ESBO-ETC/esbo_etc/classes/target/BlackBodyTarget.py

54 lines
2.5 KiB
Python
Raw Normal View History

2020-04-08 09:56:04 +02:00
from ..target.ATarget import ATarget
from ..SpectralQty import SpectralQty
import astropy.units as u
from astropy.modeling.models import BlackBody
from esbo_etc.lib.helpers import error
class BlackBodyTarget(ATarget):
"""
This class models the spectral flux density of a star of given magnitude using as black body radiator
"""
# Bands from Handbook of Space Astronomy and Astrophysics
# band_sfd = {"U": 1790*u.Jansky, "B": 4063*u.Jansky, "V": 3636*u.Jansky, "R": 3064*u.Jansky,
# "I": 2416*u.Jansky, "J": 1590*u.Jansky, "H": 1020*u.Jansky, "K": 640*u.Jansky}
band_sfd = {"U": 4.175e-11, "B": 6.32e-11, "V": 3.631e-11, "R": 2.177e-11,
"I": 1.126e-11, "J": 3.15e-12, "H": 1.14e-12, "K": 3.96e-13}
band_sfd = {k: v * u.W / (u.m ** 2 * u.nm) for k, v in band_sfd.items()}
band_wl = {"U": 366 * u.nanometer, "B": 438 * u.nanometer, "V": 545 * u.nanometer, "R": 641 * u.nanometer,
"I": 798 * u.nanometer, "J": 1220 * u.nanometer, "H": 1630 * u.nanometer, "K": 2190 * u.nanometer}
@u.quantity_input(wl_bins='length', temp=[u.Kelvin, u.Celsius], mag=u.mag)
def __init__(self, wl_bins: u.Quantity, temp: u.Quantity = 5778 * u.K,
mag: u.Quantity = 0 * u.mag, band: str = "V"):
"""
Initialize a new black body point source
Parameters
----------
wl_bins : length-Quantity
Wavelengths used for binning
temp : Quantity in Kelvin / Celsius
Temperature of the black body
mag : Quantity in mag
Desired apparent magnitude of the point source
band : str
Band used for fitting the planck curve to a star of 0th magnitude
2020-04-08 17:29:55 +02:00
Returns
-------
2020-04-08 09:56:04 +02:00
"""
if band not in self.band_wl.keys():
error("Band has to be one of '[" + ", ".join(list(self.band_wl.keys())) + "]'")
# Create blackbody model with given temperature
bb = BlackBody(temperature=temp, scale=1 * u.W / (u.m ** 2 * u.nm * u.sr))
# Calculate the correction factor for a star of 0th magnitude using the spectral flux density
# for the central wavelength of the given band
2020-04-08 17:29:55 +02:00
factor = self.band_sfd[band] / (bb(self.band_wl[band]) * u.sr) * u.sr
2020-04-08 09:56:04 +02:00
# Calculate spectral flux density for the given wavelengths and scale it for a star of the given magnitude
sfd = bb(wl_bins) * factor * 10 ** (- 2 / 5 * mag / u.mag)
# Initialize super class
2020-04-08 17:29:55 +02:00
super().__init__(SpectralQty(wl_bins, sfd))