call to parent object moved to ASensor

This commit is contained in:
Lukas Klass 2020-07-07 09:11:21 +02:00
parent 0f803a3484
commit 02b3ed2f73
3 changed files with 201 additions and 28 deletions

View File

@ -3,6 +3,8 @@ import astropy.units as u
from abc import abstractmethod
from ..Entry import Entry
from typing import Union
from ..SpectralQty import SpectralQty
from ...lib.logger import logger
class ASensor:
@ -21,7 +23,25 @@ class ASensor:
"""
self._parent = parent
@abstractmethod
def __calcIncomingRadiation(self):
"""
Trigger the radiation transportation pipeline in order to calculate the received radiation.
Returns
-------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
"""
logger.info("Calculating incoming background radiation", extra={"spinning": True})
background = self._parent.calcBackground()
logger.info("Calculating incoming signal radiation", extra={"spinning": True})
signal, obstruction = self._parent.calcSignal()
return background, signal, obstruction
@u.quantity_input(exp_time="time")
def getSNR(self, exp_time: u.Quantity) -> u.dimensionless_unscaled:
"""
@ -37,9 +57,34 @@ class ASensor:
snr : Quantity
The calculated SNR
"""
pass
background, signal, obstruction = self.__calcIncomingRadiation()
return self.calcSNR(background, signal, obstruction, exp_time)
@abstractmethod
@u.quantity_input(exp_time="time")
def calcSNR(self, background: SpectralQty, signal: SpectralQty, obstruction: float,
exp_time: u.Quantity) -> u.dimensionless_unscaled:
"""
Calculate the signal to noise ratio (SNR) for the given exposure time.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : time-Quantity
The exposure time to calculate the SNR for.
Returns
-------
snr : Quantity
The calculated SNR
"""
pass
@u.quantity_input(snr=u.dimensionless_unscaled)
def getExpTime(self, snr: u.Quantity) -> u.s:
"""
@ -55,9 +100,33 @@ class ASensor:
exp_time : Quantity
The necessary exposure time in seconds.
"""
pass
background, signal, obstruction = self.__calcIncomingRadiation()
return self.calcExpTime(background, signal, obstruction, snr)
@abstractmethod
@u.quantity_input(snr=u.dimensionless_unscaled)
def calcExpTime(self, background: SpectralQty, signal: SpectralQty, obstruction: float, snr: u.Quantity) -> u.s:
"""
Calculate the necessary exposure time in order to achieve the given SNR.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
snr : Quantity
The SNR for which the necessary exposure time shall be calculated.
Returns
-------
exp_time : Quantity
The necessary exposure time in seconds.
"""
pass
@u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag)
def getSensitivity(self, exp_time: u.Quantity, snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
"""
@ -72,6 +141,36 @@ class ASensor:
target_brightness : Quantity
The target brightness in magnitudes.
Returns
-------
sensitivity: Quantity
The sensitivity as limiting apparent star magnitude in mag.
"""
background, signal, obstruction = self.__calcIncomingRadiation()
return self.calcSensitivity(background, signal, obstruction, exp_time, snr, target_brightness)
@abstractmethod
@u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag)
def calcSensitivity(self, background: SpectralQty, signal: SpectralQty, obstruction: float, exp_time: u.Quantity,
snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
"""
Calculate the sensitivity of the telescope detector combination.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : Quantity
The exposure time in seconds.
snr : Quantity
The SNR for which the sensitivity time shall be calculated.
target_brightness : Quantity
The target brightness in magnitudes.
Returns
-------
sensitivity: Quantity

View File

@ -6,6 +6,7 @@ import numpy as np
from astropy.constants import k_B
from typing import Union
from ...lib.logger import logger
from ..SpectralQty import SpectralQty
class Heterodyne(ASensor):
@ -51,12 +52,19 @@ class Heterodyne(ASensor):
super().__init__(parent)
@u.quantity_input(exp_time="time")
def getSNR(self, exp_time: u.Quantity) -> u.dimensionless_unscaled:
def calcSNR(self, background: SpectralQty, signal: SpectralQty, obstruction: float,
exp_time: u.Quantity) -> u.dimensionless_unscaled:
"""
Calculate the signal to background ratio (SNR) for the given exposure time using the CCD-equation.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : time-Quantity
The exposure time to calculate the SNR for.
@ -66,7 +74,7 @@ class Heterodyne(ASensor):
The calculated SNR as dimensionless quantity
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_signal, t_background = self.calcTemperatures(background, signal, obstruction)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
@ -87,12 +95,18 @@ class Heterodyne(ASensor):
return snr
@u.quantity_input(snr=u.dimensionless_unscaled)
def getExpTime(self, snr: u.Quantity) -> u.s:
def calcExpTime(self, background: SpectralQty, signal: SpectralQty, obstruction: float, snr: u.Quantity) -> u.s:
"""
Calculate the necessary exposure time in order to achieve the given SNR.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
snr : Quantity
The SNR for which the necessary exposure time shall be calculated as dimensionless quantity.
@ -102,7 +116,7 @@ class Heterodyne(ASensor):
The necessary exposure time in seconds.
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_signal, t_background = self.calcTemperatures(background, signal, obstruction)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
@ -123,12 +137,19 @@ class Heterodyne(ASensor):
return exp_time
@u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag)
def getSensitivity(self, exp_time: u.Quantity, snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
def calcSensitivity(self, background: SpectralQty, signal: SpectralQty, obstruction: float, exp_time: u.Quantity,
snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
"""
Calculate the sensitivity of the telescope detector combination.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : Quantity
The exposure time in seconds.
snr : Quantity
@ -142,7 +163,7 @@ class Heterodyne(ASensor):
The sensitivity as limiting apparent star magnitude in mag.
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_signal, t_background = self.calcTemperatures(background, signal, obstruction)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
@ -193,10 +214,19 @@ class Heterodyne(ASensor):
logger.info(prefix + "Antenna temperature: %1.2e K" % t_signal.value)
logger.info("-------------------------------------------------------------------------------------------------")
def calcTemperatures(self):
def calcTemperatures(self, background: SpectralQty, signal: SpectralQty, obstruction: float):
"""
Calculate the noise temperatures of the signal and the background radiation.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
Returns
-------
t_signal : u.Quantity
@ -205,12 +235,11 @@ class Heterodyne(ASensor):
The background temperature in Kelvins.
"""
logger.info("Calculating the system temperature.")
t_background = (self._parent.calcBackground().rebin(self.__lambda_line).qty.to(
t_background = (background.rebin(self.__lambda_line).qty.to(
u.W / (u.m ** 2 * u.Hz * u.sr), equivalencies=u.spectral_density(self.__lambda_line)) *
self.__lambda_line ** 2 / (2 * k_B) * u.sr).decompose()
# Calculate the incoming photon current of the target
logger.info("Calculating the signal temperature.")
signal, obstruction = self._parent.calcSignal()
size = "extended" if signal.qty.unit.is_equivalent(u.W / (u.m ** 2 * u.nm * u.sr)) else "point"
if size == "point":
signal = signal.rebin(self.__lambda_line).qty.to(u.W / (u.m ** 2 * u.Hz),

View File

@ -93,12 +93,19 @@ class Imager(ASensor):
common_conf.psf.osf, pixel_size)
@u.quantity_input(exp_time="time")
def getSNR(self, exp_time: u.Quantity) -> u.dimensionless_unscaled:
def calcSNR(self, background: SpectralQty, signal: SpectralQty, obstruction: float,
exp_time: u.Quantity) -> u.dimensionless_unscaled:
"""
Calculate the signal to background ratio (SNR) for the given exposure time using the CCD-equation.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : time-Quantity
The exposure time to calculate the SNR for.
@ -108,7 +115,8 @@ class Imager(ASensor):
The calculated SNR as dimensionless quantity
"""
# Calculate the electron currents
signal_current, background_current, read_noise, dark_current = self.__exposePixels()
signal_current, background_current, read_noise, dark_current = self.__exposePixels(background, signal,
obstruction)
# Calculate the SNR using the CCD-equation
logger.info("Calculating the SNR...", extra={"spinning": True})
snr = signal_current.sum() * exp_time / np.sqrt(
@ -123,12 +131,18 @@ class Imager(ASensor):
return snr.value * u.dimensionless_unscaled
@u.quantity_input(snr=u.dimensionless_unscaled)
def getExpTime(self, snr: u.Quantity) -> u.s:
def calcExpTime(self, background: SpectralQty, signal: SpectralQty, obstruction: float, snr: u.Quantity) -> u.s:
"""
Calculate the necessary exposure time in order to achieve the given SNR.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
snr : Quantity
The SNR for which the necessary exposure time shall be calculated as dimensionless quantity.
@ -138,7 +152,8 @@ class Imager(ASensor):
The necessary exposure time in seconds.
"""
# Calculate the electron currents
signal_current, background_current, read_noise, dark_current = self.__exposePixels()
signal_current, background_current, read_noise, dark_current = self.__exposePixels(background, signal,
obstruction)
logger.info("Calculating the exposure time...", extra={"spinning": True})
# Calculate the electron currents for all pixels
signal_current_tot = signal_current.sum()
@ -160,12 +175,19 @@ class Imager(ASensor):
return exp_time
@u.quantity_input(exp_time="time", snr=u.dimensionless_unscaled, target_brightness=u.mag)
def getSensitivity(self, exp_time: u.Quantity, snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
def calcSensitivity(self, background: SpectralQty, signal: SpectralQty, obstruction: float, exp_time: u.Quantity,
snr: u.Quantity, target_brightness: u.Quantity) -> u.mag:
"""
Calculate the sensitivity of the telescope detector combination.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
exp_time : Quantity
The exposure time in seconds.
snr : Quantity
@ -179,7 +201,8 @@ class Imager(ASensor):
The sensitivity as limiting apparent star magnitude in mag.
"""
# Calculate the electron currents
signal_current, background_current, read_noise, dark_current = self.__exposePixels()
signal_current, background_current, read_noise, dark_current = self.__exposePixels(background, signal,
obstruction)
logger.info("Calculating the sensitivity...", extra={"spinning": True})
# Fix the physical units of the SNR
snr = snr * u.electron ** 0.5
@ -299,10 +322,20 @@ class Imager(ASensor):
hdul = fits.HDUList([hdu, signal_hdu, background_hdu, read_noise_hdu, dark_hdu])
hdul.writeto(os.path.join(path, "results.fits"), overwrite=True)
def __exposePixels(self) -> Tuple[u.Quantity, u.Quantity, u.Quantity, u.Quantity]:
def __exposePixels(self, background: SpectralQty, signal: SpectralQty,
obstruction: float) -> Tuple[u.Quantity, u.Quantity, u.Quantity, u.Quantity]:
"""
Expose the pixels and calculate the signal and noise electron currents per pixel.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
Returns
-------
signal_current : Quantity
@ -316,7 +349,8 @@ class Imager(ASensor):
"""
# Calculate the total incoming electron current
logger.info("Calculating incoming electron current...", extra={"spinning": True})
signal_current, size, obstruction, background_current = self.__calcIncomingElectronCurrent()
signal_current, size, obstruction, background_current = self.__calcIncomingElectronCurrent(background, signal,
obstruction)
# info("Finished calculating incoming electron current", extra={"spinning": False})
# Initialize a new PixelMask
mask = PixelMask(self.__pixel_geometry, self.__pixel_size, self.__center_offset)
@ -335,7 +369,7 @@ class Imager(ASensor):
else:
# Calculate the diameter of the photometric aperture from the given contained energy
logger.info("Calculating the diameter of the photometric aperture...",
extra={"spinning": True})
extra={"spinning": True})
d_photometric_ap = self.__calcPhotometricAperture(obstruction)
# Mask the pixels to be exposed
mask.createPhotometricAperture(self.__shape, d_photometric_ap / 2)
@ -354,11 +388,13 @@ class Imager(ASensor):
logger.info("The radius of the photometric aperture is %.2f pixels. This equals the FWHM" % (
d_photometric_ap.value / 2))
elif self.__contained_energy.lower() == "min":
logger.info("The radius of the photometric aperture is %.2f pixels. This equals the first minimum" % (
d_photometric_ap.value / 2))
logger.info(
"The radius of the photometric aperture is %.2f pixels. This equals the first minimum" % (
d_photometric_ap.value / 2))
else:
logger.info("The radius of the photometric aperture is %.2f pixels. This equals %.0f%% encircled energy" %
(d_photometric_ap.value / 2, self.__contained_energy))
logger.info(
"The radius of the photometric aperture is %.2f pixels. This equals %.0f%% encircled energy" % (
d_photometric_ap.value / 2, self.__contained_energy))
logger.info("The photometric aperture contains " + str(np.count_nonzero(mask)) + " pixels.")
if size.lower() != "extended":
# Map the PSF onto the pixel mask in order to get the relative irradiance of each pixel
@ -399,10 +435,20 @@ class Imager(ASensor):
d_photometric_ap = observation_angle / pixel_fov
return d_photometric_ap * u.pix
def __calcIncomingElectronCurrent(self) -> Tuple[u.Quantity, str, float, u.Quantity]:
def __calcIncomingElectronCurrent(self, background: SpectralQty, signal: SpectralQty,
obstruction: float) -> Tuple[u.Quantity, str, float, u.Quantity]:
"""
Calculate the detected electron current of the signal and the background.
Parameters
----------
background : SpectralQty
The received background radiation
signal : SpectralQty
The received signal radiation
obstruction : float
The obstruction factor of the aperture as ratio A_ob / A_ap
Returns
-------
signal_current : Quantity
@ -416,11 +462,10 @@ class Imager(ASensor):
"""
# Calculate the photon current of the background
logger.info("Calculating the background photon current.")
background_photon_current = self._parent.calcBackground() * np.pi * (
background_photon_current = background * np.pi * (
self.__pixel_size.to(u.m) ** 2 / u.pix) / (4 * self.__f_number ** 2 + 1) * (1 * u.sr)
# Calculate the incoming photon current of the target
logger.info("Calculating the signal photon current.")
signal, obstruction = self._parent.calcSignal()
size = "extended" if signal.qty.unit.is_equivalent(u.W / (u.m ** 2 * u.nm * u.sr)) else "point"
if size == "point":
signal_photon_current = signal * np.pi * (self.__common_conf.d_aperture() / 2) ** 2