ESBO-ETC/esbo_etc/classes/optical_component/AHotOpticalComponent.py

88 lines
3.7 KiB
Python
Raw Normal View History

2020-04-14 15:53:15 +02:00
from esbo_etc.classes.optical_component.AOpticalComponent import AOpticalComponent
from esbo_etc.classes.ITransmissive import ITransmissive
from esbo_etc.classes.SpectralQty import SpectralQty
from abc import abstractmethod
import astropy.units as u
from astropy.modeling.models import BlackBody
2020-04-14 19:58:23 +02:00
from typing import Union, Callable
2020-04-14 15:53:15 +02:00
class AHotOpticalComponent(AOpticalComponent):
"""
Abstract super class for an optical component with thermal emission
"""
@abstractmethod
@u.quantity_input(wl_bins='length', temp=[u.Kelvin, u.Celsius], obstruction_temp=[u.Kelvin, u.Celsius])
2020-04-15 17:03:10 +02:00
def __init__(self, parent: ITransmissive, emissivity: Union[SpectralQty, int, float, str], temp: u.Quantity,
obstruction: float = 0, obstructor_temp: u.Quantity = 0 * u.K, obstructor_emissivity: float = 1):
2020-04-14 15:53:15 +02:00
"""
Initialize a new optical component with thermal emission
Parameters
----------
parent : ITransmissive
The parent element of the optical component from which the electromagnetic radiation is received.
2020-04-15 17:03:10 +02:00
emissivity : Union[SpectralQty, int, float, str]
2020-04-14 15:53:15 +02:00
The spectral emissivity coefficient for the optical surface.
temp: Quantity in Kelvin / Celsius
Temperature of the optical component
obstruction : float
The additional obstruction factor of the optical component. 0 means the component is not obstructed, 1
denotes a completely obstructed component with therefore no incoming flux. It is important to note, that
the obstruction factor reflects the obstruction of the optical component additionally to the obstruction
factors of the prior elements in the beam.
obstructor_temp : Quantity in Kelvin / Celsius
Temperature of the obstructing component.
obstructor_emissivity : float
Emissivity of the obstructing component.
2020-04-14 15:53:15 +02:00
"""
# Initialize super class
super().__init__(parent, obstruction=obstruction, obstructor_temp=obstructor_temp,
obstructor_emissivity=obstructor_emissivity)
2020-04-14 15:53:15 +02:00
if temp > 0 * u.K:
# Create noise from black body model
2020-04-14 19:58:23 +02:00
if isinstance(emissivity, SpectralQty):
bb = self._gb_factory(temp)
2020-04-14 19:58:23 +02:00
self._noise = SpectralQty(emissivity.wl, bb(emissivity.wl)) * emissivity
2020-04-15 17:03:10 +02:00
elif isinstance(emissivity, str):
em = SpectralQty.fromFile(emissivity, u.nm, u.dimensionless_unscaled)
bb = self._gb_factory(temp)
self._noise = SpectralQty(emissivity.wl, bb(emissivity.wl)) * em
2020-04-14 19:58:23 +02:00
else:
bb = self._gb_factory(temp, emissivity)
2020-04-14 19:58:23 +02:00
self._noise = bb
2020-04-14 15:53:15 +02:00
else:
self._noise = 0
2020-04-14 15:53:15 +02:00
2020-04-14 19:58:23 +02:00
def ownNoise(self) -> Union[SpectralQty, Callable, int, float]:
2020-04-14 15:53:15 +02:00
"""
Calculate the noise created by the optical component
Returns
-------
2020-04-14 19:58:23 +02:00
noise : Union[SpectralQty, Callable, int, float]
2020-04-14 15:53:15 +02:00
The noise created by the optical component
"""
return self._noise
@staticmethod
@u.quantity_input(temp=[u.Kelvin, u.Celsius])
def _gb_factory(temp: u.Quantity, em: Union[int, float] = 1):
"""
Factory for a grey body lambda-function.
Parameters
----------
temp : Quantity in Kelvin / Celsius
The temperature fo the grey body.
em : Union[int, float]
Emissivity of the the grey body
Returns
-------
bb : Callable
The lambda function for the grey body.
"""
bb = BlackBody(temperature=temp, scale=em * u.W / (u.m ** 2 * u.nm * u.sr))
return lambda wl: bb(wl)