osf : float
|
||
|
The oversampling factor to be used for oversampling the PSF with regards to the pixel size.
|
||
|
pixel_size : Quantity
|
||
|
The size of a pixel as length-quantity.
|
||
|
grid_delta : Quantity
|
||
|
Size of a grid element as length-Quantity with a value for each grid dimension.
|
||
|
center_point : list
|
||
|
The center point coordinates as list with the zero point in the upper left corner.
|
||
|
"""
|
||
|
# Store parameters
|
||
|
self._f_number = f_number
|
||
|
self._wl = wl
|
||
|
self._d_aperture = d_aperture
|
||
|
self._osf = osf
|
||
|
self._pixel_size = pixel_size
|
||
|
self._psf = psf
|
||
|
self._grid_delta = grid_delta
|
||
|
self._center_point = center_point
|
||
|
|
||
|
self._center_point_os = None
|
||
|
self._psf_os = None
|
||
|
self._psf_osf = None
|
||
|
|
||
|
# @u.quantity_input(jitter_sigma=u.arcsec)
|
||
|
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity],
|
||
|
jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity:
|
||
|
"""
|
||
|
Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
contained_energy : Union[str, int, float, u.Quantity]
|
||
|
The percentage of energy to be contained within a circle with the diameter reduced observation angle.
|
||
|
jitter_sigma : Quantity
|
||
|
Sigma of the telescope's jitter in arcsec
|
||
|
obstruction : float
|
||
|
The central obstruction as ratio A_ob / A_ap
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
reduced_observation_angle: Quantity
|
||
|
The reduced observation angle in lambda / d_ap
|
||
|
"""
|
||
|
# Parse the contained energy
|
||
|
if type(contained_energy) == str:
|
||
|
try:
|
||
|
contained_energy = float(contained_energy) / 100.0 * u.dimensionless_unscaled
|
||
|
except ValueError:
|
||
|
logger.error("Could not convert encircled energy to float.")
|
||
|
elif type(contained_energy) in [int, float]:
|
||
|
contained_energy = contained_energy / 100 * u.dimensionless_unscaled
|
||
|
|
||
|
center_point, psf, psf_osf = self._calcPSF(jitter_sigma)
|
||
|
|
||
|
# Calculate the maximum possible radius for the circle containing the photometric aperture
|
||
|
r_max = max(np.sqrt(center_point[0] ** 2 + center_point[1] ** 2),
|
||
|
np.sqrt((psf.shape[0] - center_point[0]) ** 2 + center_point[1] ** 2),
|
||
|
np.sqrt(center_point[0] ** 2 + (psf.shape[1] - center_point[1]) ** 2),
|
||
|
np.sqrt((psf.shape[0] - center_point[0]) ** 2 + (psf.shape[1] - center_point[1]) ** 2))
|
||
|
# Calculate the total contained energy of the PSF
|
||
|
total = np.sum(psf)
|
||
|
# Iterate the optimal radius for the contained energy
|
||
|
r = bisect(lambda r_c: contained_energy.value - np.sum(
|
||
|
psf * rasterizeCircle(np.zeros((psf.shape[0], psf.shape[1])), r_c, center_point[0],
|
||
|
center_point[1])) / total, 0, r_max, xtol=1e-1)
|
||
|
# Calculate the reduced observation angle in lambda / d_ap
|
||
|
# noinspection PyTypeChecker
|
||
|
reduced_observation_angle = r / psf_osf * self._grid_delta[0] / (
|
||
|
self._f_number * self._d_aperture) * self._d_aperture / self._wl
|
||
|
return 2 * reduced_observation_angle * u.dimensionless_unscaled
|
||
|
|
||
|
def _calcPSF(self, jitter_sigma: u.Quantity = None):
|
||
|
"""
|
||
|
Calculate the PSF from the grid. This includes oversampling the PSF and convolving with the
|
||
|
jitter-gaussian.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
jitter_sigma : Quantity
|
||
|
Sigma of the telescope's jitter in arcsec.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
center_point : ndarray
|
||
|
The indices of the PSF's center point on the grid.
|
||
|
psf : ndarray
|
||
|
The PSF.
|
||
|
psf_osf : float
|
||
|
The oversampling factor of the returned PSF.
|
||
|
"""
|
||
|
# Calculate the psf oversampling factor for the PSF based on the current resolution of the PSF
|
||
|
psf_osf = np.ceil(max(self._grid_delta) / (self._pixel_size / self._osf)).value
|
||
|
if psf_osf == 1.0:
|
||
|
# No oversampling is necessary
|
||
|
psf = self._psf
|
||
|
center_point = self._center_point
|
||
|
else:
|
||
|
# Oversampling is necessary, oversample the PSF and calculate the new center point.
|
||
|
f = interp2d(x=np.arange(self._psf.shape[1]) - self._center_point[1],
|
||
|
y=np.arange(self._psf.shape[0]) - self._center_point[0], z=self._psf,
|
||
|
kind='cubic', copy=False, bounds_error=False, fill_value=None)
|
||
|
center_point = [(x + 0.5) * psf_osf - 0.5 for x in self._center_point]
|
||
|
psf = f((np.arange(self._psf.shape[1] * psf_osf) - center_point[1]) / psf_osf,
|
||
|
(np.arange(self._psf.shape[0] * psf_osf) - center_point[0]) / psf_osf)
|
||
|
if jitter_sigma is not None:
|
||
|
# Convert angular jitter to jitter on focal plane
|
||
|
jitter_sigma_um = (jitter_sigma.to(u.rad) * self._f_number * self._d_aperture / u.rad).to(u.um)
|
||
|
# Jitter is enabled. Calculate the corresponding gaussian bell and convolve it with the PSF
|
||
|
if min(self._grid_delta) / psf_osf < 6 * jitter_sigma_um:
|
||
|
# 6-sigma interval of the gaussian bell is larger than the grid width
|
||
|
# Calculate the necessary grid length for the 6-sigma interval of the gaussian bell
|
||
|
jitter_grid_length = np.ceil(6 * jitter_sigma_um / (min(self._grid_delta) / psf_osf)).value
|
||
|
# Make sure, the grid size is odd in order to have a defined kernel center
|
||
|
jitter_grid_length = int(jitter_grid_length if jitter_grid_length % 2 == 1 else jitter_grid_length + 1)
|
||
|
|
||
|
# Create a meshgrid containing the x and y coordinates of each point within the first quadrant of the
|
||
|
# gaussian kernel
|
||
|
xv, yv = np.meshgrid(range(-int((jitter_grid_length - 1) / 2), 1),
|
||
|
range(-int((jitter_grid_length - 1) / 2), 1))
|
||
|
# Calculate the gaussian kernel in the first quadrant
|
||
|
kernel = 1 / (2 * np.pi * jitter_sigma_um.value ** 2) * np.exp(
|
||
|
-((xv * min(self._grid_delta.value) / psf_osf) ** 2 +
|
||
|
(yv * min(self._grid_delta.value) / psf_osf) ** 2) / (2 * jitter_sigma_um.value ** 2))
|
||
|
# Mirror the kernel from the first quadrant to all other quadrants
|
||
|
kernel = np.concatenate((kernel, np.flip(kernel, axis=1)[:, 1:]), axis=1)
|
||
|
kernel = np.concatenate((kernel, np.flip(kernel, axis=0)[1:, :]), axis=0)
|
||
|
# Normalize kernel
|
||
|
kernel = kernel / np.sum(kernel)
|
||
|
# Convolve PSF with gaussian kernel
|
||
|
psf = fftconvolve(psf, kernel, mode="full")
|
||
|
# Calculate new center point
|
||
|
center_point = [x + int((jitter_grid_length - 1) / 2) for x in center_point]
|
||
|
# Save the values as object attribute
|
||
|
self._center_point_os = center_point
|
||
|
self._psf_os = psf
|
||
|
self._psf_osf = psf_osf
|
||
|
return center_point, psf, psf_osf
|
||
|
|
||
|
def mapToPixelMask(self, mask: PixelMask, jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> PixelMask:
|
||
|
"""
|
||
|
Map the integrated PSF values to a sensor grid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obstruction
|
||
|
mask : PixelMask
|
||
|
The pixel mask to map the values to. The values will only be mapped onto entries with the value 1.
|
||
|
jitter_sigma : Quantity
|
||
|
Sigma of the telescope's jitter in arcsec
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mask : PixelMask
|
||
|
The pixel mask with the integrated PSF values mapped onto each pixel.
|
||
|
"""
|
||
|
# Calculate the indices of all non-zero elements of the mask
|
||
|
y_ind, x_ind = np.nonzero(mask)
|
||
|
# Extract a rectangle containing all non-zero values of the mask
|
||
|
mask_red = mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)]
|
||
|
# Calculate the new PSF-center indices of the reduced mask
|
||
|
psf_center_ind = [mask.psf_center_ind[0] - y_ind.min(), mask.psf_center_ind[1] - x_ind.min()]
|
||
|
# Oversample the reduced mask
|
||
|
mask_red_os = self._rebin(mask_red, self._osf).view(PixelMask)
|
||
|
# Calculate the new PSF-center indices of the reduced mask
|
||
|
psf_center_ind = [(x + 0.5) * self._osf - 0.5 for x in psf_center_ind]
|
||
|
|
||
|
# Get PSF values or calculate them if not available
|
||
|
if self._psf_os is not None and self._center_point_os is not None and self._psf_osf is not None:
|
||
|
center_point = self._center_point_os
|
||
|
psf = self._psf_os
|
||
|
psf_osf = self._psf_osf
|
||
|
else:
|
||
|
center_point, psf, psf_osf = self._calcPSF(jitter_sigma)
|
||
|
# Calculate the coordinates of each PSF value in microns
|
||
|
x = (np.arange(psf.shape[1]) - center_point[1]) * self._grid_delta[1].to(u.um).value / psf_osf
|
||
|
y = (np.arange(psf.shape[0]) - center_point[0]) * self._grid_delta[0].to(u.um).value / psf_osf
|
||
|
# Initialize a two-dimensional cubic interpolation function for the PSF
|
||
|
psf_interp = interp2d(x=x, y=y, z=psf, kind='cubic', copy=False, bounds_error=False, fill_value=None)
|
||
|
# Calculate the values of the PSF for all elements of the reduced mask
|
||
|
res = psf_interp((np.arange(mask_red_os.shape[1]) - psf_center_ind[1]) * mask_red_os.pixel_size.to(u.um).value,
|
||
|
(np.arange(mask_red_os.shape[0]) - psf_center_ind[0]) * mask_red_os.pixel_size.to(u.um).value)
|
||
|
# Bin the oversampled reduced mask to the original resolution and multiply with the reduced mask to select only
|
||
|
# the relevant values
|
||
|
res = mask_red * self._rebin(res, 1 / self._osf)
|
||
|
# Integrate the reduced mask and divide by the indefinite integral to get relative intensities
|
||
|
res = res * mask_red_os.pixel_size.to(u.um).value ** 2 / (
|
||
|
psf.sum() * (self._grid_delta[0].to(u.um).value / psf_osf) ** 2)
|
||
|
# reintegrate the reduced mask into the complete mask
|
||
|
mask[y_ind.min():(y_ind.max() + 1), x_ind.min():(x_ind.max() + 1)] = res
|
||
|
return mask
|