Visibility of class attributes changed to private

This commit is contained in:
Lukas Klass 2020-07-02 16:51:18 +02:00
parent 7f67283215
commit 6de06d7723
1 changed files with 37 additions and 37 deletions

View File

@ -40,14 +40,14 @@ class Heterodyne(ASensor):
n_on : float
The number of on source observations.
"""
self.aperture_efficiency = aperture_efficiency
self.main_beam_efficiency = main_beam_efficiency
self.receiver_temp = receiver_temp
self.eta_fss = eta_fss
self.lambda_line = lambda_line
self.kappa = kappa
self.common_conf = common_conf
self.n_on = n_on
self.__aperture_efficiency = aperture_efficiency
self.__main_beam_efficiency = main_beam_efficiency
self.__receiver_temp = receiver_temp
self.__eta_fss = eta_fss
self.__lambda_line = lambda_line
self.__kappa = kappa
self.__common_conf = common_conf
self.__n_on = n_on
super().__init__(parent)
@u.quantity_input(exp_time="time")
@ -67,15 +67,15 @@ class Heterodyne(ASensor):
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_sys = 2 * (t_background + self.receiver_temp)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.lambda_line / self.common_conf.wl_delta() + 1)
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.__lambda_line / self.__common_conf.wl_delta() + 1)
# Calculate the RMS background temperature
if self.n_on is None:
t_rms = 2 * t_sys * self.kappa / np.sqrt(exp_time * delta_nu)
if self.__n_on is None:
t_rms = 2 * t_sys * self.__kappa / np.sqrt(exp_time * delta_nu)
else:
t_rms = t_sys * self.kappa * np.sqrt(1 + 1 / np.sqrt(self.n_on)) / np.sqrt(exp_time * delta_nu)
t_rms = t_sys * self.__kappa * np.sqrt(1 + 1 / np.sqrt(self.__n_on)) / np.sqrt(exp_time * delta_nu)
# Calculate the SNR
snr = t_signal / t_rms
# Print details
@ -103,17 +103,17 @@ class Heterodyne(ASensor):
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_sys = 2 * (t_background + self.receiver_temp)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.lambda_line / self.common_conf.wl_delta() + 1)
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.__lambda_line / self.__common_conf.wl_delta() + 1)
# Calculate the RMS background temperature
t_rms = t_signal / snr
# Calculate the exposure time
if self.n_on is None:
exp_time = ((2 * t_sys * self.kappa / t_rms) ** 2 / delta_nu).decompose()
if self.__n_on is None:
exp_time = ((2 * t_sys * self.__kappa / t_rms) ** 2 / delta_nu).decompose()
else:
exp_time = ((t_sys * self.kappa / t_rms) ** 2 * (1 + 1 / np.sqrt(self.n_on)) / delta_nu).decompose()
exp_time = ((t_sys * self.__kappa / t_rms) ** 2 * (1 + 1 / np.sqrt(self.__n_on)) / delta_nu).decompose()
# Print details
if snr.size > 1:
for i in range(snr.size):
@ -143,15 +143,15 @@ class Heterodyne(ASensor):
"""
# Calculate the signal and background temperatures
t_signal, t_background = self.calcTemperatures()
t_sys = 2 * (t_background + self.receiver_temp)
t_sys = 2 * (t_background + self.__receiver_temp)
# Calculate the noise bandwidth
delta_nu = self.lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.lambda_line / self.common_conf.wl_delta() + 1)
delta_nu = self.__lambda_line.to(u.Hz, equivalencies=u.spectral()) / (
self.__lambda_line / self.__common_conf.wl_delta() + 1)
# Calculate the RMS background temperature
if self.n_on is None:
t_rms = 2 * t_sys * self.kappa / np.sqrt(exp_time * delta_nu)
if self.__n_on is None:
t_rms = 2 * t_sys * self.__kappa / np.sqrt(exp_time * delta_nu)
else:
t_rms = t_sys * self.kappa * np.sqrt(1 + 1 / np.sqrt(self.n_on)) / np.sqrt(exp_time * delta_nu)
t_rms = t_sys * self.__kappa * np.sqrt(1 + 1 / np.sqrt(self.__n_on)) / np.sqrt(exp_time * delta_nu)
# Calculate the limiting signal temperature
t_signal_lim = t_rms * snr
# Print details
@ -205,23 +205,23 @@ class Heterodyne(ASensor):
The background temperature in Kelvins.
"""
logger.info("Calculating the system temperature.")
t_background = (self._parent.calcBackground().rebin(self.lambda_line).qty.to(
u.W / (u.m ** 2 * u.Hz * u.sr), equivalencies=u.spectral_density(self.lambda_line)) *
self.lambda_line ** 2 / (2 * k_B) * u.sr).decompose()
t_background = (self._parent.calcBackground().rebin(self.__lambda_line).qty.to(
u.W / (u.m ** 2 * u.Hz * u.sr), equivalencies=u.spectral_density(self.__lambda_line)) *
self.__lambda_line ** 2 / (2 * k_B) * u.sr).decompose()
# Calculate the incoming photon current of the target
logger.info("Calculating the signal temperature.")
signal, obstruction = self._parent.calcSignal()
size = "extended" if signal.qty.unit.is_equivalent(u.W / (u.m ** 2 * u.nm * u.sr)) else "point"
if size == "point":
signal = signal.rebin(self.lambda_line).qty.to(u.W / (u.m ** 2 * u.Hz),
equivalencies=u.spectral_density(self.lambda_line))
t_signal = (signal * self.aperture_efficiency * self.common_conf.d_aperture() ** 2 *
np.pi / 4 / (2 * k_B) * self.eta_fss).decompose()
signal = signal.rebin(self.__lambda_line).qty.to(u.W / (u.m ** 2 * u.Hz),
equivalencies=u.spectral_density(self.__lambda_line))
t_signal = (signal * self.__aperture_efficiency * self.__common_conf.d_aperture() ** 2 *
np.pi / 4 / (2 * k_B) * self.__eta_fss).decompose()
else:
signal = signal.rebin(self.lambda_line).qty.to(u.W / (u.m ** 2 * u.Hz * u.sr),
equivalencies=u.spectral_density(self.lambda_line))
t_signal = (signal * u.sr * self.main_beam_efficiency * self.lambda_line ** 2 / (
2 * k_B) * self.eta_fss).decompose()
signal = signal.rebin(self.__lambda_line).qty.to(u.W / (u.m ** 2 * u.Hz * u.sr),
equivalencies=u.spectral_density(self.__lambda_line))
t_signal = (signal * u.sr * self.__main_beam_efficiency * self.__lambda_line ** 2 / (
2 * k_B) * self.__eta_fss).decompose()
logger.debug("Signal temperature: %1.2e K" % t_signal.value)
logger.debug("Target size: " + size)
logger.debug("Obstruction: %.2f" % obstruction)