Rasterize circle on given grid

This commit is contained in:
Lukas Klass 2020-05-12 09:15:40 +02:00
parent a78c882227
commit 766a0872cc
2 changed files with 7 additions and 7 deletions

View File

@ -142,7 +142,8 @@ class Zemax(IPSF):
total = np.sum(psf)
# Iterate the optimal radius for the contained energy
r = bisect(lambda r_c: contained_energy.value - np.sum(
psf * rasterizeCircle(psf.shape[0], r_c, center_point[0], center_point[1])) / total, 0, r_max, xtol=1e-1)
psf * rasterizeCircle(np.zeros((psf.shape[0], psf.shape[0])), r_c, center_point[0],
center_point[1])) / total, 0, r_max, xtol=1e-1)
# Calculate the reduced observation angle in lambda / d_ap
# noinspection PyTypeChecker
reduced_observation_angle = r / psf_osf * self.__grid_delta[0] / (

View File

@ -42,14 +42,14 @@ def isLambda(obj: object):
return isinstance(obj, type(lambda: None)) and obj.__name__ == (lambda: None).__name__
def rasterizeCircle(n: int, radius: float, xc: float, yc: float):
def rasterizeCircle(grid: np.ndarray, radius: float, xc: float, yc: float):
"""
Map a circle on a rectangular grid.
Parameters
----------
n : int
Size of the rectangular grid to map the circle on.
grid : ndarray
The grid to map the circle onto.
radius : float
Radius of the circle to be mapped.
xc : float
@ -62,7 +62,6 @@ def rasterizeCircle(n: int, radius: float, xc: float, yc: float):
grid: ndarray
The grid with the circle mapped onto. Each point contained within the circle is marked as 1.
"""
grid = np.zeros((n, n)) # Initialize an empty grid
xc_pix = int(round(xc)) # X center in pixel coordinates
x_shift = xc_pix - xc # X shift of the circle center
yc_pix = int(round(yc)) # Y center in pixel coordinates
@ -73,9 +72,9 @@ def rasterizeCircle(n: int, radius: float, xc: float, yc: float):
grid[yc_pix, xc_pix] = 1 # Set the center pixel by default
# Create meshgrid for the x and y range of the circle
dx, dy = np.meshgrid(range(- radius_pix if xc_pix - radius_pix >= 0 else - xc_pix,
radius_pix + 1 if n > (xc_pix + radius_pix + 1) else n - xc_pix),
radius_pix + 1 if grid.shape[1] > (xc_pix + radius_pix + 1) else grid.shape[1] - xc_pix),
range(- radius_pix if yc_pix - radius_pix >= 0 else - yc_pix,
radius_pix + 1 if n > (yc_pix + radius_pix + 1) else n - yc_pix))
radius_pix + 1 if grid.shape[0] > (yc_pix + radius_pix + 1) else grid.shape[0] - yc_pix))
dx2 = (dx + x_shift) ** 2 # Square of the x-component of the current pixels radius
dx_side2 = (dx + x_shift + ((dx < 0) - 0.5)) ** 2 # Square of the x-component of the neighbouring pixels radius
dy2 = (dy + y_shift) ** 2 # Square of the y-component of the current pixels radius