Support for obstruction added

This commit is contained in:
Lukas Klass 2020-05-11 10:36:59 +02:00
parent a12b767aed
commit d4f28b55d8

View File

@ -2,10 +2,10 @@ from typing import Union
import numpy as np import numpy as np
from astropy import units as u from astropy import units as u
from .IPSF import IPSF from .IPSF import IPSF
from scipy.optimize import newton from scipy.optimize import newton, fmin, bisect
from scipy.special import j0, j1 from scipy.special import j0, j1
from scipy.signal import fftconvolve from scipy.signal import fftconvolve
from ...lib.helpers import error from scipy.integrate import quad
class Airy(IPSF): class Airy(IPSF):
@ -37,17 +37,19 @@ class Airy(IPSF):
self.__osf = osf self.__osf = osf
self.__pixel_size = pixel_size self.__pixel_size = pixel_size
def calcReducedObservationAngle(self, contained_energy: Union[str, int, float, u.Quantity], def calcReducedObservationAngle(self, contained_energy: Union[str, int, float],
jitter_sigma: u.Quantity = None) -> u.Quantity: jitter_sigma: u.Quantity = None, obstruction: float = 0.0) -> u.Quantity:
""" """
Calculate the reduced observation angle in lambda / d_ap for the given contained energy. Calculate the reduced observation angle in lambda / d_ap for the given contained energy.
Parameters Parameters
---------- ----------
contained_energy : Union[str, int, float, u.Quantity] contained_energy : Union[str, int, float]
The percentage of energy to be contained within a circle with the diameter reduced observation angle. The percentage of energy to be contained within a circle with the diameter reduced observation angle.
jitter_sigma : Quantity jitter_sigma : Quantity
Sigma of the telescope's jitter in arcsec Sigma of the telescope's jitter in arcsec
obstruction : float
The central obstruction as ratio A_ob / A_ap
Returns Returns
------- -------
@ -55,42 +57,37 @@ class Airy(IPSF):
The reduced observation angle in lambda / d_ap The reduced observation angle in lambda / d_ap
""" """
# Calculate the reduced observation angle in lambda / D for the given encircled energy # Calculate the reduced observation angle in lambda / D for the given encircled energy
reduced_observation_angle = 0 * u.dimensionless_unscaled
if type(contained_energy) == str: if type(contained_energy) == str:
# Encircled energy is of type string # Encircled energy is of type string
if contained_energy.lower() == "peak": if contained_energy.lower() == "peak":
# For the peak value of the PSF, the observation angle becomes zero which leads to one exposed # For the peak value of the PSF, the observation angle becomes zero which leads to one exposed
# pixel later in the code # pixel later in the code
reduced_observation_angle = 0 reduced_observation_angle = 0 * u.dimensionless_unscaled
elif contained_energy.lower() == "fwhm": elif contained_energy.lower() == "fwhm":
# Width of the FWHM of the airy disk # Width of the FWHM of the airy disk
reduced_observation_angle = 1.028 reduced_observation_angle = 1.028
contained_energy = 0.4738 * u.dimensionless_unscaled contained_energy = 0.4738 * u.dimensionless_unscaled
if not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
reduced_observation_angle = newton(lambda y: self.airy(np.pi * y, np.sqrt(obstruction)) - 0.5,
reduced_observation_angle / 2) * 2
contained_energy = self.airy_int(np.pi * reduced_observation_angle / 2, np.sqrt(obstruction))
elif contained_energy.lower() == "min": elif contained_energy.lower() == "min":
# Width of the first minimum of the airy disk # Width of the first minimum of the airy disk
reduced_observation_angle = 1.22 * 2 reduced_observation_angle = 1.22 * 2
contained_energy = 0.8377 * u.dimensionless_unscaled contained_energy = 0.8377 * u.dimensionless_unscaled
else: if not np.isclose(obstruction, 0.0):
# Try to parse the encircled energy to float # Use obstructed airy disk
reduced_observation_angle = 0 reduced_observation_angle = fmin(lambda y: self.airy(np.pi * y, np.sqrt(obstruction)),
try: reduced_observation_angle / 2, disp=False)[0] * 2
contained_energy = float(contained_energy) / 100.0 * u.dimensionless_unscaled contained_energy = self.airy_int(np.pi * reduced_observation_angle / 2, np.sqrt(obstruction))
# Calculate the width numerically from the integral of the airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
reduced_observation_angle = 2 * newton(
lambda x: 1 - j0(np.pi * x) ** 2 - j1(np.pi * x) ** 2 - contained_energy, 1, tol=1e-6)
except ValueError:
error("Could not convert encircled energy to float.")
elif type(contained_energy) == u.Quantity:
# Calculate the width numerically from the integral of the airy disk
reduced_observation_angle = 2 * newton(
lambda x: 1 - j0(np.pi * x) ** 2 - j1(np.pi * x) ** 2 - contained_energy.value, 1, tol=1e-6)
else: else:
# Calculate the width numerically from the integral of the airy disk # Calculate the width numerically from the integral of the airy disk
contained_energy = contained_energy * u.dimensionless_unscaled contained_energy = contained_energy / 100 * u.dimensionless_unscaled
reduced_observation_angle = 2 * newton( reduced_observation_angle = 2 * bisect(
lambda x: 1 - j0(np.pi * x) ** 2 - j1(np.pi * x) ** 2 - contained_energy.value, 1, tol=1e-6) lambda y: self.airy_int(np.pi * y, np.sqrt(obstruction)) - contained_energy.value, 0, 100)
if jitter_sigma is not None and type(contained_energy) == u.Quantity: if jitter_sigma is not None:
# Convert jitter to reduced observation angle in lambda / d_ap # Convert jitter to reduced observation angle in lambda / d_ap
jitter_sigma = jitter_sigma.to(u.rad).value * self.__d_aperture / self.__wl.to(u.m) jitter_sigma = jitter_sigma.to(u.rad).value * self.__d_aperture / self.__wl.to(u.m)
# Calculate necessary grid length to accommodate the psf and 3-sigma of the gaussian # Calculate necessary grid length to accommodate the psf and 3-sigma of the gaussian
@ -105,8 +102,8 @@ class Airy(IPSF):
# Calculate the corresponding x-coordinates of each grid element # Calculate the corresponding x-coordinates of each grid element
x = np.arange(1, n_points + 1) * dx x = np.arange(1, n_points + 1) * dx
# Calculate the psf from an airy disk for each element on the grid # Calculate the psf from an airy disk for each element on the grid
psf = (2 * j1(np.pi * x) / (np.pi * x))**2 psf = self.airy(np.pi * x, np.sqrt(obstruction))
# Calculate the integral of the undisturbed airy disk in order to scale teh result of the convolution # Calculate the integral of the undisturbed airy disk in order to scale the result of the convolution
total = np.sum(psf * x) * dx * 2 * np.pi total = np.sum(psf * x) * dx * 2 * np.pi
# Mirror the PSF to the negative x-domain # Mirror the PSF to the negative x-domain
psf = np.concatenate((np.flip(psf), np.array([1]), psf)) psf = np.concatenate((np.flip(psf), np.array([1]), psf))
@ -130,6 +127,76 @@ class Airy(IPSF):
return reduced_observation_angle * u.dimensionless_unscaled return reduced_observation_angle * u.dimensionless_unscaled
@staticmethod
def airy(x: Union[float, np.ndarray], obstruction: float = None):
"""
Calculate function values of the airy disk
Parameters
----------
x : Union[float, np.ndarray]
radial coordinate to calculate the function value for.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : Union[float, np.ndarray]
The function values of the airy disk at the given coordinates
"""
# Standardize input values
if not isinstance(x, np.ndarray):
x = np.array([x])
# Initialize return values and assign values for the singularity at x=0
res = np.zeros(len(x))
res[np.isclose(x, 0.0)] = 1.0
x_temp = x[np.invert(np.isclose(x, 0.0))]
if obstruction and not np.isclose(obstruction, 0.0):
# Use obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
res[np.invert(np.isclose(x, 0.0))] = 1 / (1 - obstruction ** 2) ** 2 * (
2 * (j1(x_temp) - obstruction * j1(obstruction * x_temp)) / x_temp) ** 2
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
res[np.invert(np.isclose(x, 0.0))] = (2 * j1(x_temp) / x_temp) ** 2
# Unbox arrays of length 1
if len(res) == 1:
res = res[0]
return res
@staticmethod
def airy_int(x: float, obstruction: float = None):
"""
Calculate the integral of the airy disk from 0 to x.
Parameters
----------
x : float
The upper limit for the integration.
obstruction : float
The linear central obstruction ratio of the aperture.
Returns
-------
res : float
The integral of the airy disk.
"""
if np.isclose(x, 0.0):
# Short circuit for an integration-range of length 0
return 0.
else:
if obstruction and not np.isclose(obstruction, 0.0):
# Use integral of obstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Obscured_Airy_pattern
return 1 / (1 - obstruction ** 2) * (1 - j0(x) ** 2 - j1(x) ** 2 + obstruction ** 2 * (
1 - j0(obstruction * x) ** 2 - j1(obstruction * x) ** 2) - 4 * obstruction * quad(
lambda y: j1(y) * j1(obstruction * y) / y, 0, x, limit=100, epsrel=1e-6)[0])
else:
# Use unobstructed airy disk
# See also https://en.wikipedia.org/wiki/Airy_disk#Mathematical_formulation
return 1 - j0(x) ** 2 - j1(x) ** 2
def mapToGrid(self, grid: np.ndarray) -> np.ndarray: def mapToGrid(self, grid: np.ndarray) -> np.ndarray:
""" """
Map the integrated PSF values to a sensor grid. Map the integrated PSF values to a sensor grid.